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EXCUTIVE SUMMARY 

Resource allocation decisions are made to serve the current emergency without knowing which 
future emergency will be occurring. Different ordered combinations of emergencies result in 
different performance outcomes. Even though future decisions can be anticipated with scenarios, 
previous models that events over a time interval are independent. This study follows an 
assumption that events are interdependent, because speed reduction and rubbernecking due to an 
initial incident provoke secondary incidents. The misconception that secondary incidents are not 
common has resulted in overlooking a look-ahead concept. This study is a pioneer in relaxing the 
structural assumptions of independency during the assignment of emergency vehicles. When an 
emergency is detected and a request arrives, an appropriate emergency vehicle is immediately 
dispatched. We provide tools for quantifying impacts based on fundamentals of incident 
occurrences through identification, prediction, and interpretation of secondary incidents. A 
proposed online dispatching model minimizes the cost of moving the next emergency unit, while 
making the response as close to optimal as possible. Using the look-ahead concept, the online 
model flexibly re-computes the solution, basing future decisions on present requests. We 
introduce various online dispatching strategies with visualization of the algorithms, and provide 
insights on their differences in behavior and solution quality. The experimental evidence 
indicates that the algorithm works well in practice. After having served a designated request, the 
available and/or remaining vehicles are relocated to a new base for the next emergency. System 
costs will be excessive if delay regarding dispatching decisions is ignored when relocating 
response units. This study presents an integrated method with a principle of beginning with a 
location phase to manage initial incidents and progressing through a dispatching phase to 
manage the stochastic occurrence of next incidents. Previous studies used the frequency of 
independent incidents and ignored scenarios in which two incidents occurred within proximal 
regions and intervals. The proposed analytical model relaxes the structural assumptions of 
Poisson process (independent increments) and incorporates evolution of primary and secondary 
incident probabilities over time. The mathematical model overcomes several limiting 
assumptions of the previous models, such as no waiting-time, returning rule to original depot, 
and fixed depot. The temporal locations flexible with look-ahead are compared with current 
practice that locates units in depots based on Poisson theory. A linearization of the formulation is 
presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem 
in real-time. 
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1.0 INTRODUCTION 

Traffic congestion forces motorists to begin traveling much earlier for short-distance commutes, 
and has become a major feature of urban areas around the world (Schrank et al. 2012). Traffic 
incidents cause one-quarter of the congestion on US roadways, and every minute that a freeway 
lane is blocked creates 4-minutes extra delay (National Traffic Incident Management Coalition 
2007). When a traffic emergency is accompanied by a lane-closure, it is important for responders 
to arrive at the emergency scene as soon as possible. An efficient control of emergency response 
units (ERUs) can greatly reduce injuries and adverse impacts (Koutsopoulos and Yablonski 
1991). One way to enhance performance is applying a mobile facility concept (Halper and 
Raghavan 2011), instead of a fixed facility. Once an ERU is assigned to an incident, the 
remaining ERUs can be relocated to better respond to future incidents. 

1.1 PROBLEM STATEMENT 

This research incorporates a realistic and stochastic process into the design of deployment of 
emergency response vehicles. The conventional optimization approach for location or allocation 
problem assumes that a given number of independent and identically distributed (IID) events 
occur over a time interval. However, the sequence is an ordered combination (permutation) of 
emergency requests. Suppose a set of sequences with the past request at site (2), current request 
at site (3), and next requests at either site 1 or site 2. Let the probability of incident at site 1 be 
10% and at site 2 be 90%. 

𝜶𝜶 = �   (𝟐𝟐,𝟑𝟑) 𝟏𝟏 𝟐𝟐
(𝟐𝟐,𝟑𝟑) 𝟐𝟐 𝟏𝟏   �                                                         (1) 

A traditional approach neglects three essential properties. First, without consideration of the 
order, the dispatcher would make a decision based on the anticipation of an incident at site 2. 
This will lead to excessive response time when an incident occurs at site 1 before site 2. Such 
scenario will make site 1 to be served from resources farther away than regularly assigned 
resources, or will not be addressed until the closest resource becomes available. Without an 
appropriate help, lack of tools may cause an incident to block the traffic flow and induce 
inefficiencies in the clearance operation. 

Second, with a randomness assumption of the IID sequence, reversed times of incidents’ 
occurrence make solutions of two different sequences the same. However, the assigned 
probability for each sequence is different when an initial incident provokes secondary incidents 
(Park et al. 2013a; Park and Haghani 2015a). Even though primary incidents at site 2 provoke 
secondary incidents at site 1, reverse order (primary incidents at site 1) does not have the same 
mutual dependency. In reality, the probability distributions of the first and the second sequence 
are different. This property will cause the probability distribution of solution in Equation 1 to be 
asymmetric. 

Lastly, probabilities associated with each transition depend on incidents earlier than the 
immediately preceding one. Previous studies take account of only a single step in the process. 
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However, when primary incidents occur in a sequence of time intervals, the likelihoods of 
secondary incidents caused by each primary incident are accumulated. The conditional 
probability of a secondary incident in the future depends jointly on primary and secondary 
incidents that have occurred during past and present time stages. As a result, the probability of 
incidents evolves over time instead of fixed 10% at site 1 and 90% at site 2. The independent 
increments property of IID process (the numbers of occurrences counted in disjoint intervals are 
independent of each other) does not hold on freeways with secondary incidents. The cost 
associated with providing service to secondary incidents will exceed the original one due to 
capacity reductions (Park and Haghani. 2014). Therefore, potential effects of secondary incidents 
on emergency response system have been overlooked. 

1.2 RESEARCH OBJECTIVES 

In this paper, the statistical properties of future sequence of incidents are considered in 
generating scenarios. We lookahead interdependent location-allocation of ERUs by taking 
stochastic information of future incidents explicitly into account. Stochastic programming 
hedges well against a wide range of scenarios in which probabilities of a sequence of incidents 
are assigned. Importantly in stochastic programming, location decisions should be made before 
the occurrence of a next incident. Even in the case of similar primary incidents, different 
candidate secondary incident locations are expected to have different delay times. This problem 
fits well into the framework of stochastic programming, which includes uncertainty in primary 
and secondary incident occurrences. Stochastic optimization will provide a prompt response to 
incidents and will play a crucial role in reducing delay, fuel consumption, and pollutant emission 
rates. 

1.3 REPORT OUTLINE  

The rest of this report is organized as follows. The rest of the paper is organized as follows. We 
review relevant previous studies about the emergency facility location problem in the next 
section. In Section 3, the structure of incident process is introduced to generate scenarios. 
Section 4 shows the proposed formulation and linearization. Section 5 presents numerical 
examples and sensitivity analysis. Conclusion and future researches are discussed in Section 6. 
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2.0 LITERATURE REVIEW 

We focus on reviewing discrete location problems since the response units are restricted to a 
finite set of candidate locations. Several approaches have been proposed to solve deterministic, 
probabilistic, and dynamic problems of optimal facility locations. 

2.1 DETERMINISTIC MODELS 

The earlier versions of deterministic model are covering theories, such as location set-covering 
problems (Toregas et al. 1971). It provides coverage to all demands within a pre-determined 
distance range. The maximal covering location problem seeks the maximum population served 
within a stated service distance (Church and Revelle 1974). This model was extended to account 
for the chance when a demand arrives at the system that is engaged to serve other demands (Daskin 
1983). P-center models are equivalent to covering a given area in the plane having p identical 
circles where facilities are located at the centers of these circles (Suzuki and Drezner 1996). 

2.2 PROBABILISTIC FORMULATIONS 

On the other hand, probabilistic formulation was proposed to overcome the limitations of 
deterministic models. P-Median models involve location of facilities on a network to minimize the 
total weighted distance of serving all demand (Hakimi 1964). One can use the maximum 
availability location problem (Revelle and Hogan 1989). An upper bound was imposed on the 
probability that a call on demand point does not receive immediate service (Ball and Lin 1993). 
To incorporate the busy probability, queuing-based models consider customers waiting for service 
in congested systems (Larson 1974). A spatial queuing model considers spatial and temporal 
demand characteristics such as the probability that a server is not available when required 
(Geroliminis et al. 2009). 

2.3 LOCATION MODELS  

2.3.1 Static Methods 

Location models have been applied to incident management to find optimal locations of response 
units. An optimal deployment of ERUs depends on incident rate at marked location and 
consequent delay. Optimal beat structure and truck allocation assumes that the probability of 
incident occurrences follows a Poisson distribution (Daneshgar et al. 2013). A single incident 
rate, assuming independency between two incidents, has been considered (Kim et al. 2014; 
Skabardonis et al. 1999). It assumes that all subsequent incidents are independent of previous 
incident, and have the exponential distribution. However, the freeway degrades from primary-
incident state to secondary-incident state when a secondary incident occurs (Ng et al. 2013). 
Crash risk is higher in the presence of an earlier crash (Park and Haghani 2013, 2015a). Incidents 
frequently cause unexpected delay due to larger traffic demand than reduced capacity (Park et al. 
2016). After a primary incident occurs, bottleneck quickly forms queue and, the likelihood of 
secondary incidents and associated delay increase. Although emergency operators manage to 
handle a primary incident (i.e. the first incident) or an independent incident with this assumption, 
drivers suffer heavily when another incident, a secondary incident (i.e. an incident within 
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temporal and spatial impact of a primary incident), occurs. However, Poisson process does not 
consider dependencies in incident occurrences. Unfortunately, under traditional Poisson models, 
handling secondary incidents without prompt response and clearance may cause a critical issue 
in the efficient mitigation of incidents. Regardless of the initial response, the serving time is 
greatly influenced by efficiency of response-unit arrivals and consequent clearance. In our 
stochastic model, the probability matrix of a sequence of primary and secondary incidents varies 
for each request arriving in real-time. 

2.3.2 Dynamic Methods 

Compared to these static models, dynamic models consider sequence of requests that are 
revealed incrementally over time. A mathematical model was proposed to deal with time-
dependent vehicle dispatching and rerouting (Haghani et al. 2004). Solutions are computed one-
by-one in an online fashion, while minimizing the response time of emergency vehicles (Yang  
et al. 2005). Dynamic double standard models incorporate practical dimensions addressing the 
dynamic nature of the problem (Gendreau et al. 1997). The real-time relocation models take 
service coverage concern when ERUs are dispatched (Nair and Miller-Hooks 2009). Dynamic 
relocation models pre-compute solutions in anticipation of events in the future stages (Gendreau 
et al. 2001). Recently, an interesting problem of determining stochastic emergency vehicle 
redeployment for an effective response to traffic incidents was introduced (Lei et al. 2015). The 
problem under uncertainty was treated in a particularly elegant way by adjusting the scheduling 
plan to reposition emergency vehicles in response to service calls. In this study, we estimate the 
number of available servers by comparing remaining time to clear the current incident and time 
to next incident occurrence. 

2.3.3 Markov Decision Processes 

Alternatively, Markov Decision Processes (MDPs) were used on dynamic relocation of service 
units in early works (Berman 1981a, 1981b). A tree-search heuristic was applied for approaching 
optimal relocations to the Stockholm region in Sweden (Andersson and Varbrand 2006). A MDP 
approximates distribution of the response time and the number of busy ambulances to identify 
near-optimal compliance tables (Alanis et al. 2013). Recently, a look-ahead scheme was applied 
in ambulance locating models to approximate the temporally accrued rewards and discounted 
probabilities (Zhang 2010). However, the first order Markov decision process does not capture 
the conditional probability of future secondary-incidents that depends on past and present 
incident occurrences. To the best of our knowledge, all previous studies assume two incidents are 
independent without considering their spatial and temporal dependencies. In this research, an 
analytical model is proposed to relax the restrictive assumptions of previous models and reveal 
mutual relationship between incidents at each site in a sequence of time stages. 

2.4 SUMMARY 

System costs will be excessive if delay regarding allocation decisions is ignored when locating 
response units. The objective of the location-allocation problem is to accurately capture the cost 
of multiple-stop routes within a location model (see a comprehensive review and perspective on 
these models, Prodhon and Prins 2014). This research incorporates a realistic stochastic process 
into the design of ERU deployment. Two decision levels are integrated for the optimal 
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deployment of response units: a location decision of response units before an incident 
occurrence, and an allocation decision of vehicles after the incident occurrence. Potential delay 
caused by inefficient response to secondary incidents is unknown until the primary incidents/ 
information is given. In response to secondary incidents taking significant portion of traffic 
delays, emergency responders’ strategic concerns have been growing. Fortunately, scientific 
breakthroughs enabled us to develop thresholds as a consistent definition of secondary incidents 
(Park and Haghani 2015a, 2015b). This research uses reliable traffic information (i.e., INRIX) 
and tracks each ERU performance to easily accommodate real-time operations. 

Another assumption of previous studies is a returning rule that limits the response units to be 
always dispatched from an original location. This assumption may create an unnecessary trip to 
the designated location and impose hard constraints for next incidents that occur when an ERU is 
returning. In this research, dispatched units stay at an incident site after the clearance of the event 
instead of returning to their permanent or temporary place, because the plan is re-generated in the 
next time. The new assumption can reduce the complexity of the model without hard constraints. 
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3.0 STOCHASTIC PROCESS OF INCIDENT OCCURRENCES 

In this section, we introduce a process of future stages of incidents. Each sequence of incidents 
represents a scenario that is represented in a matrix form with an expected probability. This 
section justifies learning about secondary incidents to provide a principle for stochastic incident 
occurrences. 

3.1 PROBABILITY OF INCIDENT OCCURRENCES 

The incident occurrence includes accumulated probabilities of secondary incidents in future 
steps, in which the impact of primary incidents overlaps. In general, a secondary incident may 
occur during the clearance or recovery of a primary incident. Therefore, we look-ahead two 
future stages. For example, the conditional probability of a secondary incident at site 2 at the first 
future-stage may depend on the probability of a primary incident at site 1 during the past and site 
3 during the current stage; at the second-future stage may depend on the probability of a primary 
incident at site 1 and site 3 during the current stage (Figure 1). 

Let 𝜏𝜏(𝑖𝑖, 𝑟𝑟) be normalized probability of incidents (probability of incidents at site I over for all 
locations (i ∈ H) in one stage) for each stage r. The expected probability of incidents 
𝐸𝐸[𝜏𝜏(𝑖𝑖, 𝑟𝑟)] for each site (i = k) and stage (r = u) is a sum of 𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟) and 𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢). 

 

Figure 1:  Stochastic process of incident occurrences (Two-steps ahead). 
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𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟) denotes corresponding probability of primary and independent incidents at site � during 
stage 𝑟𝑟, and 𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢) denotes corresponding probability of secondary incident occurrences at site 
𝑘𝑘 during stage 𝑢𝑢.  

𝐸𝐸[𝜏𝜏(𝑖𝑖, 𝑟𝑟)]  = 𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟)  + 𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢)             𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 =  𝑘𝑘, 𝑟𝑟 =  𝑢𝑢                              (2) 

First, we use the Poisson process (Koutsopoulos and Yablonski 1991; Daneshgar et al. 2013) to 
define 𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟) because  primary and independent incidents satisfy the IID assumption. Let 
parameter λ be the average number of incidents on a freeway network in a given continuous time 
interval T. We assume that subintervals, times between successive incidents, are exponentially 
distributed. An empirical analysis (Kim et al. 2014) presented inter-arrival time of incident on I-
695 follow exponential distributions. They presented 8 incidents morning peak hour, one 
incident every 18 min, and 20 min of average incident duration. The same freeway corridor is 
used in this study. The average of subintervals is Tλ−1(with variance Tλ−2). The discrete random 
incidents are assumed to be Poisson distributed with incident rate λr indicated by X ∼Poisson (λr 

). Using probability mass function where the count of incidents is one, normalized probability of 
incident occurring at location i for each interval r is 

𝑃𝑃𝑟𝑟(𝑖𝑖,𝑟𝑟)  =  𝜆𝜆𝑖𝑖𝑟𝑟𝑒𝑒−𝜆𝜆𝑖𝑖
𝑟𝑟
��𝜆𝜆𝑖𝑖𝑟𝑟𝑒𝑒−𝜆𝜆𝑖𝑖

𝑟𝑟

𝑖𝑖

�
−1

               ∀𝑖𝑖, 𝑟𝑟                                       (3) 

Second, the probability of secondary incidents 𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢) is a function of 𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟) conditioned on 
severity (Ω: number of blocked lanes, collision with injuries or property damage) and traffic 
condition at upstream (∆: difference in speed before and after incident occurrence) of a primary 
incident. These are used as the main influential contributors for secondary incident occurrences 
(Park and Haghani 2014, 2016a). Each primary incident at site i during stage r has different 
impact on future secondary incident occurrences. We introduce an indicator function, I(Ω, 
∆)(i,r)(k,u), that equals 1 if a primary incident at site i during stage r causes a secondary incident at 
site k during stage u, and 0 otherwise. The primary-incident density ratio 𝛿𝛿(Ω,∆)(𝑖𝑖,𝑟𝑟)(𝑘𝑘,𝑢𝑢) is 
defined to measure relative difference ratio and is not equal to 0 only when an interrelation 
between incidents exists (For  example,  in Figure 3.1,  the bold line from 𝑃𝑃𝑟𝑟𝑝𝑝(3,0) to 𝑃𝑃𝑟𝑟𝑠𝑠(2,1) is 
𝛿𝛿(Ω,∆)(3,0)(2,1)=1). With introduced parameters and variables, we propose the probability of 
secondary incidents 𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢) in an explicit form: 

𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢)  = �𝛿𝛿(Ω,∆)(𝑖𝑖,𝑟𝑟−1)(𝑘𝑘,𝑢𝑢)𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟−1)
𝑖𝑖

+ �𝛿𝛿(Ω,∆)(𝑖𝑖,𝑟𝑟−2)(𝑘𝑘,𝑢𝑢)𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,𝑟𝑟−2)
𝑖𝑖

       (4) 

Now, we insert the 𝑃𝑃𝑟𝑟𝑠𝑠(𝑘𝑘,𝑢𝑢) from Equation (4) to Equation (2). Suppose we are interested in 
incidents at site 2 in the first future-stage. The expected probability of incidents is: 

𝐸𝐸[𝜏𝜏(2,1)]  =  𝑃𝑃𝑟𝑟𝑝𝑝(2,1) + �𝛿𝛿(Ω,∆)(𝑖𝑖,0)(2,1)𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,0)
𝑖𝑖
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                                           +�𝛿𝛿(Ω,∆)(𝑖𝑖,−1)(2,1)𝑃𝑃𝑟𝑟𝑝𝑝(𝑖𝑖,−1)
𝑖𝑖

                          (5) 

The probability of each scenario composed of a sequence of incidents is introduced in a matrix 
form. Suppose there is a past incident at site 2 and a current incident at site 3. The combinatorial 
of future incidents (during r + 1 at site i, r + 2 at site j) produce i × j scenarios with probability 
p(i, j). 

                      (6) 

The scenario space ij(=  ω)  is  divided  by  two  cases  with  probability  that  1) a  single  
incident  occurs  at  each  site:  p(∀i ≠ j)  and  2)  two  incidents  occur  at  the same site:  p(∀i = 
j) = 1 − p(∀i ≠ j). Given the information that incidents already occurred at site 2 and site 3, the 
expected probability of scenarios (Pω) is: 
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                                     (7) 

Note that the IID sequence assumes p(1, 2) and p(2, 1) are same. However, it is obvious from the 
equation that their expected probabilities are different (E[τ (1, 1)]×E[τ (2, 2)] ≠ E[τ (2, 1)] × E[τ 
(1, 2)]).                                  
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3.2 EXPECTED CLEARANCE TIME 

The server availability is an important component of the ERU deployment model. If expected 
available time of a busy ERU is earlier than expected occurrence time of the next incident, we 
can include that ERU to be one of available servers. This section extracts clearance time for each 
location to be used as an input parameter in emergency response problem in Chapters 8 and 9. 

Clearance time has a significant influence on total delay (Park et al. 2016). For example, total 
delay, Di, for each incident location i can be estimated using variables considered (Highway 
Capacity Manual 2010): traffic flow rate qi; reduced capacity (i.e. during the response time Ri to 
incident site i and normal clearance time NCi of the incident) si

t ; and the normal capacity, si (i.e. 
during recovery). Since the total delay is a convex function of incident duration, the average 
delay for all vehicles affected by the incident is defined as the total delay divided by the total 
number of affected vehicles: 

𝐷𝐷𝑖𝑖  =  (𝑅𝑅𝑖𝑖  +  𝑁𝑁𝑁𝑁𝑖𝑖)
(𝑞𝑞𝑖𝑖  −  𝑠𝑠𝑖𝑖′)

2𝑞𝑞𝑖𝑖
                                                             (8) 

Uncertainty of incident clearance duration is another major challenge in quantifying the impact 
of incidents (Park et al. 2013b, 2015). Especially, the response delay to incidents is unknown. 
While existing studies considered response time to be the time between when the responding 
agency is notified and when the first response-unit arrives at the scene, arrivals of the secondary 
response units, e.g., Coordinated Highways Action Response Team (CHART), fire-board, and 
towing, have significant influence on clearance operation (Figure 2).  In our optimization model, 
the main source of delay is the sum of response time, response delay, and clearance time. We 
need a clearance time that is separated from traditional definition. 

 

Figure 2: The concept of pure clearance time (Park and Haghani 2015a). 
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1 

Potentially delayed clearance can be modeled by integrating delay-type with normal clearance 
time. A test (Park and Haghani 2016a) reveals that time to clear the incident is significantly 
longer when combinations of response units are delayed. Instead of the original delay graph, a 
new figure presents the concept of pure clearance time. 

We define βη as an indicator of response delay (categorized for each type η: 1= no delay, 2 = 
CHART delay, 3 = other response delay, 4 = CHART and other response delay, 5 = not 
responded by CHART), to extract pure clearance time Ci (when η = 1) from traditional normal 
clearance time NCi at each location i,  

𝑁𝑁𝑖𝑖  =  𝑁𝑁𝑁𝑁𝑖𝑖 𝛽𝛽𝜂𝜂                                                                           (9) 

In our optimization problem, the clearance time without delay is used as an in- put to minimize 
the total delay. For example, when we have the delay type (β1=0.68) at location 1, the value of 
clearance time purely depends on the characteristic of incidents (C1) which is 68% of normal 
clearance time (NC1). In this way, we have less chance of overestimating clearance times. Our 
main goal is getting required ERUs to the incident site as quickly as possible to reduce total 
incident-induced delay. See more details in Park and Haghani (2016a). 
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4.0 STOCHASTIC ERU LOCATION PROBLEM 

Determining where to locate response vehicles and how to serve incidents are important 
decisions that arise in developing ERU plans. While a significant progress has been made in 
formulating and solving location and allocation problems, a number of challenging theoretical 
and practical issues remain to be addressed. In this section, we present limitations of previous 
studies and highlight the main contribution of our work. The non-linear formulation is linearized 
and heuristics are introduced for a large scale problem. 

4.1 FORMULATION 

In incident management systems, the planning decision for locating ERUs needs to be made 
before the uncertainty is revealed. These decisions, mainly to deal with primary incidents, can be 
adjusted depending on the actual realization of uncertain parameters. If an incident in the past 
stage has not been cleared yet (depending on response and clearance), response to incidents in 
the present and future stages will be delayed. By considering the response delay, serious 
underestimation of incident duration that commonly appears in traditional models is prevented. 
We construct a stochastic programming model to distinguish different natures of primary and 
secondary incidents and to allow recourse for allocation decisions to deal with secondary 
incidents. 

Under standard two-stage stochastic programming paradigm, the first-stage decision has to be 
made before realization of system uncertainties. The second-stage decisions are allowed to have 
recourse after a random incident occurs and affects the outcome of the first-stage decision. A 
recourse decision made in the second-stage is typically interpreted as corrective. Since the 
recourse decision is scenario-dependent, the second-stage is also a random variable. 

Random events are represented by a finite, discrete set of realizations of scenarios. We consider 
two major sources of uncertainties, occurrence of the incidents and the locations of the incidents. 
In this study, ERUs are distributed to their designated locations before detection of an incident. 
After clearance of that incident, the ERU will remain at that location until the next incident 
happens. This assumption is justified because of the probability of a secondary incident 
happening in the vicinity of the incident. We want the response units to be as close as possible to 
the incidents to minimize the travel time of going to the next incident. 

Our objective is to make a location decision to minimize the expected delay of all scenarios with 
constraints categorized as assignment, starting time of clearance, serving time, and variables. For 
convenience, Table 1 summarizes all notations used in the model formulations.  
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Table 1: Formulation notation table. 

Indexes 
n index n, set for incident response-units (vehicles) 

i index i, set of candidate locations of origins for response units (vehicles) 

j index j, set of jobs for each incident-response unit, n 

o index o, set for defining requested incidents 

ω index ω, set of scenarios 
Parameters 
TTij Travel time of response-unit going from location i to location j 

CDi Service time required for incident at node i, also called as clearance duration (CD) 

Loω Location of incident o under scenario ω 

Pω probability of scenario ω 

Hoω Time that incident o happens under scenario ω 

M Big-M used for modelling 

E A very small number used for modeling 
Decision variables 
xin Binary decision variable which equals to one if candidate location i is selected 

as the starting point for vehicle n and 0 otherwise. 

aonjω Binary decision variable equals one if incident o is assigned as the jth job in 
scenario ω that vehicle n covers and 0 otherwise. 

svonω Service start time for incident o if which vehicle n is going to serve under 
scenario ω 

cvonjω Time of clearance of incident o if done as the jth job by vehicle n under 
scenario ω 

doω Delay of incident o under scenario ω 

soω Time at which incident o starts getting served under scenario ω and 
the vehicle is at the location of the incident 

coω 

 

Time at which incident o is cleared under scenario ω 
Dummy variable used for linearization 

d2onjω Dummy variable used for linearization 
d3onjω Dummy variable used for linearization 

fonjω Binary variable indicating whether incident o is served as the jth job 
of vehicle n under scenario ω (= 1) or not (= 0). The serving vehicle, n, has to 
be at the location of the incident for at least CD. 
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We formulate the ERU location-allocation problem as follows. The main goal of the objective 
function (10) is optimally locate ERUs by focusing on total delay as a function of waiting time 
until an ERU becomes available, travel time of the responding units from assigned location to 
incident site, and the clearance time of that incident. 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝑚𝑚 =  ��𝑃𝑃𝑤𝑤𝑑𝑑𝑜𝑜,𝑤𝑤                                         (10)   
𝑜𝑜𝑤𝑤

 

The first group of constraints presents rules for assignment of ERUs. Constraints (11) ensure that 
for each scenario ω and vehicle n, no incident o can be assigned as the jth job unless a previous 
incident p(< o) is assigned as the (j − 1)th job. 

𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  � 𝑎𝑎𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤
𝑝𝑝 < 𝑜𝑜

          ∀ 𝑤𝑤,𝑚𝑚, 𝑓𝑓, 𝑗𝑗 ≠  1                (11) 

Constraints (12) are in charge of ensuring that in each scenario, ω, at most one incident can be 
assigned as the jth job for each vehicle, n. 

�𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤
𝑜𝑜

 ≤   1                        ∀𝑤𝑤,𝑚𝑚, 𝑣𝑣                            (12) 

Constraints (13) make sure that each incident is assigned to one job of a vehicle. 

��𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤
𝑜𝑜𝑜𝑜

=  1                 ∀𝑤𝑤, 𝑓𝑓                                 (13) 

Constraints (14) are added so that multiple similar solutions would not occur. 

𝑎𝑎111𝑤𝑤  =  1                             ∀𝑤𝑤                                    (14) 

Constraints (15) are enforcing that each vehicle has exactly one origin (starting location). 

�𝑥𝑥𝑖𝑖𝑜𝑜
𝑖𝑖

=  1                           ∀𝑚𝑚                           (15) 

The second group of constraints shows starting time of each incident. Constraints (16) ensure 
that the starting time for the first job of each vehicle, under each scenario, is at least equal to the 
travel time of going from the vehicles origin to the location of the first assigned incident. 

𝒔𝒔𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝟏𝟏𝒐𝒐  ≥  �𝑇𝑇𝑇𝑇𝑖𝑖𝐿𝐿𝑜𝑜  ×  𝒙𝒙𝒊𝒊𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝟏𝟏𝒐𝒐                              
𝑖𝑖

 

+𝐻𝐻𝑜𝑜,𝑤𝑤  ×  𝑎𝑎𝑜𝑜𝑜𝑜1𝑤𝑤               ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚          (16) 
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Constraints (17) ensure that for each scenario, ω, the starting times for the next jobs (j > 1) 
should be at least greater or equal to the travel time of going from the previous job to this job 
plus the clearance duration of the previous job. 

            𝒔𝒔𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 × 𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐   ≥ �𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜 ×  𝑎𝑎𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤
𝑝𝑝<𝑜𝑜

+  �𝒄𝒄𝒔𝒔𝒑𝒑𝒐𝒐(𝒐𝒐−𝟏𝟏)𝒐𝒐  ×  𝒂𝒂𝒑𝒑𝒐𝒐(𝒐𝒐−𝟏𝟏)𝒐𝒐
𝑝𝑝<𝑜𝑜

                      

− 𝑀𝑀𝑜𝑜,𝑤𝑤
17  × �1 −  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤�                            ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗 ≠  1                     (17) 

The third group of constraints ensures serving time of each incidents. Constraints (18) and (19) 
define the starting and clearance times for each incident under each scenario, regardless of the 
vehicle covering it. 

𝑠𝑠𝑜𝑜𝑤𝑤  =  ��𝒔𝒔𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
𝒐𝒐𝒐𝒐

                ∀𝑤𝑤, 𝑓𝑓                         (18) 

𝑐𝑐𝑜𝑜𝑤𝑤  =  ��𝒄𝒄𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐
𝒐𝒐𝒐𝒐

                ∀𝑤𝑤, 𝑓𝑓                      (19) 

Constraints (20) ensure that each incident is not served any sooner than when it happens. 

𝒔𝒔𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  ≥  𝐻𝐻𝑜𝑜,𝑤𝑤  ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  +  � 𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜  ×  𝑎𝑎𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤
𝑝𝑝 < 𝑜𝑜

                                  

− 𝑀𝑀𝑜𝑜,𝑤𝑤
20  × �1 −  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤�        ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗 ≠  1                    (20) 

Constraints (21) and (22) ensure that the serving time of an incident cannot start unless the 
vehicle which is in charge of serving that incident has finished its previous job. 

𝒔𝒔𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  ≤  𝑀𝑀𝑜𝑜,𝑤𝑤
21  ×  �𝑓𝑓𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤

𝑝𝑝<𝑜𝑜

          ∀𝑤𝑤, 𝑓𝑓 ≠  1,𝑚𝑚, 𝑣𝑣 ≠  1       (21) 

𝒄𝒄𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  −  𝒔𝒔𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐  ×  𝒂𝒂𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  −  𝑁𝑁𝐷𝐷𝐿𝐿𝑜𝑜  ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤                                                     

 + 𝜀𝜀 ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑀𝑀𝑜𝑜𝑤𝑤
22  ×  𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤                  ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗             (22) 

 

Constraints (23) are for finding the soonest time an incident can be cleared. 

𝑐𝑐𝑜𝑜𝑤𝑤  ≥  𝑠𝑠𝑜𝑜𝑤𝑤  +  𝑁𝑁𝐷𝐷𝐿𝐿𝑜𝑜𝑜𝑜         ∀𝑤𝑤, 𝑓𝑓                                         (23) 

The last group of constraints presents delay calculation based on above constraints and condition 
of each variable. Constraints (24) define the delay for an incident. 

𝑐𝑐𝑜𝑜𝑤𝑤  −  𝐻𝐻𝑜𝑜𝑤𝑤  =  𝑑𝑑𝑜𝑜𝑤𝑤           ∀𝑤𝑤, 𝑓𝑓                                            (24) 
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Constraints (25) define non-negative and binary variables. 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤,𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ∈  {0,1}            ∀𝑤𝑤,𝑚𝑚, 𝑓𝑓, 𝑗𝑗 

  𝑥𝑥𝑖𝑖𝑜𝑜  ∈  {0,1}             ∀𝑖𝑖,𝑚𝑚                                              (25) 

 

In the presented formulation, constraints (16), (17), (18), (19), (20), (21), (22) have non-linear 
terms. The solution procedure used for solving this problem is branch and bound. In branch and 
bound, at each node, we solve a linear programming relaxation of the problem by relaxing the 
integrality constraint for the integer variables. For this relaxation, if the program is not a linear 
program, it cannot be solved in polynomial time using algorithms that find the optimal solution. 
We transform the ERU location-allocation problem (a non-linear problem) into an equivalent 
linear programming problem in the next section. 
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4.2 LINEARIZATION 

We find the optimal solution for the important linearization that is proven not to cut off the 
optimal solution. In this section, we address the problem of selecting an appropriate big-M. To 
prevent numerical issues and improve the solution time, it is the best practice to select the big-M 
as small as possible. Looking at the structure and inputs to the model, we have stated the value 
each M should assume for each constraint. 

This approach enhances problem solvability by providing an equivalent linear representation. We 
introduce new variables and constrain these variables such that the new linear problem is a tight 
estimation of the original problem and contains those regions which the global minimum exists 
(McCormick 1976). 

For linearizing svonω × aonjω we have introduced a dummy variable d1onjω and added two 
constraints (26) and (27): 

𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑠𝑠𝑣𝑣𝑜𝑜𝑜𝑜𝑤𝑤                           ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗                             (26) 

𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑀𝑀 ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤                     ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗                             (27) 

The objective of adding constraints (26) is to enforce d1onjw to at most equal to svonw . Therefore 
d1onjw will be capped by svonw , which was the initial objective of the linearization. By adding 
constraints (27), we ensure that d1onjw will equal zero if aonjw equals zero. The correctness of this 
type of linearization can be found in (McCormick 1976). 

For linearizing the term, xin × aon1ω  we have introduced a dummy binary variable, d2onjω to equate 
that nonlinear term. Constraints (28) are added as a result: 

𝑑𝑑2𝑜𝑜𝑜𝑜𝑖𝑖𝑤𝑤  ≥  𝑥𝑥𝑖𝑖𝑜𝑜  +  𝑎𝑎𝑜𝑜𝑜𝑜1𝑤𝑤  −  1       ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑖𝑖                             (28) 

The purpose of constraints (28) is to bound d2onjw from assuming the value of zero when both of 
the other two binary variables (xin and aon1w ) assume the value of 1. In that case we will have 
d2onjw ≥ 1 + 1 − 1 (d2onjw ≥ 1). Since d2onjw is binary it will assume the value of one. 

Selecting good values for the big-M parameters in constraints (17), (20), (21), and (22) can be a 
challenge. To prevent such unwanted events, we present a range for the big - Ms based on the 
input parameters of the model (Table 2). It is advised to pick the smallest number within that 
domain. 

The objective is to minimize a function of delay whenever we start serving the incident the 
fastest based on constraints (17). The nonlinear term xin × aon1ω would always try to assume the 
value of zero. By adding constraints (20), we prevent it from assuming the value of zero 
whenever both xin  and aon1ω  equal one. 

To linearize cvpn(j−1)ω × apn(j−1)ω , we add a dummy variable d3onjω that is equal to nonlinear term 
through constraints (21) and (22): 
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Table 2: The ranges for the big – Ms. 

Constraints  Value of M based on inputs 

 17 
𝑀𝑀𝑜𝑜𝑤𝑤
17  ≥  �𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜

𝑝𝑝<𝑜𝑜

+  ��𝑁𝑁𝐷𝐷𝑜𝑜  +  𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜�
𝑝𝑝<𝑜𝑜

                     ∀𝑓𝑓,𝑤𝑤 

 20 𝑀𝑀𝑜𝑜𝑤𝑤
20  ≥  𝐻𝐻𝑜𝑜𝑤𝑤  +  �𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜

𝑝𝑝<𝑜𝑜

                                                   ∀𝑓𝑓,𝑤𝑤 

 21 
𝑀𝑀𝑜𝑜𝑤𝑤
21  ≥  ��𝑁𝑁𝐷𝐷𝑜𝑜  +  𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜�

𝑝𝑝<𝑜𝑜

                                              ∀𝑓𝑓,𝑤𝑤 

 22 
𝑀𝑀𝑜𝑜𝑤𝑤
22  ≥  ��𝑁𝑁𝐷𝐷𝑜𝑜  +  𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜�

𝑝𝑝<𝑜𝑜

 +  𝑓𝑓 ×  𝜀𝜀                                ∀𝑓𝑓,𝑤𝑤 

 

𝑑𝑑3𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑀𝑀 ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤                     ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗                            (29) 

𝑑𝑑3𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑐𝑐𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤                          ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗                            (30) 

To linearize the nonlinear constraints, we replace the nonlinear terms with their linear equivalents. 

The linearized constraints are presented below: 

𝑑𝑑1𝑜𝑜𝑜𝑜1𝑤𝑤 ≥  �𝑇𝑇𝑇𝑇𝑖𝑖𝐿𝐿𝑜𝑜  ×  𝑑𝑑2𝑜𝑜𝑜𝑜𝑖𝑖𝑤𝑤
𝑖𝑖

        ∀𝑓𝑓,𝑚𝑚                                        (31) 

𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≥  �𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜  ×  𝑎𝑎𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤
𝑝𝑝<𝑜𝑜

 +  �𝑑𝑑3𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤
𝑝𝑝<𝑜𝑜

                               

   − 𝑀𝑀 ×  �1 −  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤�             ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗 ≠  1                        (32) 

𝑠𝑠𝑜𝑜𝑤𝑤  =  ��𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤
𝑜𝑜𝑜𝑜

                 ∀𝑤𝑤, 𝑓𝑓                                         (33) 
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𝑐𝑐𝑜𝑜𝑤𝑤  =  ��𝑑𝑑3𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤
𝑜𝑜𝑜𝑜

                 ∀𝑤𝑤, 𝑓𝑓                                         (34) 

𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≥  𝐻𝐻𝑜𝑜,𝑤𝑤  ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  +  � 𝑇𝑇𝑇𝑇𝐿𝐿𝑝𝑝𝐿𝐿𝑜𝑜  ×  𝑎𝑎𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤                                                    
𝑝𝑝 < 𝑜𝑜

 

− 𝑀𝑀 ×  (1 −  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤)                ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗 ≠  1                       (35) 

𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑀𝑀 ×  � 𝑓𝑓𝑝𝑝𝑜𝑜(𝑜𝑜−1)𝑤𝑤
𝑝𝑝 < 𝑜𝑜

                  ∀𝑤𝑤, 𝑓𝑓 ≠  1,𝑚𝑚, 𝑣𝑣 ≠  1             (36) 

𝑑𝑑3𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  −  𝑑𝑑1𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  −  𝑁𝑁𝐷𝐷𝐿𝐿𝑜𝑜𝑜𝑜  ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  +  𝜀𝜀 ×  𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤  ≤  𝑀𝑀 ×  𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑤𝑤    ∀𝑤𝑤, 𝑓𝑓,𝑚𝑚, 𝑗𝑗        (37) 
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4.3 HEURISTICS FOR A LARGE SCALE PROBLEM 

As we look-ahead more future stages on a larger network, the problem size increases. The 
computational effort for solving scenario-based method depends on the scenario size. This 
dissertation is dealing with a complex stochastic problem with large number of constraints and 
variables. For example, suppose 3 stages on the freeway network with 2 ERUs on 17 nodes. 
Even though we linearize the non-linear terms, we have a matrix with columns more than 
10×173×2×3×3 (variables × scenarios × ERUs × order × job), and rows at least 173×3×16 
(scenarios × order × constraints). There may be some efficient heuristics, but this dissertation 
focuses on a fast scenario reduction method to meet the real-time requirements when we run the 
model. 

A particularly efficient implementation of scenario-reduction algorithm is a fast forward 
selection (Heitsch and R¨omisch 2003). Starting from original set of scenarios Γ and set of 
scenarios to be selected |S| and deleted |J |, we select one scenario reclusively. The algorithm 
produces a reduced set of scenarios Γ[0], Γ[1], ..., Γ[i], ..., Γ[∗], where the set Γ[∗]  is the target of the 
search. Note that one of the main contributions of this study is the different ordering of incident 
sequences. To make r stages of ordering numerically tractable, we multiply r! cases of sequences 
(permutation) by required number of scenarios ω. To select total representative scenarios (ω × 
r!) out of N, we implement the following procedure: 

• Step 0 : Before starting the process, the initial step consists of computing the delay dω (For 
simplicity, we know which incident o causes delay doω ). We solve each scenario 
independently as a deterministic case (very fast) and calculate the severity of each scenario 
as the total delay for that particular scenario. Suppose we have a goal of reduced set of 50 
scenarios (×6 for full combinatorial in 3 stages) among N, the value of dω can be 
conveniently arranged into a systematic matrix, 

𝑑𝑑 =

⎣
⎢
⎢
⎢
⎡
       0    10
     10      0
     25    15

    
⋯ 1000
⋯ 990
⋯ 975

⋮ ⋮
1000 990    ⋮      ⋮

⋮       0 ⎦
⎥
⎥
⎥
⎤
                                          (38) 

• Step 1 : Compute delay for each scenario ω, and select ω that minimizes distance D between 
the reduces sets ΓS and original sets Γ. The starting scenario can be obtained from 

𝐷𝐷𝜔𝜔 = 𝑎𝑎𝑟𝑟𝑎𝑎{min �𝑃𝑃𝜔𝜔 𝑑𝑑𝜔𝜔𝜔𝜔
′

𝑤𝑤∈Γ

}                                                (39) 

If ω=3 is selected, then Γ𝑆𝑆
[1] = {3} and Γ𝐽𝐽

[1] = {1,2, … ,289}. 

• Step i : Update delay matrix as follows: 

d𝑤𝑤𝑤𝑤′
[𝑖𝑖] = min �d𝑤𝑤𝑤𝑤′

[𝑖𝑖] , d𝑤𝑤𝑤𝑤(𝑖𝑖−1)
[𝑖𝑖] � ,∀𝑤𝑤,𝑤𝑤′ ∈ Γ𝐽𝐽

[𝑖𝑖−1]                               (40) 
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Considering new delay matrix, we select  

𝐷𝐷𝜔𝜔 ∈ 𝑎𝑎𝑟𝑟𝑎𝑎{min � D𝑤𝑤
[𝑖𝑖]

𝑤𝑤∈Γ𝐽𝐽
[𝑖𝑖−1]

}                                            (41) 

• Step i + 1 : Optimally redistribute probabilities. The new probability of a preserved scenario 
is equal to the sum of its formal probability and of all probabilities of deleted scenarios that 
are closes to it. All deleted probabilities have probability zero. 

 

The process is continued until given number of scenarios are selected. The interested reader is 
referred to (Heitsch and Romisch 2003) for further information about the algorithm. 
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5.0 NUMERICAL EXAMPLES 

5.1 ILLUSTRATIVE CASE STUDY 

The case study site is the Baltimore Beltway (I-695) extending around Baltimore, Maryland, 
USA. It is a 51-mile segment, with 40 exits and intersects with other major roads (e.g. I-97, I-70, 
I-83, etc.). Interested readers can vary the distance to test different sizes in any freeway network. 
Traffic operation center 4 (near Exit 34) covers selected routes including I-695 (Figure 3). There 
were 4 field operation patrol units available for AM peak hours on weekdays until 2014.  

 

Figure 3: Spatial distribution of Incidents on I-695 freeway. 

Potential locations for the ERUs are the exits (treated as nodes) where incidents occur. We 
control the potential locations of emergency requests by clustering historical frequency of 
incidents. Two different network sizes (i.e., 17 nodes, 34 nodes) are generated by grouping 
nearby incidents. 

The case study presents a ring shape network where two route exists for each trip. The proposed 
model can be applied to a complex freeway network in which more than two routes exist for 
each allocation. In that case, interested readers can choose the fastest route using a shortest path 
algorithm and change the travel time input of an ERU (Koutsopoulos and Yablonski 1991). 

In total, 1,981 primary and independent incidents (e.g., disabled vehicles, collisions, vehicle on 
fire) during the morning peak hour (i.e. 6:30-9AM) for 1 year (i.e. from October 2012 to 
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September 2013) are collected (i.e. 261 weekdays) along the I-695 corridor. As a result, an 
average of 7.7 (A) incidents are occurring in each 150-minutes time period per day. Based on 
incident locations, the travel speeds of probe vehicles are represented on traffic message 
channels codes of each segment. The archived incident and probe vehicle database are provided 
by the Center for Advanced Transportation Technology Laboratory at the University of 
Maryland.  

The proposed incident model is incorporated into the generation of scenarios. Generally, it takes 
an average 19.8 min for response units to clear an incident after the detection of the incident (i.e. 
incident duration). To respond to another incident, it takes time for the response units to travel 
from previous incident location to another one after the notification. However, another incident 
has a high potential to be pending without appropriate response units, because the general 
tendency of the occurrence rate of incidents is one per every 18.5 min. Therefore, we break the 
morning peak hours into exponentially distributed intervals (mean 18.5 min). For an efficient 
emergency system, waiting time for the current request can be reduced with quick response in 
the previous request. Every time a request arrives, we look-ahead two future stages. Secondary 
incident probabilities majorly vary during the clearance or recovery of primary incidents. For the 
comparison of computational performance and efficiency, we also extended look-ahead setting 
from two to three future stages. 

If next emergency occurs before previous emergency vehicle arrives at the destination, we can 
re-run the model with shifted sequences and choose a better solution. The new model considers 
updated probability of incident and real-time traffic information. However, as shown in the 
incident intervals, major incidents are less likely to occur concurrently over a short time period. 

Clearance times are categorized with different delay types and locations. For example, exit 5 (𝑖𝑖 = 
1) has average clearance duration 𝑁𝑁𝑁𝑁1 of 19.6 min with following parameters: 𝛽𝛽11 = 0.68,𝛽𝛽12 =
0.94,𝛽𝛽13 = 1.05,𝛽𝛽14 = 1.358,𝛽𝛽15 = 0.98. As an input to the optimization model, pure clearance 
time (𝑁𝑁1 = 13.4 min) is estimated for exit 5 without response delay. The same delay type (e.g., 
𝛽𝛽𝑖𝑖2, 𝜂𝜂 = 2) varies for different location i with coefficient of variation (0.43) that is the ratio of the 
standard deviation (0.42) to the mean (0.96). This variation in delay presents more non-
uniformly distributed response delays on the network. 

We test the model in two networks with different sizes (i = 17, 34). The main goal is to generate 
future stages of incident scenarios given information of past and current incidents. (Ω: number of 
blocked lanes, collision with injuries or property damage only) and traffic condition at upstream 
(∆: difference in speed before and after incident occurrence) of primary incident (Park and  
Haghani 2015b). 

We build a total of u  scenarios. For example, Table 3 presents 17 x 17 scenarios as a 
combinatorial of two future incidents (during stage 1 at site i =17 and stage 2 at site j = 17) 
Suppose we estimate parameters based on the past incident occurred at exit 11 
(�(Ω,∆)(𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒11,−1)(�,𝑢𝑢) = 0.207, Ω = 2 lanes blocked, collision with injuries; ∆ = 30mph speed 
difference), and the current incident occurred at exit 5 (𝛿𝛿(Ω,∆)(𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒5,0)(𝑘𝑘,𝑢𝑢)= 0.098, Ω = 1 lanes 
blocked, collision with property damage; ∆ = 10mph speed difference). Based on the location of 
past and current incidents and the consequent traffic, we update the density in real-time. In the 
same logic, we estimate the expected clearance time (Park et al. 2015). 
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Table 3: Probabilities of scenarios. 

Scenario # Stage 1 Stage 2 Probability 
1 E[𝜏𝜏(exit 5, 1)] E[𝜏𝜏(exit 7, 2)] 0.009 
2 E[𝜏𝜏(exit 5, 1)] E[𝜏𝜏(exit 11, 2)] 0.012 
3 E[𝜏𝜏(exit 5, 1)] E[𝜏𝜏(exit 13, 2)] 0.005 
⋮ ⋮ ⋮ ⋮ 

17 E[𝜏𝜏(exit 7, 1)] E[𝜏𝜏(exit 5, 2)] 0.011 
⋮ ⋮ ⋮ ⋮ 

289 E[𝜏𝜏(exit 36,1)] E[𝜏𝜏(exit 36, 2)] 0.002 
Sum - - 1.000 

 

 

5.2 RESULTS 

Our computational implementation of the formulation involves coding and solving Xpress on a 
computer with 2.6-GHz CPU and 32-GB RAM. Since our problems are formulated as Mixed 
Integer Programs (MIP) reaching the optimal solution is very time consuming. In most of the 
cases, running time was less than 30sec to get the near-optimal solution with a gap less than 1%. 
However, for 3-stages and 2-vehicle or 3-vehicle cases, we terminated most of the problems after 
1400 seconds or 20% gap, since no significant improvements were observed after running the 
code more than that time. Starting from one available ERU vehicle, multiple ERU vehicles are 
tested to analyze the sensitivity of the optimal solutions and to find the number of vehicles after 
which increasing the vehicles will only improve the solution marginally. 

Table 9.3 shows conditional probabilities that are calculated for each scenario in the example of 
2 stages and 17 nodes. The expected probability of scenarios (Pw) ranges from 0.001 to 0.041 
(average probability of a scenario is 0.013). For example, the probability of the first scenario, 𝑃𝑃1, 
𝑝𝑝(5,7) = E[𝜏𝜏(exit1, 2)] × E[𝜏𝜏(exit7, 2)], is 0.009. Note that the probability of the scenario #17 
is 0.011 which is 0.002 larger than first one. Since we have 289 scenarios, each assigned 
probability is small. However, the difference 0.002 takes 23% of the first scenario, and this 
difference may change the optimal solution of the problem. Note that the transition probabilities 
vary in real-time when next incident occurs, and we re-execute the optimization model. 

Before an incident occurs, we pre-locate ERUs at the optimal locations with look-ahead. After an 
occurrence of an incident Ω and an assignment of one of pre-located ERUs, a better relocation 
decision is made. At each point, the program updates current traffic condition, response and 
clearance status of the incident and ERU information such as the current location, the route to be 
taken, the destination, and the time to the next incident. With new traffic condition (∆) and 
incident severity (Ω), we update the probability of incident occurrences. These variables are used 
in estimating expected clearance of incidents C1 (Park et al. 2015). We relocate n ERUs if the 
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expected clearance 𝑁𝑁𝑖𝑖 of 𝑄𝑄 is earlier than next call (𝑄𝑄 + 1)𝑖𝑖, or n — 1 ERUs if clearance is later 
than (𝑄𝑄 + 1)𝑖𝑖. 

The illustrative example presents where to relocate ERUs after an occurrence of incidents. While 
previous literature has only considered travel time of ERUs, we calculate total delay time as the 
sum of travel time, response delay, and clearance time. Our model explicitly models the response 
delay when a server has not finished the clearing job yet. We test the performance of the 
emergency response model on two different sets of probabilities with maximum travel time. We 
obtain solutions for scenarios without considering secondary incident on freeways, and insert this 
solution into real-world scenarios with secondary incidents. When we have one or two available 
ERUs, the solution of two approaches are same. However, as more ERUs available, the benefit 
of considering probability of secondary incident becomes important. With 0% gap, the optimal 
objective function value (total delay time), was 58.69 min without consideration of secondary 
incidents (at 11, 18, 29). This is worse than the solution if the locations were 11, 11, 27 
(objective value= 57.13 min). 

In the previous study (Lei et al. 2015) the travel time of ERUs were dependent on the traffic 
condition. The emergency medical service act of 1973 stipulates that 95% of service request be 
met within required time (Ball and Lin 1993). However, in many cases, even though police units 
had been dispatched to the scene, the left lane can be blocked until available emergency units 
arrives. Maryland’s “clear the road” policy provides ERUs (well-equipped vehicles) for the rapid 
removal of vehicles from the travel lanes rather than waiting for a private tow service. The 
proposed model repositions single type of ERUs to the best locations to serve future incidents. 

Most parts of United States and Canada enforce the “move over laws” that require motorists to 
move to the farthest roadside and stop, until the emergency vehicle has passed the vicinity. We 
consider freeway networks that have enough space on right lane/shoulder which are less likely to 
be influenced by severe traffic congestions. However, emergency vehicles still expect delays 
waiting for other traveling vehicles to become aware of their presence and yield. We explore 
both minimum (free-flow traffic) and maximum (congested traffic) response time as an input to 
the model (Table 4). 

For cases with one ERU considering probability of secondary incidents, clearance of the second 
incident starts after waiting from previous service (9.84 min) and traveling to incident site (12.31 
min). Including the actual clearance duration (17.51), total delay is 39.67 min. As we have more 
available ERUs, we have less waiting and travel times. It presents the importance of efficient 
response that has an influence on later stages of response delay. While the minimum expected 
total delay with one vehicle case ranges from 27.68 min to 39.67 min, three vehicle case has a 
much lower value that ranges from 25.72 min to 27.68 min. For one available ERU, maximum 
expected delay is 1.31-1.36 times longer than minimum expected delay. As we have more 
available ERUs, the discrepancy between minimum and maximum delay becomes smaller (i.e., 
1.26-1.28 times for 2 ERUs and 1.17-1.13 times for 3ERUs). This is due to the impact of traffic 
condition on the travel time of response vehicles. The real emergency response would be 
between somewhere in the free-flow and congested condition. 

Figure 4 shows the optimal solutions for each scenario based on the travel time with real traffic 
condition (three ERU vehicles). We have considered response delay and clearance time 
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compared to previous study. Response delay and clearance time take a larger portion (72.1%) of 
incident management process compared to travel time only (27.9%). Our model further saves 
potential response delay because we have the assumption that ERUs stay at the current incident 
site instead of returning back to their originally assigned locations. If we add the return travel-
time, the total delay time will increase with more response time to serve the next incident. 

Table 4: The performance of the proposed model (Different number of ERU vehicles). 

ERU 
Traffic 

Expected time value (minutes) 
# Occur Start Clear Wait Travel Duration Delay 
 

Free 
18 10.20 27.68 0.00 10.20 17.48 27.68 

One 36 40.16 57.67 9.84 12.31 17.51 39.67 
ERU 

Real 
18 14.31 31.79 0.00 14.31 17.48 31.79 

 36 50.38 67.89 13.98 18.40 17.51 49.89 
 Free 

18 10.20 27.68 0.00 10.20 17.48 27.68 
Two 36 27.45 44.96 0.58 8.86 17.51 26.96 

ERUs 
Real 

18 14.31 31.79 0.00 14.31 17.48 31.79 
 36 31.66 49.17 2.07 11.59 17.51 31.17 
 Free 

18 10.20 27.68 0.00 10.20 17.48 27.68 
Three 36 26.20 43.71 0.73 7.47 17.51 25.71 
ERUs 

Real 
18 14.31 31.79 0.00 14.31 17.48 31.79 

 36 25.83 43.34 0.71 7.12 17.51 25.34 
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Figure 4: Optimal solutions for each scenario. 

The test problems are designed to evidence the significant effect of efficient allocation in the 
problems. Generally, the optimality gap drops as the number of response units is increased from 
two. If we have a deterministic solution based on expected value, the model will underestimate 
or overestimate the solution in different scenarios due to lack of flexibility. The scenario-based 
solution, on the other hand, generally provides a better estimate of the objective function. The 
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quality of solutions is highly dependent on the scenarios, from worst-quality solutions to best 
solutions. 

To gain further insight into the behavior of the model, we compared solutions with different the 
number of response units (Table 5). The response delay drops from 81.68 min to 57.13 min as 
the number of response units increases from one to three. This is because adding response units 
in the system becomes more effective in reducing response delay. If a given solution satisfies a 
threshold of response time for the overall system, we can save on operational cost under a budget 
limit. 

Table 5: Assigned locations and performance. 

ERU 
# 

Total Expected Time (mins) 
Gap Optimal 

locations Travel Wait Clear Total 

1 32.71 13.98 34.99 81.68 0% 11 

2 25.90 2.07 34.99 62.96 0.69% 11,11 

3 21.42 0.71 34.99 57.13 13.06% 11,11,27 
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5.3 DISCUSSIONS 

We design a different experiment setup to compare the performance of the proposed model 
against the heuristic (scenario reduction). We have different combination of parameters such as 
nodes I, stages R, and number of ERUs U . Table 6 shows the result of computation time (s) and 
gap (%) for each case (No.). We reported the performance of the proposed model depending on 
the available time for execution of the model. We stop further execution after 1400s or less than 
20% gap of the model and report the best found solution up to that point. The main reason is that 
the first feasible solution is usually found very fast (generally in less than 60 seconds). Most of 
the running time of the model is devoted to proving that a solution is optimal and only a small 
portion of the running time is devoted to finding better feasible solutions that only marginally 
improve the previous best found solution. 

Table 6: Computational performances for the proposed approach. 

No. Parameters Proposed approach Fast forward selection 
N R U CPU time Gap CPU time Gap 

1 17 2 1 0.1s 0.00% - - 
2 17 2 2 17.2s 0.92% - - 
3 17 2 3 22.5s 19.19% - - 
4 17 3 1 2.6s 0.00% - - 
5 17 3 2 1400s 20.08% 8.3s 15.81 % 
6 17 3 3 1400s 32.56% 54.9s 18.59 % 
7 34 3 1 6.5s 0.00% - - 
8 34 3 2 1400s 29.09% 54.2s 19.13% 
9 34 3 3 1400s 35.89% 59.6s 19.91% 

 
As we have larger network size and more future stages, it is more time consuming. In this study, 
we used the heuristic method (fast forward selection) and the measure of the optimality gap to 
justify the quality of the solution. The optimality gap jumps as the network size increases from 
17 to 34, and as we increase total stages from 2 to 3. Note that even the first case is very complex 
with 32042 variables. For larger scale cases (No. 5, 6, 8, 9), the heuristic method reaches a 
solution with less than 20% gap within 60s that can be used in real-time. These cases have less 
iterations as a result of the convergence. On the contrary, instead of quick solution, the proposed 
approach finds the solution with less gap compared to the heuristic solution. 

The presented mathematical model can be applied to real-time problems. The operator 
communicates with responders at each incident site by receiving messages or keeping track of 
ERU' locations. Notifications can include available ERUs, travel time, probabilities of primary 
and secondary incidents at different node of the network. 

The time to respond to an incident is relatively small compared to the time necessary to clear the 
incident. We dynamically incorporate position of ERUs in each stage, and this formulation 
causes a high complexity. In a planning stage, before an incident occurs, we can run the full 
model without a restriction of computational times. In an operational stage, after an incident 
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happens at a node, a vehicle is dispatched to serve that incident based on the planning stage 
decision. After certain time intervals, number of available vehicles and the second stage 
scenarios are updated. We re-run our mathematical model to relocate the remaining vehicles to 
be more prepared for future incidents. Upon the clearance of the incident, the ERU which was 
serving the incident is once more added to the pool of available fleet and therefore we need to re-
run the model one more time based on the updated parameters. 

As we face later stages, the computational burdens are reduced. However, running the model 
iteratively is still more practical with reasonable solution times. One possible way to reduce the 
running time of the model for real time applications is decreasing the size of the problem. This 
can be done either by reducing the number of scenarios or analogously reducing the number of 
future stages being considered at each time we run the model. Another approach is to accept non-
optimal good enough solutions by running the model as long as we are allowed. After the time 
limit is met, we can report the solution and relocate the ERU vehicles accordingly. 

5.4 APPLICATION 

An emergency system evolves from one time-stage to another in such a way that chance 
elements are involved in progressing from one state to the next. We are extending the first-order 
semi-Markov model to include higher order features. When we see the time after a primary 
incident, the semi-Markov model can estimate the time to secondary incidents.  There is a close 
relationship between incident duration and secondary incident occurrences. A second-order 
semi-Markov model can be developed to capture the time to secondary incident considering 
incident duration based on vehicle arrivals. 

As shown in Figure 5, the symbolic description represents a series of decisions to assist 
emergency response personnel in decision-making. A user can simply insert the values for 
different parameters into a tree and obtain the results (Park and Haghani 2015a). Smartphone 
application (e.g. WAZE) can help drivers navigate around road closures and get where they need 
to go. If the likelihood of secondary incidents is high, notifications like watch out could make 
driving safer.  
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Figure 5: Application of incident online prediction tool. 

Moreover, Smartphone application can have a mode for emergency services personnel to make a 
decision of relocating emergency vehicles.  The conditional probability of a secondary incident 
at each location will be updated in real-time after incident sequence, incident severity, and 
environmental and traffic information. The updated information can be displayed in screen to 
provide an optimal route to emergency services personnel. 
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6.0 CONCLUSION AND RECOMMENDATIONS 

6.1 CONCLUSION 

In this research, we present an analytical approach for ERUs location-allocation to protect the 
safety of victims, travelers, and emergency personnel. Generally, traffic operators have 
underestimated the impact of secondary incidents due to their low frequency. Our model 
represents two main phases. The first one is a location phase solved by a facility location 
problem that allocates ERUs to respond to primary incidents. The second phase is an allocation 
phase that deals with a series of stages based on secondary incidents scenarios. 

After an incident occurs, clearance activities cause vehicles approaching from upstream to 
reduce their speeds, and emergency units responding to a secondary incident site take longer to 
respond. Determination of the best solution without considering stochastic nature of incidents 
has limitation in coping with uncertainty, and it might produce practically infeasible solutions. 
This study proposed an advanced strategy for distributing incident response units by solving a 
stochastic programming problem. As we demonstrate in a case study, the proposed framework 
can be useful for reducing delay time caused by response to secondary incidents occurring under 
impact of primary incidents. We approach the problem from a long-term perspective that the 
flexible location of ERUs can be changed and is not fixed. 

 

6.2 FUTURE RECOMMENDATION 

Our results indicate that the expected waiting time omitted by previous studies can significantly 
impact the expected total delay compared to the relatively short travel time of response units. 
Allowing for flexibilities with secondary incidents decreases the expected total delay time 
compared to the solution without considering secondary incidents. As the number of available 
emergency response unit increases, shorter total delay is expected. Therefore, further assignment 
of ERUs that covers new locations occurs by using information about the most promising sites. 

One of the challenges is generation of realistic incident scenarios. We can improve the model by 
allowing more than one vehicle routing for each stage. By investigating the structure of the 
transition probability of each stage, the scenario can be generalized and estimation method can 
be developed. The proposed model is executed in planning stage before occurrence of an 
incident. More efficient formulation can improve computation time and allow the use of the 
model in operation stage for dynamic scenarios. 

Previous models have focuses on solving optimal location problem with an assumption that the 
closest vehicles are dispatched to the request. In reality, non-uniformly distributed requests on a 
transportation network are more likely to have different orders that lead to different cost of the 
series. Under uncertainty, this approach may not capture inherently the dynamic nature of 
emergency response systems, especially when incidents occur at unpredictable locations at 
unpredictable times. In the future study, we will approach this challenge from an operational 
perspective, online optimization. Unlike popular nearest-origin assignment strategy that searches 
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for greedy decisions, we consider both past and future requests. With updated information, the 
proposed dynamic model would flexibly re-computes the solution to react in real-time. Our 
practical online algorithm (Park and Haghani 2016b) has a look-ahead setting contingent on 
present requests in making future decisions. 

We will use the capability for cars to communicate with one another for both travelers and 
emergency operators. This new data source improves the real-time traffic routing service as an 
input to the emergency vehicle location and dispatch model. The system will respond to 
transportation demand or emergencies in real-time by messaging and response between vehicles 
and dispatch.  
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