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EXCUTIVE SUMMARY 

Energy consumption and greenhouse gas emissions (GHGs) are at their highest levels in history. 

One of the largest sources of GHGEs in the United States is from burning fossil fuels for 

transportation. In developing countries GHGEs from private vehicles are growing rapidly with 

their wealth. Societies around the globe need to reduce human-caused GHGEs to avoid worsening 

climate impacts and to reduce the risk of creating changes beyond our ability to respond and adapt. 

Policies are needed in order to reduce energy use, limit GHGEs, and build a clean energy economy 

(Department of Ecology, 2015). 

According to the annual report of the United Nations Framework Convention on Climate Change 

(UNFCCC), in the United States (US) more than 27% of total GHGEs are from the transportation 

sector. Within this sector, light-duty vehicles are the largest pollutant sources, accounting for 61% 

of the total GHGEs (EPA, 2013). Although mobile sources contribute large percentages of 

GHGEs, technology is not yet available to measure and tax emissions from each vehicle (Feng et 

al., 2005). Therefore, it is necessary to develop and apply effective and quantitative methodologies 

to support public authority decision making (Liu et al., 2014) and to analyze the impact of taxation 

policies on reductions of GHGEs. 

GHGEs from light-duty vehicles are closely linked to households’ car purchasing and driving 

behaviors. Preferences on vehicle type and quantity (i.e. the number of vehicles within households) 

determine car purchases, while driving behavior is best described by households’ travel demand 

or vehicle usage (i.e. vehicle miles traveled, VMT). Therefore, the combination of the number of 

vehicles owned by a household, vehicle type, and the usage (i.e. VMT) of vehicles is an important 

determinant of households’ vehicle GHGEs and fuel consumption (Vyas et al., 2012). The state-

of-the-art in calculating GHGEs from vehicle usage employs either the standard values of 

conversion that consider lifecycle emissions from the Environmental Protection Agency (EPA) or 

the emission rates per miles from the California Air Resources Board (CARB) (Feng et al., 2005; 

Fullerton, 2005; Fullerton and Gan, 2005; Musti and Kockelman, 2011). Other methods which 

estimate vehicle GHGEs combine demand models and emission simulators such as the EPA’s 

MOBILE6, MOVES, or the EMFAC model developed for California.  

To estimate GHGEs from private transportation, this report proposes a comprehensive model 

system that forecasts vehicle GHGEs and evaluates effects of vehicle-related taxation schemes on 

private vehicle GHGEs. The model system jointly considers four sub-models: (a) vehicle type and 

vintage choice; (b) vehicle quantity choice; (c) vehicle usage choice; and (d) vehicle GHGEs rates 

estimator. In order to estimate the annual VMT for each vehicle, the usage of households’ primary, 

secondary, and tertiary vehicles are estimated by three linear regression models. The vehicle 

quantity probit model and the vehicle usage regression models are combined by an unrestricted 

full variance covariance matrix, which considers the interdependence between households’ 

discrete and continuous choices. The model framework integrates with MOVES2014 which 

calculates emission rates for different vehicle types.  
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The model system is estimated on the 2009 U.S. NHTS data for the Washington D.C. Metropolitan 

Area, with supplementary datasets from the Consumer Report. The variables of interest are vehicle 

characteristics, households’ social demographics, land use variables, vehicle travel cost, and traffic 

condition information. The coefficients estimated by the model system are significant, yielding a 

generally good correspondence to the observed situation. The predicted household-level vehicle 

GHGEs are consistent with EPA’s annual report. 

The results from policy analysis suggest that fuel tax is the most effective in reducing GHGEs. 

This tax mainly reduces GHGEs by decreasing households’ vehicle usage, especially for the low-

income group. On the contrary, purchase tax has relatively low impact on emission reduction. It 

mainly reduces GHGEs by decreasing households’ vehicle quantity, especially for those with more 

vehicles. Ownership tax has the lowest impact on GHGEs reduction. 

The conceptual framework developed is general and can be applied to other zones and counties. 

The model can be further expanded for application to state and national geographical level. 

Moreover, the inclusion of other variable types in the model makes it possible to test different 

taxation policies, and to support decisions aiming at reducing the vehicle emission footprint. 
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1.0 INTRODUCTION 

Rising levels of carbon dioxide and other heat-trapping gases in the atmosphere are believed to 

warm the Earth and to cause wide-ranging impacts. In the long term, scientists project that these 

trends will continue and in some cases accelerate, posing significant risks to human health and to 

other natural resources that are vital to the environment. Societies around the globe need to reduce 

human-caused greenhouse gas emissions (GHGEs) to avoid worsening climate impacts and to 

reduce the risk of creating changes beyond our ability to respond and adapt. Policies are needed in 

order to reduce energy use, limit GHGEs, and build a clean energy economy (Department of 

Ecology, 2015). 

According to the annual report of the United Nations Framework Convention on Climate Change 

(UNFCCC), in the United States (US) more than 27% of total GHGEs are from the transportation 

sector. Within this sector, light-duty vehicles are the largest pollutant sources, accounting for 61% 

of the total GHGEs (EPA, 2013). The estimation from the Organization for Economic Co-

operation and Development (OECD) also shows that on-road passenger cars are responsible for 

around 15% of fossil fuel-related carbon dioxide (CO2) emissions which are the main component 

of greenhouse gases (GHGs) (Dargay and Gately, 1997). Although mobile sources contribute large 

percentages of GHGEs, technology is not yet available to measure and tax emissions from each 

vehicle (Feng et al., 2005). Therefore, it is necessary to develop and apply effective and 

quantitative methodologies to support public authority decision making (Liu et al., 2014) and to 

analyze the impact of taxation policies on reductions of GHGEs. 

To estimate GHGEs from private transportation, this report proposes an integrated model 

framework that efficiently forecasts the number of vehicle within a household, vehicle 

type/vintage, annual miles traveled, and the emission rate of each vehicle. Different from previous 

research, this model framework is able to estimate the usage pattern of households’ primary, 

secondary, and tertiary vehicles. More specifically, it predicts the VMT of each vehicle and 

forecasts individual vehicle’s annual greenhouse gas (GHG) emissions. To the best of our 

knowledge, this research is the first to forecast households’ vehicle emissions by combining an 

integrated discrete-continuous car ownership model and MOVES2014. Furthermore, the 

integrated model accounts for different types of attributes such as socio-demographics, built 

environment, travel costs, and road traffic conditions. The proposed study also evaluates several 

tax schemes by applying the model system to real data extracted from the 2009 U.S. NHTS for the 

Washington D.C. Metropolitan Area. 

The remainder of this report is organized as follows. Chapter 2 provides a review of the literature 

on integrated discrete-continuous car ownership models and on previous methods used to estimate 

vehicle GHGEs. This is followed by Chapter 3 where we present the proposed framework based 

on four modules: vehicle type and vintage choice, quantity choice, usage decision, and GHGEs 

rates estimator. Chapter 4 introduces data sources necessary for model estimations, while Chapter 

5 presents model estimation and validation results. In Chapter 6, three different taxation policies 
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are evaluated and their effects to reduce GHGEs are compared. The final Chapter offers the 

concluding remarks and avenues for future research.    

2.0 LITERATURE REVIEW 

In this section we briefly cover previous studies on vehicle ownership and usage modeling, and 

we provide main features of existing emission simulators. Additionally, we outline the results 

obtained from policy analyses on energy and environmental related issues arising from private 

transportation. 

Existing studies in the transportation literature about car ownership modeling attest that vehicle 

quantity, type/vintage, and usage are the main determinants needed for the calculation of fuel 

consumption, GHGEs, and other pollutants from private vehicles (Train, 1986). Moreover, 

researchers have recognized that those decisions are taken simultaneously and that integrated 

model should be used to model these decisions jointly (Dubin and McFadden, 1984; Hanemann, 

1984). The early discrete-continuous models are derived from the conditional indirect utility 

function and are consistent with the microeconomic theory (Mannering and Winston, 1985; Jong, 

1989). More recently, Bhat (Bhat, 2005) has developed multiple discrete-continuous extreme value 

(MDCEV) models that jointly estimate the holdings and usage of multiple vehicle types by 

households. Several variables were found to be significant for this problem: socio-demographic 

variables, built environment attributes, vehicle characteristics, and gasoline prices (Bhat and Sen, 

2006; Bhat et al., 2009). However, Bhat’s model is restricted by the assumption of fixed total miles 

traveled by each household. Fang (Fang, 2008) proposed a Bayesian Multivariate Ordered Probit 

and Tobit (BMOPT) model to estimate households’ vehicle type, quantity, and usage. An ordered 

probit model was employed to determine households’ decisions on the number of passenger cars 

and trucks. A multivariate tobit model was applied to estimate household decisions on VMT. The 

author concluded that the model was appropriate for predicting changes of vehicle quantity, types, 

and miles traveled. Liu et al. (2014) also developed an integrated discrete-continuous car 

ownership model that jointly estimated households’ vehicle quantity, type, and usage. A 

multinomial probit model was employed to estimate vehicle quantity while a linear regression 

model was used to estimate total VMT of each household. The correlation among the discrete and 

the continuous parts was captured by an unrestricted full variance-covariance matrix of the 

unobserved factors.  

Several emission estimation simulators have been developed and utilized to calculate GHGEs from 

private vehicles. For instances, the California’s Emission Factors model (EMFAC7F), the EPA’s 

Vehicle Emission Modeling software (MOBILE5a), and the EPA’s MOVES model (EPA, 1998). 

According to Bai et al. (2009), MOVES should be preferred to other software for the following 

reasons: (a) it combines vehicle specific power (VSP) and speed bins, rather than speed correction 

factors, to quantify running exhaust emissions; (b) it uses vehicle operating time rather than VMT 

as the unit of measure for various vehicle activities and emissions; and (c) it uses a relational 

database to manipulate data and enables multi-scale emission analyses and applications from link-

level to nation-level.  
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A significant number of policy-oriented studies have explored market incentives that could be 

considered to reduce emissions (Eskeland and Devarajan, 1996). Dargay and Gately (1997) 

applied a car ownership model to forecast the growth of household vehicle quantity to the year 

2015 for the Organization for Economic Co-operation and Development (OECD) countries and to 

estimate the growth of energy demand and emissions. They forecasted fuel consumption and CO2 

emissions by estimating trends in car ownership, income, population, vehicle usage, fuel 

efficiency, and fuel price. Fullerton and Gan (2005) used data from the California Air Resources 

Board (CARB) on 672 vehicles of various types and ages to estimate miles per gallon (MPG) and 

emissions per mile (EPM) which were assumed to be a function of vehicle type, age, and number 

of cylinders. They calculated emissions by using the EPM and other estimates from a discrete-

continuous car ownership model. Feng et al. (2005) developed a nested logit structure to model 

choices among different vehicle bundles, considering the miles traveled and the age of each vehicle 

as continuous choices. Estimates from the joint model were combined with information on MPG 

of new vehicles from the EPA’s report, EPM from the CARB, and gas prices from the ACCRA 

cost of living indexes, to calculate vehicle emissions. Musti and Kockelman (2011) utilized a car 

ownership model to jointly estimate vehicle class and VMT on 596 households extracted from the 

2001 NHTS. They translated the estimated VMT into GHGEs by using EPA’s conversion factors 

and fuel economy assumptions (EPA, 2007). Vyas et al. (2012) proposed a joint MDCEV- 

multinomial logit (MNL) model to estimate households’ vehicle quantity, type, annual mileage, 

and the primary driver for each vehicle. The estimated vehicle type and quantity served as an 

engine for a household vehicle composition and evolution simulator which is embedded in a larger 

activity-based travel and emissions forecasting system - the Simulator of Activities, Greenhouse 

Emissions, Energy, Networks, and Travel (SimAGENT) (Goulias et al., 2012).  

In addition, various tax schemes have been proposed and investigated to reduce GHGEs, among 

them we recall: vehicle purchase tax, vehicle ownership tax, tax on vehicle driving distance, 

emission tax, emission rates tax, fuel tax, tax on vehicle age, and tax on engine size (Fullerton, 

2005). Distinct tax weights over different stages of car ownership will have tremendous influences 

on car purchasing behavior, driving patterns, and CO2 emissions. In this context, Hayashi et al. 

(2001) proposed a model system that specifically determined effects of different components of 

taxation policies in the stages of (a) car purchase, (b) car owning, and (c) car usage. The model 

system was applied to analyze the impact of the 1989 tax reform in Japan and to forecast the future 

GHGEs reductions under different taxation schemes. Many researchers have found that fuel tax is 

the most effective strategy for reducing GHGEs among different vehicle-related taxes (Fullerton, 

2005; Fullerton and Gan, 2005; Hayashi et al., 2001). For example, Davis and Kilian (2009) 

calculated that an additional 10 cent gasoline tax per gallon would reduce vehicle carbon emissions 

by about 1.5% in the US. It should be noted that in the long term, the energy consumption and 

GHGEs of private vehicles would be affected by gas price dynamics, tax incentives, feebates and 

purchase prices along with new technologies, government-industry partnerships, range and 

recharging times (Musti and Kockelman, 2011; Cirillo et al., 2015). 
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3.0 MODEL FRAMEWORK 

3.1 STRUCTURE OF THE MODEL SYSTEM 

The proposed framework accounts for households’ decisions on vehicle quantity, type/vintage, 

and usage. Then it estimates GHGEs of each vehicle in a household. An integrated car ownership 

model, based on discrete choice models and regressions, is combined with MOVES to estimate 

GHGEs rates of different vehicle types. A flow chart of the modeling structure is given in Figure 

1.  

 

Figure 1: Structure of the proposed model. 

Specifically, the model structure includes four sub-models (in blue): (A) vehicle type logit model, 

(B) vehicle quantity probit model, (C) car usage (VMT) regression for each vehicle in a household, 

and (D) vehicle GHGEs rates estimation. The attributes (in yellow) considered are vehicle 

characteristics, households’ social demographics, land use variables, and vehicle traveling 

information (See Appendix A for a detailed description of the independent variables). Effects of 

three vehicle-related taxes (in green) are evaluated in terms of GHGEs reductions due to their 

influences on households’ discrete choices of vehicle quantity/type and continuous choices of 

annual VMT. 
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3.2 VEHICLE TYPE AND VINTAGE SUB-MODEL 

We adopt MNL models to capture households’ decisions on vehicle type and vintage which are 

combinations of two types (passenger car and passenger truck) and three vintages (less than 3 

years, 3-6 years, and older than 6 years). Let 𝑡𝑗 (𝑗 = 1, 2, 3)  represents the choice set of all 

combinations of vehicle types for households with j vehicles. 𝑈𝑡𝑗
 represents the indirect utility of 

choosing any vehicle type 𝑡𝑗
′among the full choice set 𝑡𝑗.  

𝑈𝑡𝑗
= 𝑉𝑡𝑗

+ 𝜀𝑡𝑗
 ,   𝜀𝑡𝑗

~𝑖𝑖𝑑EV1(0, λ)                                            (1) 

𝑉𝑡𝑗
= 𝑋𝑡𝑗

𝑇 𝛽𝑡𝑗
                                                              (2) 

where 𝑉𝑡𝑗
and 𝜀𝑡𝑗

are observed and unobserved (error terms) parts of the utility functions. 

𝑋𝑡𝑗
 represents the independent variables related to car characteristics, 𝛽𝑡𝑗

are the parameters to be 

estimated. The error term, 𝜀𝑡𝑗
, is independent and identically distributed (IID) and follows type 1 

extreme value (EV1) distribution. λ is a scale parameter normalized to 1. 

3.3 VEHICLE QUANTITY SUB-MODEL 

We employ multinomial probit (MNP) model to forecast households’ decisions on vehicle quantity 

(Liu et al., 2014); the choice set includes four alternatives: owning zero, one, two, and three or 

more vehicles. The utility function of the vehicle quantity model consists of three parts - the 

observed utility of vehicle quantity choice (𝑉𝑗) regardless of vehicle type choice, the information 

from vehicle type choice (𝑟𝑗) given j vehicles, and the unobserved error term (𝜀𝑗).  

𝑈𝑗 = 𝑉𝑗 + 𝛼𝑟𝑗 + 𝜀𝑗   , 𝜀𝑗 ~𝑖𝑖𝑑N(0, 𝜎2) , 𝑗 = 0, 1, 2, 3                              (3) 

𝑉𝑗 = 𝑋𝑗
𝑇𝛽𝑗                                                                (4) 

𝑟𝑗 = g(𝑚𝑎𝑥(𝑈𝑡𝑗
))                                                         (5) 

where 𝑈𝑗 is the utility of vehicle quantity choice. 𝑋𝑗  is the vector of variables contributing to 

vehicle quantity choice. g(∗) is a statistical function of 𝑚𝑎𝑥 (𝑈𝑡𝑗
), where 𝑈𝑡𝑗

 are the utilities of the 

vehicle type/vintage model, and  𝛼 and 𝛽𝑗are parameters to be estimated.   

To specify the information from vehicle type choice given j vehicles, we need to define the 

distribution of 𝑚𝑎𝑥(𝑈𝑡𝑗
).  

Let 𝑣𝑗 = 𝑚𝑎𝑥(𝑈𝑡𝑗
)                                                       (6) 

Because vehicle type choice is estimated by MNL model, 𝑣𝑗 follows type 1 extreme value (EV1) 

distribution with cumulative distribution (𝐹𝑣) and probability density functions (𝑓𝑣) as follows 

(Melnikov, 2013):  
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𝐹𝑣(𝑢; 𝑟𝑗) = exp(−𝑒−(𝑢−𝑟𝑗))                                               (7) 

𝑓𝑣(𝑢; 𝑟𝑗) = 𝑒𝑟𝑗exp(−𝑒−(𝑢−𝑟𝑗) − 𝑢)                                          (8) 

where 𝑟𝑗is the mode of the distribution, which can be formulated as follows:  

𝑟𝑗 = 𝑙𝑛𝐺 (exp (𝑉𝑡𝑗
))                                                     (9) 

 where 𝐺 (𝑉𝑡𝑗
) = ∑ 𝑉𝑡𝑗𝑡𝑗

 for MNL model with a Gumbel-distributed error term. Thus, 𝑟𝑗 can be 

alternatively represented as follows: 

𝑟𝑗 = 𝑙𝑛 ∑ exp (𝑉𝑡𝑗
)𝑡𝑗

= 𝐸𝑗 [𝑚𝑎𝑥(𝑈𝑡𝑗
)]                                      (10) 

where 𝐸𝑗(∗) is the conditional expectation given j vehicles. The utility of vehicle quantity can be 

further written as: 

𝑈0 = 𝜀0                                                                 (11) 

𝑈1 = 𝑉1 + 𝛼𝑟1 + 𝜀1 

𝑈2 = 𝑉2 + 𝛼𝑟2 + 𝜀2 

𝑈3 = 𝑉3 + 𝛼𝑟3 + 𝜀3 

We assume the error terms follow a multivariate normal distribution with a full, unrestricted 

covariance matrix. Households are assumed to be rational and make decisions based on utility 

maximization rule.  

For identification purpose, we take the difference of utility. Let �̃�𝑗𝑦 = 𝑈𝑗 − 𝑈𝑦  , �̃�𝑗𝑦 = (𝛼𝑟𝑗 +

𝑉𝑗) − (𝛼𝑟𝑦 + 𝑉𝑦)  , 𝜀�̃�𝑦 = 𝜀𝑗 − 𝜀𝑦. The differences of error terms, 𝜀�̃�𝑦, follow normal distributions. 

Then, the utility in difference is: 

�̃�𝑗𝑦 = �̃�𝑗𝑦 + 𝜀�̃�𝑦                                                          (12) 

where the subscript y represents the chosen alternative and j represents any alternative within the 

choice set. Let 𝑌𝑑𝑖𝑠𝑐 represents households’ decisions on vehicle quantity. The likelihood of 

choosing certain number of vehicles can be calculated as follows: 

P(𝑌𝑑𝑖𝑠𝑐 = y) = ∫ 𝐼(�̃�𝑗𝑦 + 𝜀�̃�𝑦 < 0, ∀𝑗 ≠ 𝑦)𝜑(𝜀�̃�𝑦) 𝑑𝜀�̃�𝑦𝑅3                             (13) 

where 𝐼(∗) is a function indicating that the chosen alternative y has the maximum utility among 

the choice set. 𝜑(∗) is the density function of normal distribution. 𝑅3indicates the dimension of 

integrals over 𝜀�̃�𝑦. 
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3.4 VEHICLE USAGE SUB-MODEL 

We use linear regression models to estimate households’ vehicle usage pattern. Three regressions 

are used for households’ primary, secondary, and tertiary vehicles.  

𝑌𝑉𝑀𝑇,𝑠 =  𝑋𝑠
𝑇𝛽𝑠 + 𝜀𝑠  , 𝜀𝑠~𝑁(0, 𝜎𝑠

2)                                           (14) 

𝑠 ∈ {𝑝𝑟𝑖𝑚𝑎𝑟𝑦, 𝑠𝑐𝑜𝑛𝑑𝑎𝑟𝑦, 𝑡𝑒𝑟𝑡𝑖𝑎𝑟𝑦} 

where 𝑌𝑉𝑀𝑇,𝑠  are the dependent variables describing annual miles traveled of each vehicle. 𝑋𝑠 

represents a vector of explanatory variables while 𝛽𝑠is a vector of corresponding coefficients to be 

estimated. 𝜀𝑠 is the error term. The regressions are solved with maximum likelihood method 

(McCulloch et al., 2008). For households with j vehicles, given: 

𝑌𝑉𝑀𝑇 = (𝑌𝑉𝑀𝑇,1𝑠𝑡, 𝑌𝑉𝑀𝑇,2𝑛𝑑, … … , 𝑌𝑉𝑀𝑇,𝑗𝑡ℎ)                                     (15) 

𝑋 = (𝑋1𝑠𝑡, 𝑋2𝑛𝑑, … … , 𝑋𝑗𝑡ℎ) 

𝛽 = (𝛽1𝑠𝑡, 𝛽2𝑛𝑑, … … , 𝛽𝑗𝑡ℎ) 

𝜀𝑉𝑀𝑇 = (𝜀1𝑠𝑡, 𝜀2𝑛𝑑, … … , 𝜀𝑗𝑡ℎ) 

𝜀𝑉𝑀𝑇~N(0, Σ𝑗) 

j = 1, 2, 3 

where 𝑌𝑉𝑀𝑇,𝑗𝑡ℎrepresents the continuous choice on households’ VMT of the jth vehicle. 𝑋𝑗𝑡ℎis a 

vector of explanatory variables deciding the VMT of the jth vehicle, and 𝛽𝑗𝑡ℎ is a vector of the 

corresponding coefficients. 𝜀𝑉𝑀𝑇is the unobserved error term. Σ𝑗is the variance-covariance matrix 

of size j × j. The mileage of different vehicles within one household is jointly estimated by 

assuming that the error terms of different regressions follow a multivariate normal distribution 

centered at 𝑋𝑇𝛽 . Therefore, the likelihood of observing 𝑌𝑉𝑀𝑇  follows a multivariate normal 

density function: 

P(𝑌𝑉𝑀𝑇|𝑋, 𝛽, Σ𝑗) = 𝜑(𝑌𝑉𝑀𝑇|𝑋𝑇𝛽, Σ𝑗)                                          (16) 

Instrumental variable (IV) approach, rather than ordinary least squares (OLS), is applied to avoid 

endogeneity problem due to the inclusion of the driving cost of the household’s vehicle as an 

explanatory variable. Since a household chooses which vehicle it owns, it effectively chooses the 

driving cost that it faces. Therefore, the driving cost that a household faces is an endogenous 

variable, and estimation with ordinary least squares is biased (Train, 1986). Specifically, we 

employ the two-stage least squares (2SLS) method to solve the endogeneity problem. In the first 

stage, the exogenous variables used to predict driving cost are gas price in the residential area, 

household income, number of workers, living in urban area, age of household head, education level 

of household head, gender of household head, and residential density. In the second stage, we 

consider household income, residential density, household head gender, and the estimated driving 
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cost (from the first stage) to forecast annual VMT of households’ primary, secondary, and tertiary 

vehicles. 

3.5 INTEGRATED DISCRETE-CONTINUOUS CHOICE MODEL 

To capture the correlations between households’ discrete and continuous choices, we estimate 

𝑌𝑑𝑖𝑠𝑐 and 𝑌𝑉𝑀𝑇 jointly. Taking advantage of the fact that both error terms of the regression model 

and the probit model follow normal distributions, the combination of error terms from the two 

parts will follow a multivariate normal (𝑀𝑉𝑁) distribution. 

(𝜀1̃0, 𝜀2̃0, 𝜀3̃0, 𝜀𝑉𝑀𝑇) = (𝜀1̃0, 𝜀2̃0, 𝜀3̃0, 𝜀1𝑠𝑡, 𝜀2𝑛𝑑, … … , 𝜀𝑗𝑡ℎ)~𝑀𝑉𝑁(0, Σ3+𝑗), 𝑗 = 1, 2, 3        (16) 

𝜀1̃0 , 𝜀2̃0, 𝜀3̃0 represent error terms in difference of the probit model respective to zero-vehicle 

households. 𝜀𝑗𝑡ℎis the error term of households’ VMT of the jth vehicle. We integrate discrete and 

continuous parts by assuming a full, unrestricted variance-covariance matrix. The dimension of 

the matrix is (3 + 𝑗) × (3 + 𝑗). The number of vehicles j vary across different households.  

Liu’s simulation results (Liu, 2013) show that the joint probability 𝑃(𝑌𝑑𝑖𝑠𝑐, 𝑌𝑉𝑀𝑇)  is more 

appropriate to be expressed as the product of the marginal probability of driving certain miles 

𝑃(𝑌𝑉𝑀𝑇)  and the conditional probability of choosing the number of vehicles based on 

VMT 𝑃(𝑌𝑑𝑖𝑠𝑐|𝑌𝑉𝑀𝑇).  

𝑃(𝑌𝑑𝑖𝑠𝑐, 𝑌𝑉𝑀𝑇) = 𝑃(𝑌𝑉𝑀𝑇)𝑃(𝑌𝑑𝑖𝑠𝑐|𝑌𝑉𝑀𝑇)                                       (17) 

The second part follows a MVN distribution with new mean and variance-covariance matrix. 

If [
𝜀𝑑𝑖𝑠𝑐

𝜀𝑉𝑀𝑇
] ~𝑁 ([

0
0

] , [
𝛴𝑑𝑖𝑠𝑐 𝛴𝑑𝑖𝑠𝑐,𝑉𝑀𝑇

𝛴𝑉𝑀𝑇,𝑑𝑖𝑠𝑐 𝛴𝑉𝑀𝑇
])                                    (18) 

Then 𝜀𝑑𝑖𝑠𝑐,𝑉𝑀𝑇~𝑁(0 +
𝛴𝑑𝑖𝑠𝑐,𝑉𝑀𝑇

𝛴𝑉𝑀𝑇
(𝑒𝑟𝑟 − 0) , 𝛴𝑑𝑖𝑠𝑐 −

𝛴𝑑𝑖𝑠𝑐,𝑉𝑀𝑇 𝛴𝑉𝑀𝑇,𝑑𝑖𝑠𝑐

𝛴𝑉𝑀𝑇
) 

where 𝜀𝑑𝑖𝑠𝑐,𝑉𝑀𝑇is the integrated error term, and 𝑒𝑟𝑟 represents observed errors. 

3.6 VEHICLE GHGES RATES SUB-MODEL 

We employ MOVES2014 to estimate vehicle emission rates for the main components of GHGs - 

CO2, methane (CH4), and nitrous oxide (N2O) emitted from vehicle tailpipe. The amounts of CH4 

and N2O emissions are less than CO2, however, these gases have higher potential global warming 

effects (EPA, 2011). Thus, emission rates of all gases are transformed into carbon dioxide 

equivalent (CO2E) gases for comparison purpose. Vehicle emission rates not only depend on 

vehicle characteristics (i.e. vehicle size and model year), but also depend on driving information 
(i.e. start time and speed), traffic condition (i.e. total number of vehicles and mileage), and 

environment factors (i.e. meteorology). We consider two vehicle types (passenger car and 

passenger truck) and three vintages (less than 3 years, 3-6 years, older than 6 years) which are 

consistent with the vehicle classification in the vehicle type sub-model. Vehicle GHGEs are from 
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two driving processes – running process and start/extended idle process. The specific emission 

rates estimation flowchart is illustrated in Figure 2. 

The inputs of MOVES consist a run specification (Run Spec) and input data files. The run 

specification contains scenario description, scale, inventory or emission rates, time spans, 

geographic bounds, vehicles or equipment, road type, pollutants and processes, and output. Input 

data files, which correspond to the run specification, contain: (a) source type population; (b) 

vehicle type VMT; (c) maintenance programs; (d) fuel type and technology; (e) fuel and 

formulation; (f) meteorology; (g) ramp fraction; (h) road type distribution; (i) age distribution; and 

(j) average speed distribution. 

In this research, we estimate vehicle emission rates for the Washington D.C. Metropolitan Area 

which spans four states - District of Columbia, Maryland, Virginia and West Virginia, 

encompassing eighteen counties. Thus, we choose the scale of county-level in the run 

specification. To avoid predicting emission rates for all eighteen counties, a cluster analysis is 

adopted to classify the counties into five groups based on the total number of vehicles and total 

mileage traveled in each county. Average vehicle emission rates for the Washington D.C. 

Metropolitan Area are calculated as a weighted average over five county groups. Besides, to 

forecast GHGEs for each household vehicle in the target area, we choose emission rates instead of 

inventory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Emission rates estimation flowchart (based on MOVES documentation). 
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3.7 HOUSEHOLD VEHICLE GHGES CALCULATION 

In our modeling framework, we obtain the information on households’ vehicle type and vintage, 

quantity, annual miles traveled, running emission rates, and start/extended idle emission rates for 

different vehicle types. We then calculate annual GHGEs for each household vehicle according to 

the following formula: 

𝐴𝐺𝐻𝐺𝐸𝑠 (
𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒−𝑦𝑒𝑎𝑟
) = 𝑅𝐸𝑅𝑠 (

𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒−𝑚𝑖𝑙𝑒
) × 𝐴𝑉𝑀𝑇 (

𝑚𝑖𝑙𝑒𝑠

𝑦𝑒𝑎𝑟
) + 𝑆𝐸𝑅𝑠(

𝑔𝑟𝑎𝑚𝑠

𝑣𝑒ℎ𝑖𝑐𝑙𝑒−𝑑𝑎𝑦
) × 𝐷𝑠(

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
)   (19) 

where 𝐴𝐺𝐻𝐺𝐸𝑠  is annual GHGEs. 𝑅𝐸𝑅𝑠  and 𝑆𝐸𝑅𝑠  represent running emission rates and 

start/extended idle emission rates, respectively. 𝐴𝑉𝑀𝑇 represents annual VMT. 𝐷𝑠 is the effective 

number of weekdays per year when vehicle s is utilized. 𝐷𝑠 is calculated as follows: 

𝐷𝑠(
𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
) = 𝑊𝑑(

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
) × 𝛼𝑠 + 𝑊𝑒(

𝑑𝑎𝑦𝑠

𝑦𝑒𝑎𝑟
) × 𝛽𝑠 × 𝛾                                (20) 

where 𝑊𝑑 equals 261, which is the number of weekdays in 2009; 𝑊𝑒 equals 104, which is the 

number of weekends in 2009; 𝛼𝑠 represents the utilization rate of vehicle s during weekdays, while 

𝛽𝑠 represents the utilization rate of vehicle s during weekends. 𝛾 is a factor to scale from weekend 

emissions to weekday emissions, 𝑠  represents households’ primary, secondary, and tertiary 

vehicles. the scale factor from daily vehicle start emissions to annual vehicle start emissions. 

Although the number of driving days per year is not available for each households’ vehicle, the 

NHTS sample in the Washington D.C. Metropolitan area provides 20,409 observations of 

individuals’ daily activities from 2,218 households from April 2008 to April 2009. From this 

sample, the three factors in eq. 20 (α, β, and γ) were calculated. 

 

 

 

 

 

 

 

 

 

 



13 

 

4.0 DATA SOURCES 

The primary data source used for this research is the 2009 NHTS. After data processing and 

cleaning, 1289 household records are available for the study area. The data file mainly contains 

information for households’ characteristics (i.e. income level, number of adults, number of 

workers, number of drivers, age, gender, education level, and etc.), car ownership (i.e. number of 

household cars, vehicle make, model, model year, and etc.), and land use (i.e. housing units per 

square mile, population per square mile, and etc.). Figure 3 (1-5) shows descriptive statistics 

related to our sample in the Washington D.C. Metropolitan Area. The shares of households with 

zero, one, two, and three or more vehicles are 8.3%, 25.6%, 46.2%, and 19.9% respectively. The 

percentage of zero-vehicle households is 8.3%, higher than the national average 4.8%, due to high 

population density of the study area. The average number of vehicles per household is 1.77, slightly 

lower than the national average 1.91. Figure 3 (2) illustrates the distribution of six different vehicle 

types which is consistent with vehicle type sub-model and MOVES. The figure shows that 

households with more vehicles tend to have higher percentage of passenger trucks than cars. 

Households with one vehicle prefer passenger cars (70%) to trucks (30%), while households with 

two or more vehicles have no obvious preference on passenger car or truck. Additionally, around 

half of the vehicles in the sample are older than six years. 

 
                                   (1)                                                                   (2) 

    
                                    (3)                                                                        (4) 
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(5) 

Figure 3: Descriptive statistics of data in the Washington D.C. Metropolitan Area. 

Households’ socio-demographic and land use variables have great influence on car ownership and 

usage decisions. In the Washington D.C. Metropolitan Area, households’ income and education 

level are higher than the national average. Households with more vehicles tend to have higher 

income level, as showed in Fig. 3 (3), and they tend to live in less dense or rural areas. In Figure 3 

(3-5), axes labeled “HH0”, “HH1”, “HH2”, and “HH3” represent households with zero, one, two, 

and three vehicles respectively. Figure 3 (4) describes the relationship between households’ size 

and the number of workers, drivers, and adults. The vertical axes in Figure 3 (4-5) represent the 

number of individuals. The number of workers, drivers, and annual VMT increase with 

households’ size, as described in Figure 3 (5).  

The four supplementary data sources used in this study are the Consumer Reports, the American 

Fact Finder, the 2009 SMVR, and MOVES default database. Data from Consumer Reports 

provides vehicle characteristics including vehicle price, seating space, engine size, transmission, 

acceleration, shoulder room, etc., which are associated to vehicle type decisions. The American 

Fact Finder provides residential population, while the 2009 SMVR data gives vehicle population 

in the study area which is essential for emission rates estimation. Information on road condition 

and weather such as ramp and meteorology (temperature and humility) are derived from MOVES 

default database.    
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5.0 MODEL ESTIMATION AND VALIDATION RESULTS 

5.1 RESULTS FOR INTEGRATED DISCRETE-CONTINUOUS CAR 

OWNERSHIP SUB-MODEL 

The framework of the integrated car ownership sub-model jointly estimates vehicle type, quantity, 

and annual miles traveled for households’ primary, secondary, and tertiary vehicles. Primary 

vehicle is defined as the one used the most by a household while tertiary vehicle is the one used 

the least. We first calculate the mode of utilities from vehicle type logit model, which serves as a 

variable in the utility function of vehicle quantity choice. We estimate the integrated model on the 

sample of 1289 observations for the Washington D.C. Metropolitan Area. The number of 

observations for households’ primary, secondary, and tertiary vehicles from the sample are 1182, 

852, and 257 respectively. Table 1 reports estimation results of the integrated discrete-continuous 

model. 

Table 1: Integrated discrete-continuous model: estimation results. 

Variable  Alternative  Coefficient  Standard Deviation p-value 

Mode of type / vintage all 0.801 0.123 <0.001 

Constant 1 car -6.492 0.886 <0.001 

2 cars -19.880 1.269 <0.001 

3 cars -24.995 1.114 <0.001 

Low income 1 car 0.104 0.029 <0.001 

2 cars 0.227 0.040 <0.001 

3 cars 0.399 0.036 <0.001 

Middle income 1 car 0.123 0.025 <0.001 

2 cars 0.266 0.052 <0.001 

3 cars 0.160 0.043 <0.001 

High income 1 car 0.002 0.105 0.983 

2 cars 0.147 0.026 <0.001 

3 cars 0.100 0.026 <0.001 

Number of drivers 1 car 1.101 0.624 0.078 

2 cars 2.961 0.837 <0.001 

3 cars 3.974 1.137 <0.001 

Household head gender 

(1 for Male) 

1 car 0.740 0.201 <0.001 

2 cars 1.262 0.638 0.048 

3 cars 1.360 0.358 <0.001 

Residential Density / low income 1 car -0.154 0.024 <0.001 

2 cars -0.349 0.078 <0.001 

3 cars -0.226 0.066 0.001 

Residential Density / mid income 1 car -0.191 0.036 <0.001 

2 cars -0.314 0.035 <0.001 

3 cars -0.482 0.048 <0.001 

Residential Density / high income 1 car -0.023 0.015 0.889 

2 cars -0.329 0.075 <0.001 

3 cars -0.598 0.055 <0.001 

Constant  Regression 

for primary 

vehicle 

5.020 1.406 <0.001 

Income  0.059 0.027 <0.001 

Household head gender 0.211 0.053 <0.001 
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Residential density -0.046 0.009 <0.001 

Driving cost -2.944 0.737 <0.001 

Constant  Regression 

for 

secondary 

vehicle 

5.101 0.829 <0.001 

Income  0.021 0.005 <0.001 

Household head gender -0.117 0.044 0.008 

Residential density -0.107 0.013 <0.001 

Driving cost -2.616 0.470 <0.001 

Constant  Regression 

for tertiary 

vehicle 

5.178 0.798 <0.001 

Income  0.017 0.004 <0.001 

Household head gender -0.112 0.042 0.009 

Residential density -0.116 0.013 <0.001 

Driving cost -2.634 0.463 <0.001 

Log-likelihood at zero  -3852.41 

Log-likelihood at convergence  -2898.16 

Number of observations 1289  

R square 0.248 

*Note: the model uses bootstrapping re-sampling method to calculate standard deviations. 

The estimation results of the integrated model can be interpreted as follows. The “Mode of 

type/vintage” represents the expected maximum utility of choosing vehicle type and vintage. The 

corresponding parameter is significant and between zero and one.  

The coefficients of households’ income are positive which indicate that households with higher 

income tend to have more vehicles and drive more. For low-income group, the value of income 

coefficient is larger, indicating that income has higher impact for households with more vehicles. 

In addition, for three-car households, the value of income coefficient is larger for households with 

lower income, which indicates income has a higher impact on the low-income group.  

The positive coefficients of the number of drivers indicate that households prefer to have more 

vehicles if there are more drivers within the households. This variable has higher impact on 

households with more vehicles.  

The positive coefficients of household head gender indicate male household heads are more likely 

to have more vehicles and to drive the primary vehicle more frequently. The negative coefficients 

of household head gender in the regressions for secondary and tertiary vehicles show that females 

are more likely to drive the secondary and tertiary vehicles. 

The negative coefficients of residential density indicate that households living in areas with higher 

population density prefer to have fewer vehicles and to drive less. Households living in suburban 

or rural areas are more likely to have more vehicles. In addition, for middle-income and high-

income groups, the absolute value of residential density coefficient is higher, indicating higher 

impact for households with more vehicles. 

The negative coefficients of driving cost indicate that households tend to drive less under higher 

fuel cost as expected. The values of the coefficients illustrate that the usage of primary car is more 

sensitive to fuel cost.  
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5.2 CAR OWNERSHIP SUB-MODEL VALIDATION 

For validation purpose, the entire sample size has been divided into two parts; the estimation 

sample contains 80% of the population while the application sample contains the remaining 20% 

of the observations. We report the actual vehicle ownership and usage, the predicted vehicle 

ownership and usage, and their differences in Table 2. The results show that overall the model is 

able to reproduce actual choices but it slightly underestimates vehicle ownership and the average 

annual vehicle miles traveled (AAVMT). 

Table 2: Joint discrete-continuous model validation results. 

  Actual Forecast Difference 

Car Ownership 0-car household 10.9% 13.2% 2.3% 

1-car household 22.6% 22.6% 0.0% 

2-car household 45.5% 44.7% -0.8% 

3-car household 21.1% 19.5% -1.5% 

Average car ownership 1.77 1.71 -3.4% 

AAVMT 

 

Primary car mileage 11753.3 11960.7 1.8% 

Secondary car mileage 12790.7 12310.5 -3.8% 

Tertiary car mileage 12095.2 10372.6 -14.2% 

Average mileage 12159.7 11906.6 -2.1% 

5.3 RESULTS FOR VEHICLE GHGES RATES SUB-MODEL 

We employ MOVES2014 to estimate the average emission rates of the main components of 

greenhouse gases for the Washington D.C. Metropolitan Area. A cluster analysis is utilized to 

categorize eighteen counties in the target area into five groups based on factors such as vehicle 

population and total VMT in each county. The average GHGEs rates are calculated as the weighted 

average of emission rates over the five groups. Several assumptions are made for estimation: (a) 

the average annual GHGEs rates are the average emission rates of typical summer months (July 

and August) and typical winter months (January and February); (b) only gasoline vehicles are 

considered; (c) we only consider emission rates for weekdays; (d) we assume the number of 

vehicles traveling in a county equals to the number of registered vehicles of that county.  

GHGs emit during two driving processes – running process and start/extended idle process. We 

calculate emission rates and develop look-up tables for each of the two processes. Table 3 reports 

the weighted average running emission rates (grams per vehicle per mile) and Table 4 reports 

start/extended idle emission rates (grams per vehicle per day). We find that GHGEs rates are 

sensitive to factors such as speed and road type. 

Table 3: Washington D.C. Metropolitan Area: running emission rates. 

Weighted  Passenger Car Passenger Truck 

age CH4 N2O CO2 CO2E CH4 N2O CO2 CO2E 

0-3 year 0.004 0.008 399.109 401.647 0.004 0.020 577.547 583.674 

4-6 year 0.004 0.008 399.224 401.770 0.009 0.021 577.763 584.304 

>6 year 0.004 0.008 399.340 401.893 0.008 0.020 579.010 585.320 
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Table 4: Washington D.C. Metropolitan Area: start and extended idle emission rates. 

Weighted  Passenger Car Passenger Truck 

age CH4 N2O CO2 CO2E CH4 N2O CO2 CO2E 

0-3 year 0.280 0.856 605.113 677.185 0.397 1.160 786.046 884.202 

4-6 year 0.333 0.856 605.115 678.293 0.527 1.176 784.166 886.487 

>6 year 0.141 0.856 605.113 674.267 0.308 1.152 784.068 879.697 

The results show that in the Washington D.C. Metropolitan Area, the average running CO2E 

emission rates for passenger car and truck are 402 grams/mile and 584 grams/mile respectively; 

and the average start/extended idle CO2E emission rates for passenger car and truck is about 677 

grams/day and 884 grams/day. The start/extended idle emission rates are higher for counties with 

higher vehicle population, while there is no significant variation for running emission rates over 

different counties. Moreover, the start/extended idle emission rates in winter are much higher than 

those in summer, which is reasonable due to longer start time and more fuel consumptions at low 

temperature (Mcmichael and Sigsby, 1966; Vijayaraghavan, 2012). 

5.4 RESULTS FOR HOUSEHOLD VEHICLE GHGES 

The estimations of households’ vehicle type and vintage, vehicle quantity, annual VMT for each 

vehicle, and GHGEs rates for different vehicle types are then used to calculate households’ average 

annual vehicle GHGEs (See equation 19).  

 

Figure 4: Annual GHGEs for households’ primary, secondary, and tertiary vehicles. 

Figure 4 shows the average annual GHGEs for households’ primary, secondary, and tertiary 

vehicles. We can observe that the primary vehicles produce the highest emissions because they are 

used most frequently. On the contrary, the tertiary vehicles produce the lowest emissions because 

they are not frequently in use. For households with one vehicle, the average annual GHG emission 

is 5.15 tons which is consistent with the 2013 annual report from the EPA. On average, the annual 
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GHGEs for households’ primary, secondary, and tertiary vehicles are 6.30 tons, 5.88 tons and 3.11 

tons respectively. 

6.0 POLICY ANALYSIS 

In the US, three main vehicle-related taxes are applied during different stages of a vehicle lifetime: 

purchase tax, ownership tax and fuel tax (Hayashi et al., 2001). In this section, we propose three 

policy plans to test and compare impacts of reducing vehicle GHGEs from the three vehicle-related 

taxes. For comparison purpose, equivalent increments of $92.5, $185, and $370 additional annual 

fee are considered for the three plans respectively (Liu and Cirillo, 2015). Table 5 shows the 

specification of the three policy plans based on data provided by the 2009 NHTS. 

Table 5: Taxation policy plan. 

Equivalent increment Plan ID Purchase tax Ownership tax Fuel tax 

$92.5 / car & year 1 + 10% Income-$92.5/car  + 5% 

$185 / car & year 2 + 20% Income-$185/car + 10% 

$ 370 / car & year 3 + 40% Income-$370/car + 20% 

6.1 SENSITIVITY ANALYSIS FOR PURCHASE TAX 

Purchase tax is a tax on vehicle purchase price. In the three policy plans, the proposed purchase 

tax is equivalent to an additional charge of 10%, 20%, and 40% of the current vehicle price. 

Purchase tax is expected to reduce the number of vehicles within households. Figure 5 shows 

annual GHGEs reduction rates under the three purchase tax plans.  

 
                                        (A)                                                                           (B) 

Figure 5: Annual GHGEs reduction rates under purchase tax. 

Figure 5 (A) presents the annual GHGEs reduction rates for households with one, two, and three 

vehicles under the three policy plans. We can observe that the purchase tax reduces annual vehicle 

GHGEs under all three plans and it is more effective in reducing emissions from households with 
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more vehicles. Figure 5 (B) illustrates GHGEs reduction rates for households’ primary, secondary, 

and tertiary vehicles. Correspondingly, we can observe purchase tax mainly reduce emissions for 

tertiary vehicles. For households with one and two vehicles, the reduction rates are small which 

indicates that these groups hold the number of vehicles that satisfies their basic travel demands. 

On average, the implementation of the three policy plans reduces households’ annual GHGEs by 

1.5%, 1.9%, and 4.8%. 

6.2 SENSITIVITY ANALYSIS FOR OWNERSHIP TAX 

Ownership tax is an annual fee for each vehicle. In the three policy plans, we propose an additional 

annual charge of $92.5, $185, and $370 per vehicle, subtracting from households’ income. Figure 

6 shows annual GHGEs reduction rates under the three ownership tax plans. 

 
(A) (B) 

Figure 6: Annual GHGEs reduction rates under ownership tax. 

As expected, ownership tax is able to reduce vehicle GHGEs under all three policy plans. Although 

ownership tax is not as effective to reduce emissions as purchase tax, it also has higher impact for 

households with more vehicles. In addition, ownership tax mainly reduces emissions for 

households’ tertiary vehicles. On average, the implementation of the three policy plans reduces 

households’ annual GHGEs by 0.4%, 1.5%, and 2.8%. 

6.3 SENSITIVITY ANALYSIS FOR FUEL TAX 

Fuel tax is a tax on gas consumption. In the three policy plans, the proposed fuel tax is equivalent 

to an additional charge of 5%, 10%, and 20% of the gas price. Fuel tax is expected to decrease 

households’ vehicle usage for the study area. Figure 7 shows annual GHGEs reduction rates under 

the three fuel tax plans.  
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                                        (A)                                                                             (B) 

Figure 7: Annual GHGEs reduction rates under fuel tax. 

From Figure 7 (A), we can observe that fuel tax reduces vehicle GHGEs for households with one, 

two, and three vehicles under all three policy plans. Different from purchase tax and ownership 

tax, fuel tax is more effective in reducing emissions for households with fewer vehicles. Besides, 

fuel tax has higher impact on emission reductions for vehicles used more frequently, as illustrated 

by Figure 7 (B). The average households’ annual GHGEs reduction rates under the three policy 

plans are 3.4%, 8.8%, and 17.5%.  
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7.0 CONCLUSIONS 

The proposed model system is designed to forecast vehicle GHGEs and to evaluate effects of 

vehicle-related taxation schemes on private vehicle GHGEs. The model system integrates four 

sub-models: (a) vehicle type and vintage choice; (b) vehicle quantity choice; (c) vehicle usage 

choice; and (d) vehicle GHGEs rates estimator. The vehicle quantity model accounts for 

type/vintage preferences by incorporating the mode of the type/vintage sub-model. In order to 

estimate the annual VMT for each vehicle, the usage of households’ primary, secondary, and 

tertiary vehicles are estimated by three linear regression models. The vehicle quantity probit model 

and the vehicle usage regression models are combined by an unrestricted full variance covariance 

matrix, which considers the interdependence between households’ discrete and continuous 

choices. The model framework integrates with MOVES2014 which calculates emission rates for 

different vehicle types. 

Using MOVES2014, we estimate the average GHGEs rates for the Washington D.C. Metropolitan 

Area. Both start/extended idle emission rates look-up tables and running emission rates look-up 

tables are developed.  

The variables considered in our model system are vehicle characteristics, households’ social 

demographics, land use variables, vehicle travel cost, and traffic condition information. The model 

is estimated with the 2009 NHTS data and supplementary datasets from the Consumer Report, the 

American Fact Finder, the 2009 SMVR, and MOVES default database.  

The coefficients estimated by the integrated discrete-continuous car ownership model are 

significant, yielding a generally good correspondence to the observed situation. The vehicle 

GHGEs rates calculated by MOVES2014 and the vehicle GHGEs predicted by the integrated 

model system are consistent with EPA’s annual report.  

The impact of three vehicle-related taxation policies to reduce GHGEs are evaluated and 

compared. Three policy plans are proposed considering a series of equivalent increments of $92.5, 

$185, and $370 annual fee per vehicle. The results indicate that: (a) Fuel tax is the most effective 

in reducing GHGEs compared to ownership tax and purchase tax under different tax rates; (b) Fuel 

tax has higher impact on emission reduction for households with fewer vehicles. This tax mainly 

reduces GHGEs by decreasing households’ vehicle usage, especially for the low-income group; 

(c) Ownership taxes have the lowest impact on GHGEs reduction among the three different types 

of taxes. It reduces GHGEs by decreasing both households’ vehicle quantity and usage; (d) 

Purchase taxes have higher impact for households with more vehicles. It mainly reduces GHGEs 

by decreasing households’ vehicle quantity.  

The conceptual framework developed is general and can be applied to other zones and counties. 

The model can be further expanded for application to state and national geographical level. 

Moreover, the inclusion of other variable types in the model makes it possible to test different 

taxation policies, and to support decisions aiming at reducing the vehicle emission footprint. 
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APPENDIX A 

 
Table 6: Sub-models input-output table. 

SUB-MODELS INPUTS OUTPUTS 

 Variable Category Parameters 

Vehicle Type and 

vintage Sub-model 

Vehicle characteristics 

 

Purchase price 

Shoulder room 

Luggage capacity 

Average MPG 

Vehicle make/model 

Model year 

Estimated vehicle type 

distribution 

Logsum of vehicle type 

Vehicle Quantity Sub-

model 

HH socio-demographic Land 

use 

Income 

Number of drivers 

HH head gender 

Residential density 

Vehicle type logsum 

Estimated HH vehicle 

quantity  

Vehicle Usage Sub-

model 

Vehicle VMT and cost 

HH socio-demographic 

Land use 

Income  

HH head gender 

Residential density 

Fuel/Travel cost 

Estimated vehicle AVMT 

Vehicle Emission Rate 

Sub-model 

Vehicle characteristics 

Regional traffic conditions 

Vehicle type  

Vehicle ownership 

Vehicle VMT 

Vehicle age  

Vehicle speed  

Vehicle population 

Fuel type  

Repair frequency 

Local meteorology  

Road type 

Vehicle emission rates 

To calculate vehicle annual 

GHGEs 

To calculate HH annual 

GHGEs 

 

 

 

 


