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EXECUTIVE SUMMARY 

Ports are key elements of global supply chains, providing connection between land- and 

maritime-based transportation modes. They operate in cooperative, but competitive, co-opetitive, 

environments wherein individual port throughput is linked through an underlying transshipment 

network. Short-term port performance and long-term market share can be significantly impacted 

by a disaster event; thus, ports plan to invest in capacity expansion and protective measures to 

increase their reliability or resiliency in times of disruption. To account for the co-opetition 

among ports, a bi-level multiplayer game theoretic approach is used, wherein each individual 

port takes protective investment decisions while anticipating the response of the common 

market-clearing shipping assignment problem in the impacted network. This lower-level 

assignment is modeled as a cost minimization problem, which allows for consideration of gains 

and losses from other ports decisions through changes in port and service capacities and port 

cargo handling times. Linear properties of the lower-level formulation permit reformulation of 

the individual port bi-level optimization problems as single-level problems by replacing the 

common lower-level by its equivalent Karush Kuhn Tucker (KKT) conditions. Simultaneous 

consideration of individual port optimization problems creates a multi-leader, common-follower 

problem, i.e. an unrestricted game, that is modeled as an Equilibrium Problem with Equilibrium 

Constraints (EPEC). Equilibria solutions are sought by use of a diagonalization technique. 

Solutions of unrestricted, semi-restricted and restricted games are analyzed and compared for a 

hypothetical application from the literature involving ports in East Asia and Europe. The 

proposed co-opetitive approach was found to lead to increased served total demand, significantly 

increased market share for many ports and improved services for shippers.  
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1.0 INTRODUCTION 

Maritime transport operating within Intermodal (IM) freight distribution systems remain the 

dominant mode for international trade (International Maritime Organization, 

https://business.un.org/en/entities/13). It plays a significant role in the U.S. and world economies, 

serving as the backbone to global trade and supply chain networks. Ports are critical components 

of these systems, providing key land-water connections. However, they are vulnerable to 

disruptive impacts from a range of anthropogenic and natural hazard causes, including tsunamis, 

earthquakes, meteorological events, terrorism, worker strikes and operational accidents. 

Moreover, damage, disruptions, backups, or physical, administrative or operational changes that 

arise in a single port can affect the performance of other ports, along with the overall system. 

Consider for example an event arising at a single port that impacts its throughput capacity. In 

addition to a shortage in berth space for incoming vessels, vessels will be delayed from moving 

to the next location, in turn creating queues and additional upstream backups and downstream 

delays. An initial disruption, thus, causes delays that ripple through the network, impacting other 

ports’ operations and system-level productivity. This ripple effect in the maritime network is 

depicted in Error! Reference source not found. where a disruption in one port leads to delays 

at other ports along the shipping routes.  

In this competitive environment, disruptions can lead to significant immediate losses in revenue 

and ultimate market share, as alternative competing ports can serve diverted traffic. This is 

especially problematic in transshipment operations, where interchange locations are replaceable, 

and traffic diversion can lead to a rebalancing of revenues across the port network. The 

https://business.un.org/en/entities/13
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disruptions, thus, affect the long-term competitive position of affected ports, potentially 

preventing them from regaining their pre-disaster market share even after capacity is completely 

restored (Chang 2000). If such disruptions occur frequently enough, whether or not due directly 

to events at a specific port, the delays will impact the ports’ reliability and thus its reputation. 

Many shipping companies directly or indirectly account for potential delays and resulting losses 

in choosing their IM routes. Ports are, therefore, incentivized to make pre-disaster mitigative and 

preventative investments to reduce vulnerabilities for the purpose of maintaining and increasing 

their market share (Song & Panayides 2012). This is also important to manufacturers and 

suppliers that rely on the IM network to ship or receive their goods and materials. Companies 

relying on raw materials or parts will direct shippers to consider multiple alternative routes in 

case of port disruptions to avoid delays in manufacturing (Tang 2006).  

An individual port authority can invest in its own facilities to protect its business from the threats 

of disruptions and more major disaster events. These investments may involve pre-event 

enhancements (e.g. reinforcing or raising a wharf or pier, raising roadway and railway elements, 

redesigning drainage systems, building coastal defenses, soil strengthening, seismic design, 

facility retrofit, installation of security systems,…), post-event repair, or improvements in 

equipment, insurance coverage, and personnel training. Pre-event preparedness is especially 

important where post-disaster actions may be inadequate for the disaster event category (Chang 

2000). While such investments are important, they do not guarantee performance, because a 

port’s fate is a function of its place within the larger shipping network. A disruption in one port 

node of this maritime network can affect the continuation/disruption or gains/losses at other 

network elements. Thus, protective investments must aim to guard against or enable adaptive 

action for both on-site events and events at interconnected facilities within the maritime network, 
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and benefits may be derived from investing in others’ facilities. The protective investment 

problem exists, thus, in a cooperative and simultaneously competitive, co-opetitive, environment 

wherein each port can anticipate its competitors’ investment decisions and consider potential 

gains from collaboration. The term co-opetition was introduced by Nalebuff et al. (1996) in the 

context of business management.  

The global maritime-port network involves a range of stakeholders from national, state and 

private sectors. Ports may be publically or privately owned, and may be operated by the same or 

different public or private parties (Brooks 2004). In this co-opetitive IM environment, each 

stakeholder is interested in not only the well-being of its own facilities, but also in other facilities 

within its maritime network. This complicates the process of analyzing and optimizing 

preventative or response-related investments to disruption events. A co-opetitive optimization 

scheme not previously considered in the literature in this context is proposed herein for this 

purpose. This scheme supports the development of decentralized, yet cooperative investment 

strategies.  

This multi-stakeholder, protective investment problem for ports operating within a competitive 

but connected IM network is conceptualized as a multi-player, bi-level investment problem. 

Decisions by a player to invest in its own or other’s facilities are taken individually at the upper 

level of the bi-level formulation while anticipating solution of a common liner shipping 

assignment at the lower level. The ports’ objectives are to maximize their own throughput (i.e. 

profit) by protecting from impacts of disruption events across the port network. Given post-event 

route capacities and traversal times, the liner shipping problem assigns container shipping 

demand to the functioning routes; that is, it recalibrates market response to disrupted transport 

options. 
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Figure 1: Cascading effects of perturbations in the liner shipping network 

This bi-level problem can be transformed into a set of interrelated, single-level problems, one for 

each port, by adding identical Karush Kuhn Tucker (KKT) optimality conditions of the common 

lower-level shipping assignment problem to the upper level of each individual investment 

problem. This creates a set of Mathematical Programs with Equilibrium Constraints (MPECs) 

with one for each port. These individual optimization problems cannot be solved independently 

since they are influenced by the decisions of other ports involved in the common KKT 

conditions. This is equivalent to a single-level, multi-leader (multi-port), common follower 

(shipment assignment) problem or Equilibrium Program with Equilibrium Constraints (EPEC). 

Solution of this EPEC is reached at a multi-actor “Stackelberg equilibrium” in which each 

stakeholder seeks an investment strategy that given decisions taken by other stakeholders 

maximizes its own objective and, simultaneously, the response of the market in the lower-level 

(embedded within the  KKT conditions) to investments. This formulation concept is presented in 

Section 3 and depicted in Figure 2.   

To solve the resulting EPEC, the diagonalization technique presented in Gabriel et al. (2013) and 

summarized in Section 4 for the proposed protective investment problem was implemented 

within the ILOG-CPLEX software environment. This technique is considered to be a variant of 

the Gauss-Seidel method for numerical solution of simultaneous equations. Resulting investment 

decisions determine in which components and to what extent the different stakeholders should 

invest for their own benefit (i.e. profit, market share or other objective) while accounting for the 

impacts of their decisions within a common market. Before proceeding to description of the 

formulation and solution methodology, relevant literature is reviewed. In Section 4, the proposed 

solution framework is applied to a test application network and insights are gleaned. 
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Figure 2: Overview of the EPEC evolution: (a) Transforming the bi-level problem into a 

single-level linear MPEC. (b) Construction of the EPEC from MPECs of all the ports. 
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2.0 BACKGROUND 

Supply chain risk management has been extensively studied. In this context, risk is typically 

defined with respect to reoccurring (e.g. operational) or rarer catastrophic disruptions that impact 

some aspect of the supply chain. Only a few such works explicitly consider the role of 

transportation in supply chain risk. Ho et al. (2015), in their comprehensive review on supply 

chain risk management, list only one work (Hishamuddin et al., 2013) that accounts for 

transportation risks in supply chains. Hishamuddin et al. focus on recovery scheduling related to 

ordering and production; they do not investigate potential protective investments to reduce this 

transportation risk. Rienkhemaniyom and Ravindran (2014) mathematically modeled a multi-

objective supply chain network design problem involving risks associated with disruptions at 

facilities and transportation links. Their model seeks decisions on the design of the supply chain, 

including decisions related to the selection of suppliers, manufacturing plants, and distribution 

centers, as well as plans for production and distribution. They propose the use of goal 

programming to seek optimal or satisficing design solutions in terms of network performance 

and risk attributes. Loh and Van Thai (2014) discuss the increasingly important role of ports in 

the global supply chain network. They note that very few works have focused on the 

management of port disruptions as part of the supply chain. Thus, this remains an open area. 

Effective investment decision making for improved resiliency requires a deep understanding of 

the system-level impacts of port disruptions. Some works have sought to describe how 

disruptions cascade through the supply chain network. Wu et al. (2007) studied the propagation 

of disruptions in supply chains and their impacts on the network. They used a technique they 
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termed Disruption Analysis Network for this purpose. This technique models the supply-chain 

interconnections using an underlying directed bipartite graph. Using this graph-based 

representation, the impact of simulated disruption events can be estimated with respect to 

important network attributes. Sokolov et al. (2016) proposed a two-model, multi-criteria 

approach for use in supply chain design that captures the ripple effects of disruptions. The model 

accounts for static structural properties of the supply chain through the use of graph theory 

concepts. The static model is extended to include time-dependent characteristics needed to 

understand the dynamic effects of disruptions. These effects are interpreted as an indicator of 

design robustness. 

The use of “Systemigrams” is suggested in Mansouri et al. (2009) for studying the effects of 

disruptions in a multi-agent maritime transportation system of ships, ports, intermodal 

connections, waterways and users. This tool enables the various stakeholders of the supply chain, 

from the manufacturers to the retail stores, to create qualitative understanding of the 

perspectives, organizational requirements and strategies of other stakeholders. This tool is aimed 

at supporting a participatory environment by elucidating interdependencies. Rose and Wei 

(2013) studied direct and indirect effects of port disruptions on regional and national economies 

using an input-output (I-O) (demand-supply) macroscopic approach. Resiliency of the economy 

as a function of inventories, re-routing, overtime and extra shifts is incorporated.  

 The literature is replete with qualitative works and reviews that consider threats to ports, 

their resiliency, decision-making practices and their impacts on the global supply chain network. 

Becker et al. (2012) conducted a comprehensive survey of port authorities around the world. 

They investigated the current knowledge, perceptions and planning efforts among seaport 

administrators to address the impacts of climate change. The authors found that by and large the 
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respondents did not plan for climate change. Moreover, they planned for a period of less than 10 

years, despite that their infrastructure decisions may have century-long impacts. They noted that 

the respondents were in agreement about the importance of addressing the potential 

consequences of climate change, but felt uninformed. Shaw et al. (2016) explored the multi-level 

structure of port resilience planning, including government departments, port operators, 

importers, agents and logistic firms. They suggest that this complex system requires information 

sharing between stakeholders for preparation for disasters. Python and Wakeman (2016) review 

some of the lessons learned from post-super storm Sandy at the ports of New York and New 

Jersey. They concluded that ports must address the risks of climate change impacts. They argue 

that if ports are willing to overcome the competitiveness and share information during 

disruptions, they can increase their own resiliency, as well as ensure the resiliency of the supply 

chain. 

Some works focus on resiliency modeling, quantification and optimization for an individual port. 

These works model detailed port operations. The output of their models can be used to create 

performance curves for scenario generation in this study. Nair et al. (2010) applied a resilience 

quantification and enhancement framework proposed in (Chen & Miller-Hooks 2012) to ports. 

They built a detailed network model of port operations for a port in Poland and used a 

throughput ratio based on satisfied demand as their resiliency measure. They considered five 

categories of hazard events for generating thousands of potential disruption scenarios and 

suggested a host of recovery actions for recapturing lost operational capacity under a multi-

hazard stochastic framework. They measure resiliency in terms of both the inherent coping 

capacity and adaptability as a function of recovery action. Shafieezadeh and Ivey Burden (2014) 

introduced a framework for quantification of seismic resiliency of a seaport. They used the 
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integral of post-disruption performance over time to measure network resiliency. Yang et al. 

(2015) used a fuzzy risk analysis approach to evaluate the economic impact of adaptation 

policies for port resiliency. Using fuzzy set theory, they combine linguistic data on climate 

change risk parameters (timeframe, likelihood, severity of consequences) to produce fuzzy safety 

score. They estimate the potential risk reduction and cost-effectiveness of considered adaptation 

strategies.   

A few studies assessed the resiliency of a networked system of ports. Omer et al. (2012) studied 

the resiliency of maritime transportation systems using a proposed Networked Infrastructure 

Resiliency Assessment (NIRA) framework. They suggest three resiliency metrics: tonnage, time 

and cost resiliency. They quantified the impact of disruptions on two connected ports using a 

system dynamics model to account for the impact of a reduction in capacity of the receiving port 

on shipping times. They evaluated the benefits of alternative in-land connections on the 

resiliency metrics for the two ports. Achurra-Gonzalez et al. (2016) used a cost-based container 

flow assignment method (presented in Bell et al., 2013) to investigate the role of capacity 

reduction in ports in redistribution of cargo flows due to changing route costs. Angeloudis et al. 

(2007) examined the properties of the liner-container shipping network using concepts of graph 

theory. They found the network to be scale-free, wherein some nodes have exceptionally high 

degree compared to the majority of nodes, and detected the busiest nodes in the network. They 

examined the responsiveness of the network to events that impair network elements (nodes) 

through rerouting the container ships. They concluded that the critical nodes of the network are 

not necessarily the busiest ones, and the impacts on processing of shipments at other ports is 

highly variable. Peng et al. (2016) formulate a centralized version of the protective investment 

decision problem for the liner shipping network as a two-stage stochastic program given 
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randomly arising disruption events. While related to this work, Peng et al.’s work presumes that 

a single authority can invest across the network using a common budget. Such a system-optimal, 

centralized investment strategy can provide a bound on network-wide performance under a 

social, shipping cost minimizing, objective. 

Although a number of works have studied the reliability or resiliency of port networks, either 

from a graph theory viewpoint (Angeloudis et al. 2007) or by examining throughput before and 

after disruptions (Achurra-Gonzalez et al., 2016; Angeloudis et al., 2007; Peng et al., 2016; 

Omer et al., 2012), all considered protective investment decisions to be made centrally under a 

single, common budget. In reality, the ports are not managed centrally, and in fact are competing 

and cooperating to increase their own market shares. 

A number of studies have modeled competition between two ports through setting of handling 

costs (port charges) for shippers, expansion and service-choice strategies, and sometimes by 

seeking to impact port-of-call decisions. Ishii et al. (2013) constructed a non-cooperative, two-

player game for setting port charges given port capacity expansion plans and demand 

uncertainty. Asgari et al. (2013) model a game among two competing hub ports for setting port 

charges. Shipping companies, acting as the leader, choose the lowest cost option. They use a 

utility function to model the attractiveness of each hub port to the shipping companies and 

embed the utility function within an objective through which the ports respond to shipper 

decisions at the lower level. Song et al. (2016a) model a two-level game among two liner 

shipping companies. Similar to Asgari et al., Song et al. model port-call decisions by two 

competing shipping companies (the leaders) at the upper level and port charge settings by two 

ports (followers) in the lower level. Song et al. (2016b) for a similar problem propose a two-

player (two-ports) game in which payoffs of the game are assessed through the benefits to a 
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single ocean carrier choosing a port-of-call. They mathematically derived the equilibrium 

solution to this simplified game. Chen and Liu (2016) use a two-player game to model expansion 

investment decisions of two ports considering congestion and uncertain market demand. Zhuang 

et al. (2014) also present a two-player game for two ports considering service-choice decisions 

and derive the equilibrium solution mathematically for their specialized problem. Other works 

have multiplayer, bi- or tri-level structures also related to port charge decision (Lee et al., 2014; 

Lee et al., 2014a; Lee and Choo, 2016; Zhang et al., 2009). These works anticipate shipper 

routing decisions in the lower level response.  

Other relevant works arise in the broader field of infrastructure investment that also apply a two- 

or more-player (game theoretic) approach. Reilly et al. (2015) model investment decision making 

for interdependent infrastructure networks as a game. They provide a general formulation that 

associates investments and payoffs for two players and compare solutions under a simultaneous 

game, sequential game, and social optimum. They discuss the application of the two-player game 

theory approach for flood protection investment planning. Of greater relevance to supply chains 

is work by Bakshi and Kleindorfer (2009). They used a Harsanyi-Selten-Nash bargaining 

framework to model mitigative investments of two participants in a supply chain. They study 

tradeoffs between pre-event mitigative investment sharing and post-event loss-sharing net of 

insurance payouts. Bakshi and Mohan (2015) studied mitigation of cascading disruptions in 

supply networks. They found that investments and payoffs of a firm are dependent on at most its 

tier-2 suppliers. Finally, Do et al. (2015) used a game theoretic approach to investigate 

competition between two ports in investing for expansion given uncertain demand. They 

estimated that profits enabled through expansion and ensuing increase in market share were 

highly dependent on the actions of other ports in the maritime network. These works are relevant 
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here in their game-theoretic approaches, and their recognition of the importance of understanding 

the ramifications of a port’s decisions given its place within an interconnected port network. 

The few works that consider a multi-player scheme in the context of infrastructure resiliency and 

reliability (Bakshi and Kleindorfer, 2009; Reilly et al., 2015; Bakshi and Mohan, 2015; Do et al., 

2015) are generic, using Nash games of only two investors under simplified investment strategies 

and payoff schemes. 

The work herein offers a multi-leader, common-follower structure, i.e. an EPEC formulation, 

that enables a realistic representation of the co-opetitive environment in which multiple ports 

operating within a maritime network involving shippers must make their investment decisions.  
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3.0 MATHEMATICAL MODEL 

The multi-stakeholder, protective port investment problem is formulated in this section. First, 

though, the single-player version, an MPEC, which takes the perspective of an individual port 

investing in isolation, is presented.  

3.1 PROBLEM FROM A SINGLE PORT’S PERSPECTIVE 

A single port can make pre-disaster investments with the aim of maintaining or quickly 

reclaiming capacity during or after a disruption event. In addition to retaining its current market 

share, the port, through its investments, may be poised to capture a larger portion of the shipping 

market. In this subsection, the protective investment problem is formulated taking this single-

port perspective. 

3.1.1 The bi-level investment decision making formulation for individual 

ports 

The single-player protective investment problem is formulated as a bi-level problem in which a 

port (leader) makes protective investment decisions at the upper-level while anticipating the 

response of a lower-level problem. The lower-level problem corresponds to the market clearing 

shipping assignment problem. Throughput maximization is sought in the upper level, while 

shippers (the followers) seek lowest cost routes in the lower level. Solution is obtained at a 

Stackelberg equilibrium wherein investments are optimal for the given market response. This 

structure is presented in Figure 2(a). 
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1.1.1.1 Upper-level protective investment decisions 

In the upper-level, investment decisions are made from the perspective of a port authority with 

the goal of mitigating the impacts of a disruption event and preventing the loss of business to 

competing, unaffected or better prepared ports. Notation used in formulating the upper level 

along with the upper-level formulation for two perspectives are given next. The response at the 

lower level is presented in the next subsection. 

Table 1 Notation used in the upper-level problem, investment decision-making, 

formulation 

Sets Subsets Indices  

 Legs  Legs entering port   Legs 

 Origin ports  Legs leaving port   Ports 

 Destination ports    Origin ports 

 All ports    Destination ports 

Parameters  

 Budget of port  

Decision variables  

 Investments of port  in port  (parameters to the lower-level problem),  

 Flow of containers on leg  en route to destination , where a leg is a specific transit task 

between two ports 
  Flow of containers from origin  to destination  

 

Optimization from Port ’s perspective: 
 

  

(1) 

 

Subject to: 

 

  
(2) 

 (3) 

The objective as given by (1) seeks to maximize total container traffic, including inbound, 

outbound and transshipment traffic.  To avoid double-counting, only inbound movements of the 

transshipments are counted. Added revenue generated through sea-to-land container handling 

can be included through an additional term if desired. The penalty term, , is added to 
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the objective to ensure that port i only invests when the investment leads to additional 

throughput.  must be smaller than the marginal value of processing one additional container. 

Budget limitations are given in Constraint (2). Investments by port i must be nonnegative 

(Constraints (3)). Flows along the legs (  for  and ) are set in conjunction with 

solution of the lower-level problem described in the next subsection.  

An alternative objective function that captures the trade-offs between protective investments and 

loss of shipping business might be considered: 

 

(4) 

where  converts port throughput to a monetary value. With such a profit-based objective, both 

the budget constraint (4) and the  term in (4) can be eliminated.  

System perspective (maximize welfare) 

Taking a centralized decision-making approach, the objective is given in terms of maximizing 

total port throughput in the maritime network wherein port investments, , across the network 

are allocated from a common, pooled budget  for the benefit of social welfare. A centralized 

approach is commonly taken in the literature. While it may benefit the shippers, this may not be 

the case for the individual ports.   

 

(5) 

 

Subject to: 

 

 
(6) 

 (7) 
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1.1.1.2 Lower Level: Market Clearing (Shipment Assignment) 

The decisions of port authorities to invest in mitigative actions are based on the anticipated 

response from the underlying shipping network reflected in the lower-level assignment problem. 

The impacts of a disaster scenario given protective, port-level investments determine the 

port/route capacities and processing/traversal times in the network. For the lower-level problem, 

a cost-based routing assignment formulation is adopted from Achurra-Gonzalez et al. (2016) (for 

a review on liner shipping and container routing optimization the reader is referred to Tran and 

Haasis, 2015). Where possible, notation follows that given in this earlier work.  

A pre-defined set of services with associated links and legs model the liner-shipping network. 

Containers are assigned to legs such that costs of handling, renting and depreciation due to cargo 

transfer or dwell times are minimized. Note that each unit of shipment involves handling at the 

two ends of its trip; thus, Achurra-Gonzalez et al. assign higher handling costs to leg ends that 

occur at shipment origins and destinations. Legs representing movements between transshipment 

nodes are assumed to require modest handling costs at their end points. Any handling cost above 

this is considered extra. If the sum of extra handling costs for legs connecting origin-destination 

(o-d) pairs is equal to the sum of extra costs of handling for legs between origins and 

transshipment nodes and between transshipment nodes and destinations, as is the case in 

Achurra-Gonzalez et al. (2016), the total handling cost for each container would only depend on 

the number of legs used in its shipment, and the extra handling costs will be equal in any feasible 

combination of legs. Thus, leg types as used in their formulation are unnecessary and their 

formulation can be simplified without loss. This previous work considered only a single o-d pair; 

however, the proposed simplification is required in applications with multiple o-d pairs. This is 
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because the leg type is defined for only one o-d pair, while containers in the same ship may have 

different origins and destinations.   

Table 2 Notation for the lower level, route assignment problem  

Sets Subsets Indices  

 Legs  Legs entering port   Legs 

 Origin ports  Legs leaving port   Origin ports 

 Destination ports  Legs on route   Destination ports 

 All ports  Links on route   Ports 

 All routes  Ports on route   Routes 

 All links    Links 

Parameters  

 Sailing time on leg , including port loading and unloading times, without improvements from 

pre-disaster investments 

 Investments of port  in port  for  

 Capacity loss reduction due to disaster event per unit investment in port   

 Capacity loss reduction due to disaster event per unit investment in any port on route r 

 Reduction in traversal time increase due to disaster event per unit investment in any port on 

leg   

 Ratio of effectiveness of internal to external investment  

 Container handling cost per container for a leg on route  

 Per container rental and depreciation cost (inventory cost) per unit time  

 Containers to be transported from origin  to destination  

 1 if leg  uses link  on route , 0 otherwise 

 Frequency of sailing on leg  

 Post-disaster capacity of route   

 Post-disaster maximum throughput capacity at port  

 Penalty cost for containers not transported 

Decision variables 

 Flow of containers from origin  to destination  

 Flow of containers on leg  en route to destination  

Dual variables 

 
 

 

(8) 

Subject to:  
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(9) 

 

(10) 

 

(11) 

 (12) 

 (13) 

 

where  and  are starting and finish ports of leg .  

Objective function (8) seeks a minimum total handling, depreciation, rental and penalty cost 

solution. Rental and depreciation costs are a function of cargo travel and dwell times (given as 

the reciprocal of frequencies). In some instances, the capacities of the routes or ports may not be 

sufficient to satisfy all demand, and a penalty is incurred. The penalty encourages a solution with 

maximum network throughput. To capture the benefits of investment, the objective includes 

corresponding improvements in leg traversal times (including port handling times) due to 

investments, which may be gained even without disruption. 

Conservation of flow at the ports is guaranteed through Constraints (9). Constraints (10) ensure 

that total inflow and outflow of containers in each port is not greater than the port’s post-disaster 

throughput capacity. The post-disaster capacity is determined by upper-level investments and 

disaster impacts as realized. Route capacity constraints are enforced in (11) wherein for each 

route-specific link, aggregated flows along all constituent legs are included. During ordinary 

times, route capacities are derived from ship capacity and route service frequencies. Post-

disaster, a reduction in capacities of routes that include the affected port(s) is taken. The effects 
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of investments aimed at countering disaster impacts are also included. Together, Objective (8) 

and Constraints (10) and (11) model the reductions in port and route-level capacities and 

increased traversal/handling costs due to the disaster event, as well as the effectiveness of pre-

event investment actions. Objective (8) and Constraints (10) and (11) can be revised to model 

investment benefits in traversal time and port and route capacities that are attained only in the 

event of disruption. Constraints (12) enforce the OD flows to be between 0 and a total fixed 

demand. 

 

3.1.2 Single-level formulation of individual port optimization (MPEC) 

The upper- and lower-level problems together create the bi-level investment optimization 

problem for a single port decision-maker operating within a larger maritime network. This can be 

summarized as the following mathematical problem: 

Max (1) 

subject to: 

(2) and (3)  

Min (8) 

subject to: 

(9)-(13) 

To facilitate the reformulation of port ’s investment problem in a single level, the lower-level 

problem, (8)-(13), can be replaced by its KKT conditions. Since the lower-level problem is 

linear, the KKT conditions are necessary and sufficient for optimality, and the problem reduces 

to a MPEC (Figure 2(a)) as given next. 
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MPEC for port  

 

 
(1) 

 

Subject to: 

 

 
(2) 

 (3) 

 

 

(14) 

 
(15) 

 

(9) 

 

(16) 

 

(17) 

 (18) 

 (19) 

 (20) 

 

where  is service route of leg .  

Constraints (2) and (3) are upper-level constraints while (9) and (14)-(20) are lower-level KKT 

conditions including the equality, inequality, complementary slackness and non-negativity 

constraints. By way of example, the function  with respect to constraint (19) operates as: 

,   a lower-level inequality 
,    non-negativity of the dual variable 
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,  complementarity slackness 

 

A disjunctive constraints approach (Fortuny-Amat & McCarl 1981) is applied in creating 

equivalent linear constraints for complementarity equations (16)-(20), resulting in reformulation 

of the MPEC as a Mixed Integer Program (MIP). As an example, for constraints (19): 

, 

 

where  and  are large values that place no restrictions on  and  when K is 

1 or 0, respectively. On the other hand, if the s are set unnecessarily large, they will expand the 

feasibility region and significantly increase MIP solution time. For primal variables, the selection 

of these values can relate to the application. The setting of these values for the dual variables, 

however, is less intuitive and may require trial-and-error. In the context of this model,  can be 

set within a small increment above the associated maximum o-d flow or port or route capacity. In 

some cases, the setting of  can be guided by insights gleaned from the shadow prices of the 

lower-level problem. In all cases, they must be larger than (roughly equal to or slightly more than 

double) the value of the penalty cost, PC, applied within the KKT constraints associated with the 

lower-level objective function. 

By employing this linear equivalent model, optimality of the individual MPECs is guaranteed. 

Moreover, this approach increases the speed of convergence of the proposed diagonalization 

method described in the next section.  
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3.2 SOLUTION UNDER SIMULTANEOUS, COMPETITIVE 

INVESTMENT (EPEC) 

Simultaneous consideration of the MPECs associated with each of the ports creates a single 

EPEC which produces an equilibrium solution on the investment decisions (Figure 2(b)). To 

solve this EPEC, the well-known diagonalization technique (see Gabriel et al., 2013 for 

additional background) is employed here (Error! Reference source not found.Figure 3). This 

technique can be described in terms of the following main steps. 

1- Initial investment decisions are selected. A multi-start technique is commonly 

implemented and will potentially produce multiple equilibria.  

2- The individual port protective investment problem is solved assuming fixed 

investment decisions for all other ports, and investment decisions are updated before 

proceeding to solve the individual problem for the next port. This is repeated until all 

individual port problems are solved once. 

3- Step 2 is repeated until the investment decisions converge. Convergence is achieved 

when the difference between the results of two consecutive iterations are less than a 

defined threshold. 

For a network with  ports,  service routes,  legs,  links,  OD pairs and  destinations, the 

MPEC for one port is a MIP with  continuous variables, 

 binary variables (for disjunctive constraints) and  

 constraints. Solution times also depend on the big  

settings. Note that the problem size does not depend on the characteristics of the considered 

disaster scenario. While convergence of the diagonalization technique for solving the larger 
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EPEC is not guaranteed, it was found to work well (generally achieved within three to six 

iterations of the whole process and 20 iterations in the worst case) in this application (Section 4). 

 
Figure 3 Solution of the EPEC through the Proposed Diagonalization Technique 

 

One might solve this problem by constructing the EPEC through simultaneous consideration of 

the KKT conditions of all the individual MPECs in one grand problem. To achieve this, an 

equivalent single-level MPEC can be derived for each  player by moving constraints of the lower 

level to the upper level and adding corresponding dual constraints and strong duality conditions 

to ensure that solutions meet primal-dual optimality. To solve the combined set of single-level 

MPECs, the KKT conditions of each MPEC can be incorporated within a single program. 

Solution of this grand problem is obtained at a multi-player equilibrium. This approach, 

Initialize 

investment 

decisions for all 

ports: 

 

 

Have all port-level investments 

converged?  

 

yes 

If convergence achieved, 

set equilibrium investment 

decisions:  

No 

Solve MPEC1 

assuming fixed 

 for all  

 

Solve MPEC
2
 

assuming fixed 

 for all  

Solve MPEC
j
 

assuming fixed 

 for all  
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however, requires convexity of each MPEC for KKT condition sufficiency, which was not 

present.  
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4.0 TEST APPLICATION 

4.1 SETTINGS 

The framework was tested on 6-node maritime network representation of ports presented in 

(Achurra-Gonzalez et al., 2016). Network nodes correspond to four East Asian ports and two 

clusters of ports at the centroids of Europe and Asia. As depicted in Figure 4, network nodes are 

connected through five service routes. Port and route capacities, route frequencies, port budgets, 

o-d demand and handling, rental, depreciation and penalty costs are all listed in Table 3. 

  

Figure 4 Services between Southeast Asia centroid (A), Singapore (S), Port Klang (P), 

Jakarta (J), Belawan (B), Europe centroid (E). 
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Table 3 Model Inputs and Parameters  

Port,  Port capacity, 

(TEU) 

Budget 

(units of capacity) 

Service 

routes,  

Route capacity, (TEU) 

Singapore 14500* 4000 1 8000* 

Port Klang 7500* 4000 2 8000* 

Jakarta 9000* 1000 3 4000* 

Belawan 7500* 1900 4 4000* 

Asia  30000* 1000 5 8000* 

Europe 30000* 1000    

Origin,  Destination,  o-d Demand,  (TEU) 

Southeast Asia Europe 18000* 
Jakarta Europe 2000 

Singapore Port Klang 3000 

Belawan Port Klang 2000 

Handling, rental and depreciation costs Unit Cost 

Loading and unloading at transshipment port,  $300/TEU* 

Rental and depreciation cost for container,   $24.5/TEU/day* 

Penalty cost for not meeting the demand,  $10,000/TEU* 

* Values adopted from Achurra-Gonzalez et al. (2016) 

 

 

Table 4 Summary of scenarios 

ID Scenario Capacity Changes Handling Time Changes 

0 Base scenario, pristine 

conditions 

None None 

1 Earthquake simultaneously 

impacting Jakarta and 

Belawan  ports* 

0% port capacity in J and B 

-17% capacity in Service 1 

-16% capacity in Service 2 

-70% capacity in Service 3 

-56% capacity in Service 4 

-18% capacity in Service 5 

+300% handling times at 

Jakarta and Belawan 

ports 

2 Flooding impacting Port 

Klang 

10% port capacity in P 

-30% capacity in Service 1 

-20% capacity in Service 2 

-10% capacity in Service 3 

-30% capacity in Service 4 

-10% capacity in Service 5 

+200% handling times at 

Port Klang 

* Scenario adopted from Achurra-Gonzalez et al. (2016) 

 

The impact of an earthquake or storm as described in each considered scenario is reflected 

through capacity reduction and increased handling times. Reductions in port and/or route 
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capacities affect the number of TEUs that can enter and leave a port in a period of time. 

Increases in handling times between ports are captured within traversal time increases. These 

scenarios and their impacts are listed in Table 4. 

To fully explore the multi-stakeholder, protective port investment problem, four investment 

strategies are considered: 

4- No investment: With no investment, the problem reduces to a route assignment 

problem as found in the lower level. This will produce similar results to that obtained 

by solving the liner-shipping problem in Achurra-Gonzalez et al. (2016) and can 

provide a check of consistency.  

5- Restricted game: Ports are only permitted to make investments in their own facilities. 

This is achieved by fixing all external investment variables to zero. 

6- Unrestricted game: Investments in any or all ports are permitted. Improved reliability 

in terms of continuance of operations in the face of disruption can be observed when 

such freedom in investment is granted.  

7- Semi-restricted game: Only a portion of the ports in the network are willing to invest 

in another port. Benefits and disadvantages of investing in others when is it not 

reciprocated are investigated. 

8- System perspective: Optimal investments are sought under a single, centralized 

budget with the aim of maximizing welfare. Investments are made in the port network 

such that a maximum demand is met (an extension could address demand elasticity to 

changes in network or route reliability). Findings from this strategy provide an upper 
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bound on system performance. They also give insights into the differences between 

centralized (selfless) and more realistic, decentralized (selfish), decision-making.  

 

Port investment decisions with consequent market share, total throughput and shipping costs 

under each investment strategy and scenario are suggested from model runs. All three types of 

games (unrestricted, semi-restricted, and restricted) are simultaneous and ultimately produce 

equilibrium solutions. Such solutions have the property that no port can unilaterally change its 

investment strategy and improve its market share. It is possible that multiple such equilibria will 

exist, in which case identifying more than one equilibrium may be useful. Thus, for runs of these 

three strategies, multiple starting points and a reordering of an investor list used within the code 

were used in starting the diagonalization technique to increase the likelihood of finding 

additional equilibria.  

 

4.2 RESULTS 

The outcomes of the numerical runs are provided in Table 5. For this example problem, the 

MPEC has 389 continuous variables, 191 binary variables and 585 constraints. With appropriate 

 settings, the solution time for each MPEC ranged from a couple of seconds to one minute. The 

scenario’s characteristics do not impact solution times. Thus, solutions were obtained for the  

ports over  iterations required to achieve convergence in a few minutes. The number of binary 

variables will have greatest impact for large problem instances, as for large networks 

. These results were studied to investigate answers to a 

number of questions. These questions and findings or observations and the runs from which the 

findings are obtained are given in Table 6. 
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Table 5 Numerical Run Outcomes  

# 

S
cen

ario
 

Investment 

Strategies 

Network 

Cost 

$ 

millions 

o-d 

Flows 

 TEU 

1,000s 

Port Throughput 

TEU  

1,000s 

Investments 
Leg Flows 

TEU 

O
D

 

F
lo

w
s 

P
o

rt 

T
ran

s 

L
an

d
-S

ea 

T
o

tal 

In
tern

al 

E
x

tern
al 

Leg 

F
lo

w
 

Leg 

F
lo

w
 

S
tart 

E
n

d
 

S
erv

ice 

S
tart 

E
n

d
 

S
erv

ice 

1 0 
No 

investment 
2.372 

1 18.0 A 0.0 18.0 18.0 - - - S P 5 250 B P 4 2000 

2 2.0 E 0.0 20.0 20.0 - - - A S 3 750 B E 5 2000 

3 3.0 P 1.3 5.0 7.5 - - - S E 5 750 S P 3 2750 

4 2.0 S 0.8 3.0 4.5 - - - A P 3 1250 A E 1 8000 

  B 2.0 2.0 6.0 - - - P E 5 1250 A E 2 8000 

  J 0.0 2.0 2.0 - - - J B 4 2000 
    

2 0 Unrestricted 2.306 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E 1 8825 B P 4 2000 

2 2.0 E 0.0 20.0 20.0 0.0 - - B E 1 425 P E 5 1575 

3 3.0 P 1.6 5.0 8.2 1000.0 - - A E 2 9175 
    

4 2.0 S 0.0 3.0 3.0 186.0 - - S P 3 3000 
    

  B 1.1 2.0 4.2 0.0 - - J B 4 425 
    

  J 0.0 2.0 2.0 0.0 - - J P 4 1575 
    

3 1 
No 

investment 
1.917 

1 16.6 A 0.0 16.6 16.6 - - - A P 3 170 P E 5 2250 

2 0.0 E 0.0 16.6 16.6 - - - A S 3 1030 A E 1 6640 

3 3.0 P 2.3 3.0 7.5 - - - S P 3 1030 A E 2 6720 

4 0.0 S 1.0 3.0 5.1 - - - S E 5 1030 
    

  B 0.0 0.0 0.0 - - - S P 5 1970 
    

  J 0.0 0.0 0.0 - - - A P 4 2080 
    

4 1 Restricted 2.107 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E 1 7890 B P 4 664 

2 0.6 E 0.0 18.6 18.6 0.0 - - A E 2 7942 S P 5 2113 

3 3.0 P 2.2 3.7 8.2 1000.0 - - A S 3 511 S E 5 511 

4 0.7 S 0.5 3.0 4.0 0.0 - - A P 3 1657 P E 5 2243 

  B 0.0 0.7 0.7 1000.0 - - S P 3 887 
    

  J 0.0 0.6 0.6 1000.0 - - J P 4 586 
    

5-1* 1 Unrestricted 2.315 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E 1 7890 B P 4 664 

2 2.0 E 0.0 20.0 20.0 0.0 J 3170.1 A E 2 7942 S P 5 2617 

3 3.0 P 2.2 3.7 8.2 1000.0 - - A S 3 1925 S E 5 1925 

4 0.7 S 1.9 3.0 6.8 0.0 J 1241.5 A P 3 243 P E 5 2243 

  B 0.0 0.7 0.7 1000.0 - - S P 3 383 
    

  J 0.0 2.0 2.0 17.7 - - J P 4 2000 
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5-2* 1 Unrestricted 2.315 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E 1 7890 B P 4 664 

2 2.0 E 0.0 20.0 20.0 0.0 J 2284.6 A E 2 7942 S P 5 700 

3 3.0 P 2.2 3.7 8.2 1000.0 - - A S 3 1925 S E 5 1925 

4 0.7 S 1.9 3.0 6.8 0.0 J 1000.0 A P 3 243 P E 5 2243 

  B 0.0 0.7 0.7 1000.0 - - S P 3 2300 
    

  J 0.0 2.0 2.0 884.6 - - J P 4 2000 
    

6 1 

Centralized 

Investment 

(pooled 

budget) 

2.323 

1 18.0 A 0.0 18.0 18.0 0.0 J S 4 750 S P 5 3000 

2 2.0 E 0.0 20.0 20.0 0.0 A S 3 878 A E 1 8542 

3 3.0 P 1.3 5.0 7.5 0.0 J P 4 1250 A E 2 8580 

4 2.0 S 1.6 3.0 6.3 0.0 P E 5 1250 
    

  B 0.0 2.0 2.0 3010.7 S E 5 1628 
    

  J 0.0 1.3 1.3 3411.2 B P 4 2000 
    

7 2 
No 

investment 
1.717 

1 15.6 A 0.0 15.6 15.6 - - - B P 4 750 
    

2 0.0 E 0.0 15.6 15.6 - - - A S 3 3600 
    

3 0.0 P 0.0 0.8 0.8 - - - S E 5 3600 
    

4 0.8 S 3.6 0.0 7.2 - - - A E 1 5600 
    

  B 0.0 0.8 0.8 - - - A E 2 6400 
    

  J 0.0 2.0 2.0 - - - 
        

8 2 Restricted 2.241 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E A 7073 B E 5 2000 

2 2.0 E 0.0 20.0 20.0 1422.5 - - A E E 7840 
    

3 0.0 P 0.0 1.4 1.4 1000.0 - - A S P 3087 
    

4 1.4 S 3.1 0.0 6.2 0.0 - - J B S 2000 
    

  B 2.0 1.4 5.4 0.0 - - B P S 1400 
    

  J 0.0 2.0 2.0 0.0 - - S E B 3087 
    

9-1* 2 Unrestricted 2.271 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E A 7073 B E 5 2000 

2 2.0 E 0.0 20.0 20.0 0.0 - - A E E 7840 
    

3 0.0 P 0.0 1.9 1.9 1000.0 - - A S P 3087 
    

4 1.9 S 3.1 0.0 6.2 0.0 - - J B S 2000 
    

  B 2.0 1.9 5.9 0.0 P 1000.0 B P S 1900 
    

  J 0.0 2.0 2.0 0.0 B 780.3 S E B 3087 
    

9-2* 2 Unrestricted 2.269 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E A 7073 B E 5 2000 

2 2.0 E 0.0 20.0 20.0 631.1 - - A E E 7840 
    

3 0.0 P 0.0 1.9 1.9 1000.0 - - A S P 3087 
    

4 1.9 S 3.1 0.0 6.2 0.0 - - J B S 2000 
    

  B 2.0 1.9 5.9 0.0 P 1000.0 B P S 1900 
    

  J 0.0 2.0 2.0 0.0 - - S E B 3087 
    

10 2 

Centralized 

Investment 

(pooled 

budget) 

2.272 

1 18.0 A 0.0 18.0 18.0 0.0 B E B 6 A E 1 9642 

2 2.0 E 0.0 20.0 20.0 0.0 B E E 1994 
    

3 3.0 P 0.0 5.0 5.0 6538.5 J B S 2000 
    

4 2.0 S 0.0 3.0 3.0 0.0 B P S 2000 
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  B 2.0 1.4 5.4 0.0 S P P 3000 
    

  J 0.0 2.0 2.0 0.0 A E E 8358 
    

11 2 

Semi-

restricted: 

{E,P,B} 

restricted; 

{A,S,J} 

unrestricted 

2.244 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E A 7073 B E 5 2000 

2 2.0 E 0.0 20.0 20.0 533.1 - - A E E 7840 
    

3 0.0 P 0.0 1.4 1.4 1000.0 - - A S P 3087 
    

4 1.4 S 3.1 0.0 6.2 0.0 - - J B S 2000 
    

  B 2.0 1.4 5.4 76.6 - - B P S 1400 
    

  J 0.0 2.0 2.0 0.0 B 1000.0 S E B 3087 
    

12 2 

Semi-

restricted: 

{A,P,J} 

restricted; 

{E,S,B} 

unrestricted 

2.269 

1 18.0 A 0.0 18.0 18.0 0.0 - - A E A 7073 B E 5 2000 

2 2.0 E 0.0 20.0 20.0 631.1 - - A E E 7840 
    

3 0.0 P 0.0 1.9 1.9 1000.0 - - A S P 3087 
    

4 1.9 S 3.1 0.0 6.2 0.0 - - J B S 2000 
    

  B 2.0 1.9 5.9 0.0 P 1000.0 B P S 1900 
    

  J 0.0 2.0 2.0 0.0 - - S E B 3087 
    

 

It is assumed that the shippers will assign sufficient capacity to meet unserved demand in a 

following week if it cannot be met in the current week, thus no opportunity for increase in 

throughput is rejected by a port. Moreover, a 4% opportunity cost, cargo depreciation and rental 

costs are used in calculation of the delay cost. These assumptions are consistent with those made 

in (Achurra-Gonzalez et al., 2016). 

 

Table 6 Investigation of the Results: Questions and Findings  

Multiple Equilibria 
Question Finding Changes 

Observed 

Runs 

Compared 

Are multiple 

equilibria observed? 

Yes, for both disaster scenarios two 

different equilibria are found in an 

unrestricted game. 

- 5-1, 5-2;  

9-1, 9-2 

Are differences 

between equilibria 

noted when two or 

more equilibria are 

identified?  

Differences are observed in 

investments; however, leg flows and 

consequently port throughput/total 

network cost are identical. Only in 

Scenario 2 does the total network 

cost vary while leg flows remain 

unchanged. 

Scenario 1:  

Not changed:  

total cost, leg flows 

and total served 

demand. 

Changed: 

investments 

 

5-1, 5-2 
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Scenario 2:  

Not changed:  

leg flows and total 

served demand. 

Changed: 

investments, total 

shipping costs 

9-1, 9-2 

How are the 

equilibria solutions 

different for a 

specific port that 

makes external 

investments?  

 

Could one solution 

be preferred to the 

other for such a port? 

While attracting the same amount of 

throughput, differences in marginal 

values of throughput per $ spent 

may exist. 

 

 

 

Yes, the equilibrium solution found 

in 5-2 is preferable for both Ports E 

and S. 

5-1: 

E: 0.446 TEU/unit of 

investment 

S: 1.139 TEU/ unit 

of investment 

 

 

5-2: 

E: 0.619 TEU/ unit 

of investment 

S: 1.414 TEU/ unit 

of investment 

5-1;  

 

 

 

 

 

 

5-2 

 

Value of Co-opetition: Restricted vs. Unrestricted Games 

Question Finding Changes 

Observed 

Runs 

Compared 

Will the ports make 

external investments 

when allowed? How 

are they benefited by 

those investments? 

Yes, results of restricted and 

unrestricted games show that ports 

can benefit by making external 

investments.  

E: +1414  

E: 0.446 TEU/unit of 

investment 

 

S: +1414 

S: 1.139 TEU/ unit 

of investment 

 

4 

 

 

 

5-1 

Who benefits from 

external 

investments?  

The investing port and often the 

target port benefits from the 

investment. No other ports were 

noted to benefit from the 

investment; however, no ports were 

disadvantaged by these investments.  

Scenario 1: 

J: +1414 TEUs  

 

Scenario  2: 

P: +500 TEUs 

4,5-1, 

5-2 

 

8,9-1 

9-2 

 

Will external 

investment increase 

total served demand?  

Yes, total served demand is 

increased when external investments 

are allowed. 

Scenario 1: 

Served: +1414 TEUs  

 

Scenario  2: 

Served: +500 TEUs 

4,5-1, 

5-2 

 

8,9-1 

9-2 
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Does the unrestricted 

investment strategy 

decrease total 

network shipping 

cost compared to 

costs incurred with a 

restricted strategy?* 

Yes, for both scenarios the network 

costs decrease when ports are 

allowed to make external 

investments. 

Scenario 1: 

5-1/5-2 vs. 4: -3.0% 

 

Scenario  2: 

9-1 vs. 8: -2.4% 

9-2 vs. 8: -2.5% 

 

4,5 

 

 

9-1,8 

9-2,8 

 

Gains and Losses in Market Share in Disaster 

Question Finding Changes 

Observed 

Runs 

Compared 

Does any port 

benefit from a 

disaster scenario 

(without further 

investment)? 

Yes, Port S takes greater market 

share in the aftermath of Scenario 1. 

However, it is worth noting that this 

port loses under Scenario 2. 

 

Scenario 1: 

S: +280 TEUs 

 

Scenario  2: 

S: -150 TEUs 

1,3 

 

 

1,7 

Can internal-only 

investments harm 

any port in terms of 

throughput? 

Yes, Port S serves fewer units when 

under the restricted investment 

strategy, showing that the other 

ports, through self-investment, can 

outcompete Port S for market share.   

Scenario 1: 

S: -519  TEUs 

 

Scenario  2: 

S: -513 TEUs 

3,4 

 

 

7,8 

 

Centralized Decision Making 

Question Finding Changes 

Observed 

Runs 

Compared 

Does centralizing 

investments increase 

total throughput for 

the port network?  

Yes, a centralized approach leads to 

greater total throughput under either 

disaster scenarios. The results 

indicate a reduction in total 

transshipments, but an increase in 

land-sea throughput.  

Scenario 1: 

Trans.:-1290 TEUs  

Land-Sea:+1921 

TEUs 

Total:+632 TEUs 

 

Scenario  2: 

Trans.:-3087 TEUs  

Land-Sea:+5600 

TEUs 

Total:+2513 TEUs 

5-1, 

5-2,6 

 

 

 

 

9-1, 

9-2,10 

Who wins or loses 

under a centralized 

investment scheme? 

Ports S and J lose under Scenario 1, 

while Ports S and B lose under 

Scenario 2. Port B wins under 

Scenario 1, and Port P wins under 

both scenarios. 

Scenario 1: 

S :-297 TEUs 

J: -750 TEUs 

P: +343 TEUs 

B: +1336 TEUs 

 

Scenario  2: 

S: -87 TEUs 

5,6 

 

 

 

 

 

9,10 
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B: -500 TEUs 

P: +3100 TEUs 

How significant is 

the gain to the 

system of a 

centralized 

investment scheme 

in helping the system 

to recover from a 

disaster event? 

Considering scenario 1, an increase 

in total served demand of 12.36% 

and 5.64% compared with restricted 

and unrestricted investment 

approaches, respectively, and 

27.29% compared with no 

investment is noted.  

Served: 

6 vs. 3: +2749 TEUs 

6 vs. 4: +1336 TEUs 

6 vs. 5-1,5-2: +5360 

TEUs 

5,6 

 

 

 

9,10 

Does a centralized 

investment scheme 

reduce total network 

shipping cost?* 

Yes. Scenario 1: 

6 vs. 1: -2.1% 

6 vs 5-1,5-2:  -10.2% 

 

Scenario  2: 

10 vs. 1: -4.2% 

10 vs. 2: -1.5% 

10 vs. 9-1: -21.6% 

10 vs. 9-2: -21.6% 

 

6,1 

6,5 

 

 

10,1 

10,2 

10,9-1 

10,9-2 

 

Benefits of Unreciprocated Investments 

Finding Changes 

Observed 

Runs Compared  

If some ports do not 

consider external 

investment, will 

other ports still 

invest in them? 

 

 

Yes, Port B invests in Port P even 

when Ports A, P and J do not 

consider making external 

investments. However, when Port B 

restricts itself to an internal 

investment strategy, Port J stops 

making external investments in Port 

B. 

No change in Port B 

external investments 

 

J: -780.33 TEUs 

12,9-1 

 

 

11-2, 9-1 

Do ports that invest 

only internally gain 

or lose? 

They can lose, but did not gain. 

When E, P and B only invest 

internally, Ports B and P lose market 

share. When A, P and J only invest 

internally, no port experiences a 

change in market share. 

P: -400 TEUs 

B: -400 TEUs 

E: No change 

 

P: No change 

B: No change 

E: No change 

9,11 

 

 

 

9,12 
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These experiments helped to gain insights into the potential benefits of a co-opetitive approach to 

global port. The results indicate that while a port may gain throughput when no investments are 

made under a particular scenario, they are not likely to gain under all scenarios. Moreover, the 

total market served may be reduced in which case gains may exist in market share, but not 

necessarily in throughput or revenue. Ports can themselves gain by helping to protect other ports 

in the global supply chain. Gains can be achieved even when investments are not reciprocated. 

Facilitating a co-opetitive environment supports greater overall throughput and reduces overall 

network shipping costs as compared to using similar funds for only internal investments. 

Benefits are obtained for both ports and shippers alike. 
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5.0 CONCLUSIONS AND DISCUSSION 

This paper develops a formulation and solution technique for a co-opetitive, protective 

investment problem arising in a maritime port network that serves a common liner shipping 

market. This work adds to the rich body of literature in port and maritime resiliency by 

conceptualizing multi-port investments and liner-shipping network response as a multi-leader, 

common-follower game. As compared to non-cooperative approaches, in the presence of a 

disaster event, the proposed co-opetitive approach was found to lead to increased served total 

demand, significantly increased market share for many ports and improved services for shippers, 

thus creating greater system-wide resiliency. As in any competitive environment, there are 

winners and losers. This work shows that it is often beneficial to an individual port in terms of 

market share to invest in another part of the maritime port network. This modeling framework 

allows for: the simultaneous consideration of market interactions; disaster and investment 

impacts; inter-port, service-level dependencies; cooperation; and competition. This structure 

helps in providing a more realistic assessment compared to traditional centralized or independent 

formulation schemes, and enables quantification of benefits of varying co-opetitive approaches 

and effectiveness of chosen investments. It quantifies the losses due to myopic intra-port (as 

opposed to inter-port) investments. A stochastic extension of the proposed EPEC aimed at 

identifying investment strategies that simultaneously hedge against multiple potential hazard 

scenarios is the subject of ongoing work by the authors. 

As is common in equilibria modeling, more than one equilibrium may exist. These solutions may 

not be equivalent or may better serve one stake-holder over another. An objective function can 
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be added to the EPEC formulation to guide the formulation toward a solution that best serves that 

objective. Alternatively, multiple equilibria can be sought through multi-start techniques as 

implemented herein to produce a set of equilibria solutions if more than one equilibrium exists 

and a best compromise solution much like in multi-objective decision-making can be chosen.  

The ports serve not only the liner shipping market, but local, regional and national businesses 

and manufacturers who depend on both the raw or processed materials they supply as well as the 

transport of finished goods to retailers across the world. Port reliability also concerns end-

customers who are affected by increases in the price of goods. 

Solution of the EPEC formulation involved several computational challenges. Inconsistencies 

between solutions of the equivalent KKT conditions of the common liner shipping problem were 

sometimes noted. Use of very small integrality gaps in solution of the MPEC MIPs was required 

to ensure numerical stability and consistency across players. The solution technique was found to 

be sensitive to the setting of M. This setting affected both the ability to obtain a solution and the 

speed at which a solution was found. M is introduced through linearization of the 

complementarity constraints associated with the KKT conditions of the lower-level problem 

through a disjunctive constraints approach. An alternative method might be to apply Schur’s 

decomposition (Horn & Johnson 1985) using Special Ordered Sets of Type 1 (SOS1) variables 

(Siddiqui & Gabriel 2013). 
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