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EXECUTIVE SUMMARY 

Sensor data, from vehicles and facilities, is revolutionizing how urban transportation systems 

operate. Pre-trip route choices can be informed by network status, en-route path choices can be 

predicated on evolving conditions, prices can influence path choice decisions, and more robust 

network operating conditions can be obtained. Careful placement of sensing equipment can 

enhance system observability in and controllability.  

This study has explored new and creative ways to use sensor data to 1) enhance freight-related 

path choice, both pre-trip and en-route, and 2) improve the performance of urban networks more 

generally from a freight perspective. While a significant body of literature exists on both path 

choice and traffic assignment, this study presents new and creative ways to address these topics 

predicated on real-time data and a freight-first mentality. These new methods can lead to better 

freight-focused routing decisions and network operating conditions whose performance for freight 

is improved and can be assessed statistically.  

Two specific research objectives have been targeted. The first is creation of new data-driven, truck-

oriented path choice algorithms. The second is a data-informed, freight-focused traffic assignment 

model. Both these efforts have produced results that can enhance freight flows and at the same 

time mitigate congestion. The efforts build on previous research efforts in which the authors were 

involved plus findings from projects in which they have collaborated.  

The path choice problem has been addressed using algorithms that deal with multiple objectives. 

One finds the k-shortest paths based on cost and risk, as illustrations of two objectives that often 

surface as being important in truck-related path choice. Another identifies routes on a probabilistic 

basis, with each route having a likelihood of being selected for use. The third explicitly finds the 

non-dominated multi-objective set of paths for any origin-destination (OD) pair. This third 

algorithm makes it possible for decision makers to look explicitly at the options available and 

select the path that seems to achieve the best compromise among the objectives.  

The traffic assignment model uses pricing strategies to encourage the choice of “desired” paths. 

The network prices specifically facilitate truck flows. The prices focus on improving the quality 

of the truck trips; encouraging trucks to use facilities (freeways, arterials, etc.) that have high-

quality performance. The pricing strategies are thus, multi-class vectors, with different prices by 

vehicle class. Moreover, with an interest in improving network performance robustness, the pricing 

strategies endeavor to reduce volume-to-capacity v/c ratios on the arcs. This improves network 

resilience; that is, the network’s ability to deal with unforeseen (and unpreventable) conditions 

caused by incidents, bad weather, unanticipated maintenance work, special events, etc. This 

resilience is critical to freight. It reduces the likelihood that door-to-door travel times will change 

dramatically if the network conditions that unfold are not exactly consistent with those used in 

making path choices.  

The report is organized as follows. Section 1 provides an overview of the study and introduces 

basic concepts. Section 2 reviews pertinent literature. Section 3 presents the new, data-driven path 

choice algorithms that have been developed. There are three, one predicated on probabilistic 
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assignment; a second developed from k-shortest path concepts; and a third based on multi-criteria 

path choice. Section 4 presents the new traffic assignment formulation that puts an emphasis on 

routing trucks first. It incorporates the new path choice algorithms from Section 3 and makes truck-

focused alterations to how the traffic assignment problem is solved. Section 5 presents a study of 

network settings where Braess’ paradox is operative. In such conditions, the addition of a new 

network link, and its associated capacity, makes the network’s performance worse, not better. 

Seemingly counter-intuitive, these situations, while perhaps uncommon, can arise. If they do, 

pricing is a very important tool in redirecting the traffic assignment solutions toward more useful, 

better solutions. Section 6 takes an in-depth look at the use of real-time information to update the 

status of a transportation network and determine how it should best be operated. Section 7 

summarizes the effort and identifies opportunities for future work. 
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1.0 INTRODUCTION 

Sensor data, from vehicles and facilities, is revolutionizing the ways in which urban transportation 

systems operate. Pre-trip route choices are being informed by network status, en-route path choices 

are similarly being informed, prices are influencing path choice decisions, and more robust network 

operations are being obtained.  

1.1 STUDY DESCRIPTION 

The study has explored new and creative ways to use sensor data to 1) enhance freight-related path 

choice decision making, both pre-trip and en-route, and 2) improve freight-focused traffic 

assignment. Despite a significant body of literature that already focuses on both these topics, the 

study team perceived that new and creative ways were still needed to address freight-focused path 

choice predicated on statistical analysis of historical and real-time data.  

Two specific research objectives have been targeted. The first is development of new, truck-oriented 

path choice algorithms. The second is incorporation of one or more of those algorithms into a new 

traffic assignment procedure that places first and primary priority on freight trips. Both these efforts 

have aimed to find ways of enhancing freight flows and at the same time mitigate congestion. 

The path choice work has explored both pre-trip and en-route decision making. Truck routing 

decisions have always been predicated on network operating conditions. But, historically, the 

reliance has been on “hunches”, radio shows, and driver-shared information. However, those sources 

are being supplemented by real-time data from sensing systems. Since many freight trips involve 

multiple stops and can span entire days, network conditions change as trips progress. Hence, on a 

rolling horizon basis, tour plans need revision based on new information about the network’s status.  

The path choice problem has been addressed using algorithms that deal with multiple objectives. One 

finds the k-shortest paths based on cost and risk, as illustrations of two objectives that often surface 

as being important in truck-related path choice. Another identifies routes on a probabilistic basis, 

with each route having a likelihood of being selected for use. The third explicitly finds the non-

dominated multi-objective set of paths for any origin-destination (OD) pair. This third algorithm 

makes it possible for decision makers to look explicitly at the options available and select the path 

that seems to achieve the best compromise among the objectives.  

The traffic assignment model uses pricing strategies to encourage the choice of “desired” paths. The 

network prices specifically facilitate truck flows. The prices focus on improving the quality of the 

truck trips; encouraging trucks to use facilities (freeways, arterials, etc.) that have high-quality 

performance. The pricing strategies are thus, multi-class vectors, with different prices by vehicle 

class. Moreover, with an interest in improving network performance robustness, the pricing strategies 

endeavor to reduce volume-to-capacity v/c ratios on the arcs. This improves network resilience; that 

is, the network’s ability to deal with unforeseen (and unpreventable) conditions caused by incidents, 

bad weather, unanticipated maintenance work, special events, etc. This resilience is critical to freight. 

It reduces the likelihood that door-to-door travel times will change dramatically if the network 

conditions that unfold are not exactly consistent with those used in making path choices.  
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As freight service providers know, high v/c ratios can lead to unstable operating conditions and high 

likelihoods of breakdowns and severe delays. Hence, truck-focused traffic assignment algorithms 

should focus on reducing these ratios. If they do, the network can more easily and readily 

accommodate variations in the traffic loading and respond more effectively to transients. Wu, List, 

and Adler (1999) considered single class, single time interval robust optimal (RO) formulations in 

which an additional objective was considered: minimizing the maximum v/c ratio among all or a 

select set of links. Cho (2006) then applied these ideas to stochastic networks. In both cases it was 

found that such a minimax objective when used in combination with the UO and SO objectives leads 

to more robust traffic assignment strategies that are better prepared to deal with surges in demand, 

incidents, other unanticipated events, and the daily stochasticity associated with emergent demands.  

The network planning model combines freight-focused path choice algorithm with the freight-

oriented pricing strategies. The combined model can explore the conjoint impacts of these two 

freight-focused network performance strategies. The resulting impacts on network performance are 

assessed. 

Thus, the outcomes from the project are: 

• An advance at the frontier of truck routing through new techniques that capitalizes on the 

sensor data becoming available from probes and instrumented infrastructure. 

• An advance in network pricing strategies through a scheme that focuses explicitly on 

creating more robust networks that are more tolerant of unexpected heavy load 

conditions. 

• An advance in network pricing strategies that focus explicitly on freight efficiency and 

productivity. 

1.2 SETTING THE CONTEXT 

As a prelude to presenting the study results, it seems useful to describe how truck-focused path choice 

decisions are made and how planning models typically treat trucks when doing traffic assignment.  

1.2.1 Multiple Criteria Decision Making 

Multiple criteria decision-making (MCDM) is the process of making choices when there are 

conflicting objectives.  It is very relevant here because of the focus on truck-related path generation 

and traffic assignment. MCDM arises in many contexts including traffic assignment.  

There are many ways to formulate multiple-objective decision-making algorithms. The best 

formulation depends on nature of the choices to be made, the objectives employed, the data available, 

and the extent to which the objective function values, themselves are important. As Zeleny (1982) 

indicates, the problem can be solved such that the objectives are considered separately, or they can 

be combined into (reduced to) a single objective through a set of weights. 

Moreover, there are two variable spaces to track in a MCDM problem, not one. The first is the n-

dimensional space of the choice variables. It is the vector of choice variables that determines the 

solution obtained and the objective function values. The second is the m-dimensional space of the 

objective functions. Like a consumer report assessment, or a “radar plot” in Excel, this space allows 

the analyst to compare the solutions in terms of the combinations of objective function values that 

they possess. One of those solutions is “best” in that it has the “optimal” combination of objective 
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function values. But, that “optimal” combination is not necessarily obtained or ascertained by 

numerically combining the objective function values in some fashion (as with weights).  

In addition, the non-dominated solutions are the ones that matter. In the m-dimensional multi-

objective space, as illustrated in Figure 1.1, they are the ones for which no other solution has a better 

set of objective function values. To move from one non-dominated solution to another, a tradeoff is 

required where the “optimality” of one objective must be diminished to increase the “optimality” of 

another. As Zeleny 

(1982) indicates, this 

non-dominated surface 

is the set of Pareto 

optimal solutions.  

Moreover, since there 

are multiple objectives, 

there is an “ideal point” 

where all the objectives 

are at their optimal 

values. (In a single 

objective setting, this is 

the lowest/highest/best 

value for the objective 

that can be obtained. 

The quality of solutions 

can be measured in 

terms of their distances 

from this ideal point. A 

variety of norms can be 

used. The L1 and L2 

norms are common (a 

linearly combined sum and the Euclidean distance), as illustrated by Zeleny (1982). But higher order 

norms up to and including the L∞ norm are useful. In the latter case, only the largest objective 

function deviation from the ideal point value is important.  

Normalizing the objective function values is often, also important. This means ascertaining the range 

of values that are possible (probable) and normalizing those values so that the minimum is 0 and the 

maximum is 1. Then, when the analyst says two objectives are of equal importance, equal weight 

values (e.g., both 0.5 or both 1) really does result in equal weight between the objectives. Otherwise, 

the objective function values also contribute to the relative numerical importance of the objectives. 

All these ideas are important because both the truck-focused path choice problem and the traffic 

assignment problem are inherently multi-objective in nature. Single objective formulations are 

possible, but they mask the fact that there are important tradeoffs among the objectives. 

 

 
Figure 1.1: The objective space and its attributes 
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1.2.2 Freight-Focused Path Choice 

Path choice has always been focused on finding the “best” way to go from “A” (the origin) to “B” 

(the destination). The definition of “best” varies, however; and finding the “best” path depends on 

what data are available. 

 

For trucks, path choice is more complicated than for autos.  And, “best” can have many different 

interpretations. It can mean avoiding the police; ducking around truck inspection stations; avoiding 

facilities that charge tolls; or detouring around intersections and interchanges that have tight 

geometries. Cost tends to be more important than either distance or time. Moreover, truck path choice 

tends to be multi-objective in nature. Trucks want to find a path that strikes an “optimal” balance 

among the objectives. 

 

For trucks, too, using all the links in the network is not an option. In a network like the one shown 

in Figure 1.2, some links may not be available, as in the link from S to U. A sub-network must be 

used in finding paths. Government agencies often guide, or control, the path choices that trucks have 

by prohibiting the use of some links. 

New York, for example, has a 

freight route network (see New York 

City, 2018) that trucks must use. 

These are not routes as in the sense 

of paths, but rather links in the 

highway network that trucks are 

encouraged (or required) to use, 

except for local deliveries.  

 

Government agencies can also place 

restrictions on the types of trucks 

that can use certain facilities (above 

and beyond just being a truck). 

These restrictions most often pertain 

to attributes like class, length, width, 

height, weight, and cargo carried (explosives or hazardous cargoes). New York City (2018), for 

example, prohibits trucks longer than 48’ to use the city street network, even though much of the 

current truck fleet has a length of 53’. Some states, like California (2018), place separate speed limits 

on trucks. Rarely, agencies will place time-of-day restrictions on trucks (Port Authority of New York 

and New Jersey (2018). People who engage in “city logistics” research are, in part, trying to find 

ways for trucks to accomplish their pick-up and delivery tasks, including traversing the network, 

using routes that are effective and inexpensive. 

 

These aspects of the truck environment all must be considered in creating truck-focused paths. For 

hazardous materials trucks, for example, multiple objectives must be used because of the importance 

of population exposure to risk (see, for example, List et al., 1991). Time-of-day variations in the 

network operating conditions may also be important, since truck routing is far more about developing 

tours than it is just finding paths from A to B (see, for example, Nozick et al., 1997).  

 

Because freight-focused path choice is inherently multi-objective, it is important to have a path-

building procedure that identifies multiple paths, with different levels of achievement among the 

 
Figure 1.2: A hypothetical network with three paths, 

A, B, and C 
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objectives. The paths identified must be non-dominated (Pareto optimal) and they should span the 

space of possible objective combinations. These ideas were described in List et al, (1991).  

 

This project presents three ways to generate these paths. The first treats the problem as being 

explicitly multi-objective. The objectives are placed in lexicographic order and then an extended 

version of Dijkstra’s (1959) algorithm is employed to identify solutions. A drawback to this 

procedure is that the only paths identified lie on the non-dominated (Pareto optimal) frontier. Other 

options lying just behind that frontier are not found. The latter paths are helpful because they do not 

involve making significant changes to the objective function weights. Their relative importance can 

remain unchanged. The second method uses a multi-objective k-shortest path algorithm. Each 

successive path has a larger objective function value, but the objective weights are unchanged. An 

extended version of Dijkstra’s (1959) algorithm is again employed. The third method finds paths 

using Dial’s (1971) probabilistic assignment algorithm. It not only finds candidate, multi-objective 

paths, but it also provides a suggested proportional sharing of the traffic among those paths.  

 

One problem with the path choice problem is that the travel times are sensitive to the traffic flow 

rate. The BPR function (Vythoulkas, 1990) suggests that: 

0(1 ( / )t t f C            (1-1) 

where t is the travel time, t0 is the free-flow (no-flow) travel time, f is the flow rate and C is the 

capacity. The values for  and  depend on conditions, but typical values are  = 0.15 and  = 4.  

This illustrates a way in which a data-driven approach to path choice can add value. Rather than 

working with the free-flow travel times, or some other vector of static values, cumulative distribution 

functions (CDFs) for observed traffic management channel (TMC)-based travel times (or travel 

rates) can be employed. From a trucking firm’s perspective, these can be obtained from public 

sources such as the NPMRDS data set (see Federal Highway Administration, 2013) or from 

commercial vendors (e.g., PC-Miler, 2018).C The values can be for specific time intervals (e.g., 

every 5 minutes) or more aggregate. In the disaggregate case, stitched TMC-based travel times can 

be developed by synthesizing spatial-temporal trajectories through the network (see Chase et al. 

2012).  

1.2.3 Freight-Focused Traffic Assignment 

Traffic assignment is the process of assigning trips to a transport network. Most notably, here, it is 

part of the process used by transportation planners to assess the performance of system networks. 

And, in a world of automated vehicles, it will be the way in which paths are chosen. (Unlike today, 

where people make those real-time choices.) Most often, researchers think about traffic assignment 

in the context of urban highway networks, but the idea pertains to any type of transport system. The 

traffic assignment process finds “the best” way for trips to traverse a capacitated network, across 

space and time, from origins to destinations. The idea of “best” focuses on optimizing one or more 

measures of network (system) performance.  

For example, the triangle regional model (TRM), used by the Raleigh, NC metropolitan planning 

organizations (MPOs), does traffic assignment using a “user equilibrium” objective. The AM and 

PM peaks are the primary focus, but other time periods are also studied (see for example, Capital 
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Area Metropolitan Planning Organization, 2018). Figure 1.2, for example, shows the assignment of 

single unit trucks (SUTs) to the Raleigh area network for the AM peak hour in 2010.  

 
 

The figure shows how traffic passes over the network. The widths of the lines indicate the relative 

flow rates. Two lines are shown for each link, one in each direction. 

Traffic assignment helps network planners make good capital (capacity) investment decisions and 

operational control decisions. It shows which links are congested, where delays occur, and when, 

and what routes are used. Through alternatives analyses, it indicates where the addition of capacity 

or the introduction of tolls or some other operational change will help alleviate congestion. Journey 

 
Figure 1.3: Assignment of Single Unit Trucks (SUTs) to the Raleigh, NC metropolitan area 

network in the AM peak for 2010. Source: List (2017). 
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to work trips (or home from work trips) are often the primary focus. Freight trips are often of 

secondary concern, or they are ignored altogether.  

Mathematically, the problem can be described as follows. There is a network of nodes and links that 

form a graph. The links are edges in the graph. The nodes are either junctions where links connect 

(interchanges and intersections) or places where traffic goes to and from. (These are the origins and 

destinations, often called centroids or traffic generators.) Combinations of origins and destinations 

are called OD pairs. The links are connections between the nodes. They are categorized by facility 

type as being freeways, ramps, arterials, local streets, etc.). A typical network model has 10-20 

different link types.  

Arcs are one-way (directional) links. The traffic flows over them. For example, a local street link 

that allows flow in both directions has two arcs. The same is true for a freeway link between 

interchanges. A a one-way street has arcs in only the direction in which flow can take place. The 

symbol a refers to a specific arc, A is the set of all arcs.  

Paths are sequences of arcs. Ap is the set of arcs belonging to path p. Paths exist between nodes; and, 

the paths that are important (useful) from a traffic assignment perspective are the ones that connect 

the origins to the destinations. If p is a path (any path) on the network, and P is the set of all paths, 

then Pod is the set of paths pertaining to OD pair od.  For want of a better terminology, Pod is the “path 

portfolio” for od.  

 

The notion of a “market” m can be used to designate a specific sub-class of trips traveling across the 

network. This simplifies the notation when there are different trip types involved, like autos and 

trucks. A good example is the “market” m for auto travel between O and D, or the “market” for truck 

travel for that same OD pair (or buses, taxis, garbage trucks…). The set M encompasses all these 

markets. It can have as many members as the number of OD pairs multiplied by the number of trip 

classes. If there are 100 origins/destinations, meaning there are 10,000 OD pairs; and there are two 

classes of trips, autos and trucks; then there are 20,000 markets. (The flow for some of these markets 

may be zero.) With this terminology, Pm is the set of paths that pertain to market m. Also, Am is the 

set of arcs that lie on the paths in Pm. That is: 

 

m

m p

p P

A A


             (1-2) 

Flows (traffic) in market m must use one or more of the paths in Pm. Path choice algorithms determine 

which p values in Pm are used for each market and what flow rates fp pertain.  

Often, market flows are time varying. That is, fp becomes fpk, a flow rate vector which is disaggregate 

across time intervals k as well as paths p. More technically, fpk is the flow rate for trips on path p that 

start their trips at O destined for D in time interval k. By extension, Fmk is the set of flows on all paths 

for market m in time interval k, Fk is the set of all flows in time interval k for all markets, and F is 

the superset of flows for all paths and time intervals. (The traffic assignment algorithm’s task is to 

identify the numerical values for F.)  

Algorithms that solve the traffic assignment problem treat it as a constrained, non-linear optimization 

(Sheffi, 1985). In that regard, one or more objectives pertain, like minimizing total vehicle miles or 

hours; or achieving user equilibrium. There are also constraints, like not exceeding the arc capacities. 



 

10 

 

Some constraints ensure that the solutions are feasible (implementable in the real world). Others 

ensure that all the traffic that wants to leave O destined for D for a given market m in a time interval 

k gets assigned to one or more of the paths available. Additional equations allow computation of arc 

flow rates based on the path flow rates. The objective function(s) and the constraints guide the 

selection of the paths. 

A typical objective is to minimize the total cost of moving the traffic for all markets and time 

intervals. This results in identifying the “system optimal” solution. That is, for p P , which is the 

set of all paths, and for which Pmk is the set of paths for market m in time interval k, the system 

optimal solution is a vector of flows, fpk, that minimizes the total transportation cost, Zs:  

mk

s pk pk

k m p P

Z f c


           (1-3) 

where cpk is the cost of using path p for traffic that leaves the origin in time interval k. This is 

motivated by Wardrop’s (1952) first principle. 

This objective can also be computed based on the arc flows. Let fak be the flow on arc a in time 

interval k. That flow rate can be computed from the path flow rates as follows:  

ak

ak pk apk ak pk

p p P

f f or f f


            (1-4) 

where δapk is 1 if path p traverses arc a in time interval k. (In the second notation, Pak is the subset of 

all paths that traverse arc a in time interval k.) If this is the case, then Zs can then be computed as 

follows: 

ak

s pk ak

a p P

Z f c


          (1-5) 

Variants on this objective, with different coefficients but the same structural form, are used to focus 

on emissions, energy consumption, risk exposure, or other similar performance metrics. 

The most common objective is to find the “user equilibrium” assignment. It is motivated by 

Wardrop’s (1952) second principle. In this case, the costs, cpk, on the chosen paths for a given market 

m in time interval k must all be minimal and the same: 

* , 0, 0pk mk pk pkc c p k such that f else f         (1-6) 

and: 
* min( )mk

mk
pk

p P
c c


           (1-7) 

That is, if path p is used in time interval k, then the cost for using that path for market m in time 

interval k must be the same as the cost for all other paths employed; and that path (those paths) must 

have the minimum cost among all paths. For example, if four paths exist for a specific market and 

their costs are 15, 22, 13, and 18, only the third path will be used. It has the minimum cost. 

Alternately, if the traffic is redistributed among the paths, then the costs might be changed to 14, 22, 

14, and 18. Then, the first and third paths will both be used.  

This stipulation is often written as a variational inequality:  
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*( ) 0pk pk mk mkf c c p P mk             (1-8) 

where *

mkc is defined, as before, by equation (1-7). Equation (1-8) stipulates that if fpk is non-zero, 

then *( )pk mkc c , must be zero; cpk must match the minimum value among all paths employed. If cpk 

is greater than the minimum, then the path cannot be used, and the flow on path p in time interval k, 

fpk, must be zero.  

Beckmann et al. (1956) identified an ingenious way to write the objective function for the user 

equilibrium problem. They showed that the following could be used: 

0

min ( )
akf

ue ak ak ak

k a

Z G x dx           (1-9) 

where xak is a dummy variable used to compute the integral and Gak(xak) is the non-linear function 

that computes the cost cak caused by flow rate xak. 

This formulation is not intuitive until the partial derivatives are taken. Those equations establish the 

KTT equations for the problem, and they happen to define user equilibrium. 

There are two problems with the Beckmann formulation. The first is that it cannot accommodate 

capacity constraints. The second is that it cannot be used to assess deviations from the user optimal 

solution if equations (1-8) are violated.  

A very useful alternative is to employ a gap function:  

*( )ue mk mk mk

m k

Z c c           (1-10) 

where δmk is 1 if cmk is greater than *

mkc and zero otherwise and γ is a positive value (e.g., 2). This is 

akin to computing a semi-variance. The gap function easily allows assessment of how close a given 

solution is to matching all the *

mkc  values. This means doing tradeoff assessments among objectives 

is possible. 

Another advantage of using (1-10) is that the values of *

mkc can be controlled by the analyst. They 

can be set to the user equilibrium values, or they can be set to other target travel times that are desired 

by the analyst. In fact, because (1-10) focuses only on values of cmk that exceed *

mkc , it penalizes 

poor performance while not punishing “over performance”. Unlike a variance calculation, values of 

cmk that are lower than *

mkc do not contribute to the value of the objective function. 

The single sided variance calculation in (1-10) can be restated using three equations: 

* ,mk mkc c m k           (1-11) 

* ,mk mk mkc c m k            (1-12) 
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ue mk

m k

Z            (1-13) 

In this form, (1-10) can be incorporated into a math programming statement of the problem. 

A third objective, which is not often used, but very relevant here, focuses on maximizing network 

resilience. That network attribute is very important to the trucking community. The objective is to 

minimize the extent to which volume-to-capacity v/c ratios ηak (really, flow-to-capacity ratios), 

exceed target values *

ak . The *

ak  are desired upper bounds, set by policy. The *

ak values may be the 

same for all arcs and time intervals; but they may also be different. Lower *

ak  values are nominally 

better, because they provide more reserve capacity for accommodating unforeseen conditions, but 

values that are too low distribute the flows on lengthier paths that traverse less used arcs.  

The objective function is written as: 

*( )nr ak ak

k a

Z            (1-14) 

The same restatement of (1-14) as in (1-11) through (1-13) can be used to implement this objective 

in a math programming formulation. 

There is a version of (1-14) that sets θ to infinity. Then, only the largest deviation matters, and the 

objective function becomes a minmax instead of a minsum. 

In all the above discussion, the purpose of the traffic assignment model is to identify values for the 

flow rates ,pkf p k  that produce the optimal solution.  

Additional constraints ensure that the flows are consistent with the overall demand for trips that exists 

for a given market and time interval, Fmk: 

,
mk

pk mk

p P

f F m k


          (1-15) 

Since it is assumed that the time intervals are all the same duration, the fact that flow rates are used 

instead of volumes is not a problem. If the time intervals are not all the same duration, then (1-15) 

must be based on volumes (total trips) instead.  

There is a question about whether the demands, Fmk, can shift in time. That is, can Fmk increase in 

time interval m while it decreases, to compensate, in time interval n. Most models assume this cannot 

happen; but some allow it. There is also a question about whether the demands are congestion 

responsive. For example, if the network is heavily congested, and the v/c ratios are high, do the 

demands decrease? Or, if they are low, does demand increase? Most traffic assignment models 

assume this does not happen. But, in real life, it appears that it does happen, especially when 

congestion decreases because of capacity investments. The total traffic grows.  

In summary, a typical traffic assignment formulation involves minimizing (1-10), or its equivalent, 

(1-9), subject to (1-15), (1-4), and (1-1) or its equivalent. This produces the user equilibrium solution. 

If (1-3) is used instead of (1-10), then the system optimal solution is obtained. And, if these two 
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objectives are considered simultaneously, then tradeoffs between the two objectives can be 

considered. If additional objectives are of interest, like (1-14), then they can be included as well.  

As (1-6) or (1-8) implicitly suggests, more than one path from Pmk may be used for a given optimal 

solution.  In fact, most analyses assume multiple paths will be used. Of course, to make that happen, 

the path portfolio must be identified. More than one path must be available. To make this happen, 

multiple paths must be identified. A typical way to do this is to use Dial’s (1971) algorithm. It not 

only finds multiple paths but also suggests a distribution of the flow across these paths. Effectively, 

the path portfolio identified in this instance is like a fuzzy set. Each of the paths in the portfolio has 

a likelihood of being used. Another way to find the paths is to use a k-shortest path procedure (see, 

for example, Yen, 1971). Then, not only is the shortest path identified, but a portfolio of paths up to 

the kth shortest one. The “problem” with either one of these options is that they are computationally 

more intensive than simply finding the shortest path to each destination, as is done by using Dijkstra’s 

(1959) algorithm. 

It is also important to note that, as (1-1) indicates and the highway capacity assessments suggest (see, 

Transportation Research Board, 2016), arc travel times are affected by their flow rates. That is, they 

increase as their flow rates increase. Moreover, the relationship is non-linear (β > 1). In fact, when β 

= 4, the travel time remains nearly ta0 for low-to-medium v/c ratios, and then it increases rapidly as 

capacity is approached. (This also means that the optimal solution to the traffic assignment problem 

is very sensitive to small changes in the v/c ratios.) 

That equation, restated with the subscripts included is as follows: 

0(1 ( / )ak a ak at t f C            (1-16) 

These travel times have historically been equivocated with “cost” of traversing the arc. In that sense, 

they are the manifestations of function Gak(xak) included in (1-9). As before, tak is the travel time on 

arc a in time interval k, ta0 is the free-flow (no-flow) travel time, fak is the flow rate on arc a in time 

interval k, and Ca is the capacity of arc a (which may be time varying, but that specificity is not 

shown in the equation).  

The implication of this dependence is that there is a circular dependence between identifying the path 

portfolio and the traffic flow assignments. Changing the traffic assignment changes the travel times 

which in turn change the path portfolios. So, using Dial’s (1971) algorithm or a k-shortest path 

algorithm produces path portfolios whose members are dependent upon the travel times on the arcs. 

And those travel times are, in turn, dependent upon the path portfolios employed. 

Most commercial planning packages use an iterative technique to generate the path portfolios. An 

initial seed vector of travel times is assumed. These may be the free-flow travel times. Shortest path 

trees are then built for every origin (to every destination). In math programming terminology, this 

iterative approach is a “column building” procedure that creates new options (choice variables) to 

include in the path portfolios for the markets. Traffic is assigned to the network using these trees and 

then the travel times on the arcs are updated. This process repeats iteratively in that new trees are 

built and traffic is reassigned based on the portfolio of paths that have been created. Paths no longer 

in use (from prior trees) are set aside and replaced with paths from newer trees. The process stops 

when the tree building step fails to suggest that there are new, yet unused paths to add to the path 
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portfolios (for each market) that would allow the travel times on the used paths to be better 

equilibrated. 

This study presents a traffic assignment method which is explicitly data-driven and multi-stage. The 

objectives presented in (1-2), (1-10), and (1-14) are all employed. The trucks are routed first based 

on the arc attributes that are important in their multi-objective decision-making. Then the network 

status is updated to reflect the impacts of those path choices and the remaining traffic (autos) is 

incrementally added (superimposed) on that solution. 

1.2.4 Braess’ Paradox 

Braess’ (1969) paradox is a phenomenon in which adding a new link (arc) to a network, along with 

its capacity, degrades the network’s performance. It is relevant here because pricing can both 

confound network performance and improve it. 

Braess (1969) said: "For each point of a road network, let there be given the number of cars starting 

from it, and the destination of the cars. Under these conditions, one wishes to estimate the distribution 

of traffic flow. Whether one street is preferable to another depends not only on the quality of the 

road, but also on the density of the flow. If every driver takes the path that looks most favorable to 

him, the resultant running times need not be 

minimal. Furthermore, it is indicated by an 

example that an extension of the road network 

may cause a redistribution of the traffic that 

result in longer individual running times." 

This seemingly impossible situation can arise if 

the network has a specific structure. The 

network shown in Figure 1.3, for example, has 

this property. If the link shown with a dashed 

line between R and S is created (opened for 

use), under the case where achieving user 

equilibrium is the objective, the travelers will 

choose path ORSD even though the costs of 

using paths ORD and OSD would be lower, and 

equal.  

Braess (1969) focused on the maximum travel time among all the paths with nonzero traffic volumes. 

For a single O-D pair, calculating the maximum travel time is relatively easy. It is sufficient to 

compare the travel times on the paths that have nonzero travel volumes and select the largest value. 

A more widely used measure is the average travel time (same as the total). He stated that both 

measures are fine and either can be used to detect the paradox. The reason why the average is more 

popular is because it is related to the system optimal condition. Braess’ paradox is usually used to 

draw a contrast between the system optimal and user equilibrium conditions. 

Braess (1969) obtained the steady state traffic assignments with and without the connector under the 

user equilibrium condition. He assumed that every traveler in the network was selfish and thus 

individually sought the best route with the smallest travel time. This selfish behavior leads to a Nash 

equilibrium and that equilibrium is not necessarily system optimal. This is the reason why the 

paradox happens. He did not apply capacity constraints to the network. Any path could have any 

 
Figure 1.4: A setting where Braess’ paradox 

arises 
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amount of traffic on it. This assumption is not realistic; but it makes the problem simple. He first 

obtains the system performance when there is no connector. Then he recalculates the system 

performance with the connector (without a capacity constraint). Finally, he determines whether 

paradox happens by comparing the performance for these two conditions. (He does not explore 

situations where the capacity is limited.) The relevance of this phenomenon, from a traffic 

assignment perspective, is that sometimes network performance can be improved by “removing” 

links from the network (or not adding them; or imposing tolls to control their use. That is, if an 

appropriate toll is employed on arc RS, the negative impacts of the additional capacity can be 

mitigated; and, potentially, the network performance can be improved despite the possibility of 

poorer performance.  

Nearly all the literature focusing on Braess’ (1969) paradox assumes that the network is operating 

under user equilibrium, which means that all of the travelers in the network are selfish and focus on 

minimizing their own travel times. This assumption makes sense since the paradox is caused by this 

selfish behavior. But in this study, it is assumed that the travelers are both selfish and altruistic. This 

assumption is not only more realistic; but it is also valuable when the introduction of route guidance 

devices is considered. For vehicles equipped with such devices, it will be possible to centrally 

distribute guidance information and make them more cooperative. This will result in a mixture of 

system optimal and user optimal drivers. By allowing for this condition, it is possible to study the 

effects of the percentage of altruistic drivers in the traffic stream. The third group of parameters is 

about this penetration level.  

1.2.5 Real-Time System Management 

Management of transportation system performance in real-time is always challenging. Capitalizing 

on the increasingly rich spectrum of data from system monitors is critical to achieve desired goals. 

Section 6 describes ways to do this for a transit system The relevance is that scheduled carriers are 

as challenged, or even more so, than freight service providers in ensuring that their vehicles operate 

according to a desired plan (timetable). One challenge is to identify an appropriate representation of 

the “state” of the system so that meaningful, defensible actions can be taken. Section 6 provides 

guidance about how this can be done.  

1.3 REPORT OVERVIEW 

The remainder of this report is organized as follows. Section 2 reviews pertinent literature. Section 

3 presents the new, data-driven path choice algorithms that have been developed. There are two, one 

predicated on k-shortest path ideas; the other on probabilistic path choice principles. Section 4 

presents the new traffic assignment formulation that puts an emphasis on routing trucks first. It 

incorporates the new path choice algorithms from Section 3 and makes truck-focused alterations to 

how the traffic assignment problem is solved. Section 5 presents a cameo on the challenging setting 

where Braess’ paradox is operative. In such settings, the addition of a new network link, and its 

associated capacity, makes the network’s performance worse, not better. Seemingly counter-

intuitive, these situations, while perhaps pathological, can arise. Pricing is a very important tool in 

redirecting the traffic assignment solutions toward more useful, better solutions. Section 6 takes an 

in-depth look at the use of real-time information about the status of a network to determine how it 

should best be operated. Section 7 summarizes the effort and identifies opportunities for future work.  



 

16 

 

2.0 PERTINENT RESEARCH 

This section reviews prior research efforts that have focused on topics that are the same as or like the 

one addressed here. A prior project report, see List et al. (2015), provided a more comprehensive 

review of the literature focused on path choice.  

2.1 SENSOR PLACEMENT AND DATA VALUE 

Much of the study is predicated on the hypothesis that data from network sensors can enhance and 

better inform the decision-making that takes place. This pertains to both the path selection process 

and traffic assignment.  

Zhou and List (2010) have demonstrated that careful sensor placement can enhance the estimation 

of Origin-Destination (OD) matrices. Ma, Smith, and Zhou (2015) have shown that an agent-based 

approach can enhance individual user real-time decision-making. Lei, List and Taylor (2015) have 

illustrated how probe data can be used to characterize corridor-level travel time distributions. 

Mahmoudi and Zhou (2015) have shown that real-time data can improve freight-based vehicle 

routing choices. Chen, Zhou, and List (2011) have demonstrated that time-varying tolls can be used 

to improve truck arrival patterns at port facilities. Cetin, List and Zhou (2005) have explored the 

number of probes required to develop credible network travel time estimates. And Eisenman and List 

(2004) explored the ways in which probe data can be used to enhance trip matrix estimation. 

2.2 FREIGHT-FOCUSED PATH CHOICE 

Chen et al. (2011) used the travel time budget as the metric for determining reliability-based user 

equilibrium (RUE) rather than the typical metric of expected travel time. This allows for inclusion 

of differing degrees of risk-aversion for distinct user classes evaluated in the system. A column 

generation technique was used to enumerate over all OD and user class pairs followed by solving the 

associated restricted subproblems by iteratively shifting flows from the costliest path with maximum 

travel time budgets to the cheapest path having minimum budget. The cost itself is established using 

a mean budget (M-B) dominance condition described within the paper. 

 

The simplest routing algorithms find the route from an origin O to a destination D which minimizes a 

single measure.  The measure must be additive across the links.  While many generalizations of these 

algorithms are available, (e.g., for single objectives see Shier, 1976; for multicriteria problems see 

Henig, 1985 and Mirchandani and Wiecek, 1989; and for capacitated problems see Handler and Zang, 

1980), the adaptation to truck-focused routing problems has been rudimentary.  For example, in the 

context of HazMat shipments, Brogan and Cashwell (1985) use a shortest path algorithm based on a 

single metric, which must be user specified, to assign routes for specific OD pairs.   

Practitioners selecting routes for truck shipments of HazMat are encouraged by the Federal Highway 

Administration to use the methodology developed by Barber and Hilderbrand (1980).  It calls for 

selecting minimum risk routes based on the following process: 

• "eliminate routes with physical mandatory factors" (i.e., physical or legal restraints on use); 

• "consider legal and political implications of trying to change legal mandatory factors and 

exclude or reserve judgement accordingly"; 
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• "select route(s) with smallest risk values" (incident probability on a link times the expected 

consequence of an incident summed over all links in the route); 

• "apply subjective factors (such as proximity to hospitals, nursing homes), if unable to 

differentiate on risk."  (Barber and Hildebrand, pp.14-15). 

The methodology does not explicitly consider the trade-off between risks and cost.  Neither does it 

consider the distribution of risk resulting from such all-or-nothing traffic assignment; that is, risk equity 

is ignored. 

Applications of this methodology follow it closely, except for the evaluation of risk.  Studies such as 

Glickman and Rosenfield (1984), Ivancie (1984), and Kessler (1986) use population exposure as a 

substitute for the more detailed risk evaluation outlined by Barber and Hildebrand (1980).  Risk for an 

individual link is typically defined as the adjacent population (within some prescribed bandwidth) 

multiplied by the link length. These link-based "risks" are summed to determine the overall "risk" for a 

route, and the route with the lowest "risk" is selected.  While this approach may be simple and 

straightforward, perhaps a reflection of data limitations and/or the cost of acquiring missing pieces of 

information, it has conceptual faults.  First, differences in accident rates, by link or facility type, are 

ignored.  Second, the entire population within the band is assumed to be equally at risk.  Third, the basis 

for adding the link risks to obtain route risks is not clarified and may not be appropriate when two or 

more links affect the same population zone.  Lastly, the differences in risk due to differences in material 

properties (e.g., incident likelihoods and material release probabilities) are ignored. 

Batta and Chiu (1988) present two single-objective shortest path formulations for multi-objective truck 

routing.  The first formulation does not consider different accident probabilities for the network links, 

while the second recognizes this fact.  In both formulations the size of the population potentially 

impacted by an accidental release of hazardous materials is also part of the criterion.  In addition, both 

formulations recognize that the network nodes are higher risk points than the links, and incorporate this 

concept by assigning penalties to the nodes of the transportation network.   

Shobrys (1981) is among the earliest efforts to deal explicitly with multiple objectives.  Shobrys 

considers two objectives: (1) minimize ton-miles traveled and (2) minimize population exposure-tons.  

He points out that the optimal decisions must come from the Pareto-optimal solution set.  By using 

various weights to combine the two objectives, Shobrys was able to use a hybrid distance-population 

cost for each link, and hence, use a shortest path algorithm to obtain several Pareto-optimal solutions. 

Abkowitz and Cheng (1988) present a bi-objective routing model.  Two types of damages are con-

sidered: direct and indirect.  The former occurs at the incident scene while the latter occur in the 

surrounding vicinity.  The area of exposure for the indirect damages is determined using a formula which 

accounts for dispersion, horizontally and vertically, as well as wind speed and direction.  Unit weights 

combine the fatalities, injuries and property damages into a single overall measure of risk.  This is then 

traded off against transportation cost to identify Pareto-optimal routes for individual OD pairs. 

As should be expected, the minimum cost strategy favors expedience at the expense of safety.  It is 

essentially a deregulated solution.  Safety may be enhanced, over randomly chosen routes, in that the 

distance or time during which accidents can occur may be lower, but this is not an assured outcome.  

Minimization of accident likelihood increases safety by restricting shipments to routes where accident 

rates are lower.  Minimization of risk proceeds one step further by considering the consequences of 

accidents as well. 
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These multi-objective models are based (explicitly or implicitly) on identifying some weighting scheme 

to make the multiple objectives commensurable.  A problem with this approach is that it only identifies 

a subset of the efficient paths, so at best it provides only a partial set of solutions.  The reasons not all 

paths are found is illustrated in Figure 1.1, using a bi-objective example.  Figure 1.1 shows non-

dominated solutions to a problem with objective functions X and Y.  However, a method using a 

weighted sum of objectives (i.e. minimize uX+(1-u)Y for values of u, 0 < u < 1) would only identify the 

solutions touched by the line.  Other four points that are still non-dominated, called "gap points", are 

missed.  These points may also be of interest; and they should be identified.  Algorithmic procedures 

related to the solution of multicriteria shortest path problems can be found in many places including 

Cox (1984), and Henig (1985).  Direct application of such procedures to multi-criteria settings, such as 

HazMat, were begun by Cox (1984), who developed a node-labeling method for solving multi-objective 

routing problems; and began the exploration of relationships between routing and scheduling decisions. 

A set of problems is defined, one for each potential departure time, and within these, sub-problems are 

established, each focusing on a particular "copy" of the network, its attribute values having been sampled 

from the underlying distributions.  A multi-objective shortest path algorithm is then used for each of 

these to find Pareto-optimal routes (i.e., for each sample network and departure time).  These 

routing/scheduling options are then reviewed by the decision-maker to select the "best" combination. 

Zografos and Davis (1989) developed a multi-criteria routing model for HazMat which considers the 

following criteria: 1) general population at risk, 2) risk of special population categories, (groups of 

persons having evacuation difficulties), 3) property damage, and 4) travel time as a surrogate for the 

truck operating cost.  According to this formulation, each link of the network is assigned a "cost" vector 

that characterizes the link in terms of the established routing criteria.  The proposed model is formulated 

as a multicriteria shortest path problem and preemptive goal programming is used to obtain the solution 

to the problem.  

The empirical results obtained by Saccomano and Chan (1985) illustrate the importance of random 

events such as weather on overall risks along a specified route.  Turnquist's (1987) work represents one 

attempt to deal with this issue, in the context of probability distributions for link attributes. Mirchandani 

and Soroush (1985) have also studied probabilistic networks.  They model each link as having an 

additive attribute, for example travel time, which is randomly distributed.  Such distributions can be 

convolved to determine the travel time distribution from a given origin to any other node in the network.  

Measures of "expected cost" for such partial paths can also be developed from these distributions using 

a cost function, which may be nonlinear.  Ultimately, for any OD pair, the optimal path is one which 

has the lowest total "expected cost."  When the cost function is linear, expected costs on the links can 

be used and the optimal path minimizes the sum of these link expected costs.  When the cost function is 

nonlinear, route cost is no longer the sum of these link costs.  For such situations, a terminology is 

presented that helps indicate the dominance of one path over another.  A path between two nodes is 

"absolutely permanently preferred" over another if the preference order is unaltered for any path 

segment addition to either of the common end points.  "Temporary preference" occurs when some path 

segment addition reverses the preference order.  Finally, a path is "relatively permanently preferred" to 

another for a given destination node if there is no path segment addition to the given destination node 

which reverses the preference order.  Using these concepts, Mirchandani and Soroush develop a node-

labelling algorithm to determine optimal paths when the cost function is exponential or quadratic. 

All the models discussed up to this point, both single and multi-criteria, assume that the network links 

have unlimited capacity.  This assumption leaves open the possibility that a small number of network 
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links will carry a large fraction of the truck trips. An immediate result of such a procedure is the 

assignment of risk to the population residing along these links.  Thus, these models fail to capture the 

objective of the equitable distribution of risk.   

Recognizing the importance of the equitable distribution of risk or other population-centric objectives, 

Zografos and Davis (1989) developed a routing model that considers the equity objective.  These models 

consider the same objectives as previous multi-criteria shortest path formulations and incorporate the 

equitable distribution of risk by imposing capacity constraints on the network links.  The resultant 

formulation is equivalent to a capacitated assignment problem. Preemptive goal programming is the 

solution methodology. 

Along any route chosen, if public authorities enact curfews (time-of-day restrictions), there exists a 

scheduling problem to be solved.  Cox and Turnquist (1986) developed a model to find the departure 

time for any given route which minimizes curfew delay en-route.  The model assumes that the link travel 

time is a random variable and a recursive algorithm is presented.  An application dealing with the 

highway transport of spent nuclear fuel is discussed.  Conclusions from that example include:  1) the 

solution with deterministic travel times underestimates the expected delay, 2) the relative advantage of 

precise dispatching decreases as the uncertainty in link travel time increases, and 3) the optimal depar-

ture time becomes earlier as uncertainty in travel time increases. 

Chen et al. (2013) solved the reliable shortest path problem (RSPP) for   - reliable path wherein 

the goal is to minimize the travel time budget while ensuring an   level of on-time arrival 

probability. Link travel times follow normal distributions to allow for an analytical reliability 

measure when evaluating routes. A stochastic-based dominance condition is described to effectively 

extend Bellman’s Principle of Optimality to the stochastic case. Two algorithms are used to solve 

the problem, notably a multi-criteria label setting algorithm like Dijkstra’s algorithm and the multi-

criteria A* algorithm. The A* algorithm inherently favor nodes likely to be on   - reliable paths by 

assigning higher priority in the search space for these nodes, maintaining a set of eligible non-

dominated path sets ordered in descending likelihood of appearing on the   - reliable paths. A case 

study of Hong Kong shows the computational time advantage of the A* algorithm over the more 

accurate yet more computationally demanding multi-criterial label setting algorithm. 

 

Huang and Gao (2012) investigated stochastic time-dependent (STD) networks with temporal and 

spatial correlation among links, using a minimum expected disutility (MED) to evaluate routes. Due 

to the stochasticity, the problem violates Bellman’s Principle of Optimality and the Algorithm CD-

Path is designed to find only “pure paths” whose sub-paths are non-dominated. This algorithm 

iteratively trims the search space of dominated paths until the final solution set only contains non-

dominated paths. 

 

Ji, Kim, and Chen (2011) described a simulation-based multi-objective genetic algorithm (SMOGA) 

that is used to find non-dominant (Pareto optimal) paths. This algorithm consists of a Monte Carlo 

simulation of correlated travel times, a genetic algorithm to explore the combinatorial solution space, 

and a Pareto solution filter to maximize the diversity of the Pareto solutions. SMOGA solves the 

chance constrained multi-objective programming (CCMOP) model for optimal path finding while 

simultaneously minimizing the travel time budget and satisfying travel time reliability constraints. 

Numerical experiments on the Chicago Sketch network show feasibility and diversity in explored 

solution space, while further showing that correlation among link travel times create significant 
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discrepancies in travel time budgets. Without correlation among links, Pareto paths resulting have 

significant travel time budget bias and provide sub-optimal paths. 

 

Srinivasan et al. (2014) solved the most reliable path problem with the added feature of shifted log-

normal link travel times (MRP-SLN), a constrained nonlinear integer programming problem. The 

MRP-SLN algorithm uses lower and upper bounds on path reliability measures to force convergence. 

A sufficient condition is devised to guarantee that the most reliable path is present in a set of least 

expected travel time paths. A case study of Chennai city in India was examined, and the generated 

set of paths contains the true optimum in more than 98% of tested OD pairs with an average relative 

gap between proposed and true optimum paths less than 0.06%. These sets are generated in under an 

average of 25 seconds. However, using approximations for normal and lognormal times at link and 

path level lead to sub-optimal solutions in 14% and 12% of cases respectively, with reliability 

decreases up to 9%. 

 

Xing and Zhou (2011) sought to answer the most reliable path problem under varying spatial 

correlation assumptions, with total path travel time variability represented by standard deviation. 

Lagrangian substitution is used to estimate the lower bound of the most reliable path by solving a 

sequence of shortest path problems, followed by a subgradient descent to iteratively reduce the 

optimality condition between primal and dual solutions until a termination condition occurs. Further, 

when spatial correlation exists among link travel times, a sampling-based solution algorithm is 

embedded in the above Lagrangian technique. A case study of the Bayshore Freeway between 

Mountain View and San Jose, California was examined. These experiments showed that utilizing 

these reformulated models on a large-scale network allows for 10-20 iterations of standard shortest 

path algorithms to reach duality gaps of about 2-6% for uncorrelated travel times.   

 

Methods for multiobjective routing of hazardous materials shipments have been developed by several 

authors, including Cox (1984), Turnquist (1987), Abkowitz and Cheng (1988), Zografos and Davis 

(1989), Current, et al. (1990), and McCord and Leu (1995).  Some of these methods use specialized 

techniques limited to two objectives (e.g., Abkowitz and Cheng, (1988) and Current et al. (1990)), 

while others are more general.   

2.3 TRAFFIC ASSIGNMENT 

The single-objective, user equilibrium traffic assignment model has been applied extensively in traffic 

network design and planning.  The objective is a demand-oriented cost function, mainly, 

equilibrating the travel times for all markets.  

Managing the network’s performance involves additional objectives such as congestion, air 

pollution, noise pollution, and reliability. The use of demand-oriented traffic assignment models has 

its limitations.  From an economic point of view, a traffic network involves supply and demand 

issues.  The traveler's interest represents the demand side of the network and the network's capacity 

represents the supply side.  The goal is to maximize the supply capacity usage while minimizing 

traveler cost.  The lowest cost for the travelers is obtained by solving the user-equilibrium (UE) 

assignment and the best supply capacity usage can be obtained by minimizing arcs' flow/capacity 

ratio within the network. These objectives are, in fact, mutually interactive and the traffic network's 

managerial complexity requires the best trade-offs among these objectives.  A good way to deal with 

these trade-offs is to adopt the multicriteria decision-making theory.  The fields of traffic assignment 
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and multicriteria decision-making research are well established independently, but the way they can 

be effectively integrated in mathematical models for traffic network management is at present the 

subject of much on-going research.   

Dial (1996) and Leurent (1996) both discussed the need to use multiple objectives when solving 

equilibrium traffic assignment problems.  From a demand side perspective, they seek to find traffic 

assignments which minimize a multi-dimensional measure of generalized user cost. the idea of 

introducing a manager-optimal objective is an extension of this thought.  It points to scenarios in 

which the best interests of the system’s drivers and managers are addressed, as well as society. 

 

This idea of seeking optimal solutions based on a user cost is debatable, however, especially if there 

are negative side effects insofar as network performance is concerned.  For example, user-

equilibrium solutions have limitations. They tend to produce high congestion levels on arcs that are 

part of many paths even under low traffic conditions. No incentive exists to either manage or 

minimize volume-to-capacity (v/c) ratios. When a system-optimal objective is pursued, v/c ratios 

tend to be lower, but there is still no emphasis on managing those ratios, so the quality of flow from 

arc to arc varies widely. Hence, there is a value in introducing a manager-focused objective, such as 

minimizing the maximum v/c ratio, as was described in Wu et al. (1999). 

  

Also, since there is no guarantee that user equilibrium will be obtained under conditions where that 

is not the only objective, it is important to consider a fourth objective.  This one measures the 

maximum amount of deviation in travel time among all OD pairs in the network. Ideally, this 

deviation should always be zero for all OD pairs, but where user equilibrium is not stressed, trips can 

be assigned to paths with greater-than-minimal cost and a deviation in travel times can result.  To 

address equity issues among the users these deviations should be kept to a minimum. 

 

Based on the above, it seems promising to consider network management decision-making in 

conditions where four objectives are explicitly involved. These are as follows: 

 

• for an individual driver: to minimize individual trip travel time (i.e., to seek the user-

equilibrium solution); 

• for all drivers: to minimize the differences in travel times among drivers moving between the 

same origin-destination pairs (to minimize the discord in what might be a near-optimal user-

equilibrium solution); 

• from a social/economic perspective: to minimize total vehicle-hours spent in travel (i.e., to 

seek the system-optimal solution); and 

• from a network management perspective: to minimize the maximum arc congestion level (i.e., 

to seek a solution with the lowest possible v/c ratio). 

 
As stated earlier, commonly applied objectives in traffic assignment are user equilibrium and system 

optimality. These notions were formally proposed by Wardrop (1952).He stated two principles that 

formalized these equilibrium concepts. His first principle states that each user non-cooperatively 

seeks to minimize his or her cost of transportation. Network models that apply this principle are 

usually referred to as "user equilibrium" (UE) models. Wardrop’s second principle says that each 

user behaves cooperatively in choosing its route to ensure that total system travel time is minimized. 

Network models that apply this principle are generally termed "system optimal" (SO) models. 

However, there are many network equilibrium situations that do not fit either the UE or SE 
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framework. Haurie and Marcotte (1985) model a more general situation where the travelers in the 

network are divided into multiple groups. The travelers within each group all exhibit the same 

behavior and the different groups compete with each other. Each group of users is called a Cournot–

Nash (CN) group of users and the corresponding equilibrium for each group is a Cournot–Nash (CN) 

equilibrium. A Cournot-Nash user group is altruistic if the group’s objective is to minimize the total 

travel time of all its users. Altruistic groups can aim to minimize the total travel time of only their 

group members. Multi-equilibrium or mixed equilibrium solutions are those where more than one 

type of traveler group is present.  

 

It is generally acknowledged that best way to solve traffic assignment problems is to formulate an 

equivalent mathematical program that has a unique solution. Formulation of the UE as a mathematic 

programming model was pioneered by Beckmann et al. (1956). They showed the conditions under 

which the user equilibrium condition is obtained using a set of equations and inequalities. By 

applying the KKT conditions, they give the conditions that ensure existence and uniqueness of the 

solution. Dafermos and Sparrow (1969) give a complete formulation of both the UE and SO problem 

and the necessary and sufficient conditions for the existence, uniqueness and stability of the 

solutions. They also present an algorithm for a solving the two problems. 

 

After the concept of a mix equilibrium or multi-equilibrium was proposed by Haurie and Marcotte 

(1985), people began studying the math formulation for mixed network equilibrium with different 

types of users. 

 

Harker (1988) presents a model in which the travelers for each O-D pair obey either the UE or SO 

behavior principle. Link cost functions are no longer symmetric and the optimization formulation is 

not obtainable under this assumption. Harker uses variational inequality to formulate and solve the 

problem. He includes maximum link flow constraints in the model.  Van Vuren et al. (1989) and 

Bennett (1993) further investigate the existence of equivalent mathematical programs for 

deterministic, mixed UE and SO with fixed O-D demand. Bennett (1993) investigates the existence 

of the math formulation for two mix equilibrium problems. In the first, the network is mixed with 

user optimal users and Cournot altruistic users and the second network is mixed with user optimal 

users and Cournot private users. For the first problem Bennett shows that an equilibrium formulation 

can be found if the link travel time function is of the BPR-type with n > 1 but there is no equilibrium 

formulation for the second problem. Zhang, Yang and Huang (2007) extend the study of mixed 

equilibria to consider a multi-class multi-criteria mixed equilibrium. They develop a variational 

inequality model to characterize the multi-class multi-criteria UE–CN mixed equilibrium behavior 

and they also establish the existence of uniform link tolls supporting such mixed equilibrium as a 

system optimum. 

 

The capacitated assignment problem for Braess’ (1969) paradox has been studied only to a limited 

extent. The main reason is that the solutions cannot be characterized by the classic Wardrop (1952) 

equilibrium conditions. They may, however, be characterized in terms of generalized travel cost. 

 

Including upper bounds on the link flows can be done in one of two ways. The first is by using 

asymptotic travel time functions, i.e. functions that indicate a link’s travel time goes to infinity when 

its flow approaches its upper bound. The second is to introduce side constraints. 
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The first approach has been shown to be problematic. Boyce et al. (1981) empirically find that 

asymptotic travel time functions yield extremely high travel times, which result in unrealistic and 

circuitous trips. In addition, Larsson and Patriksson (1995) point out that this approach is inherently 

ill conditioned [29]. 

 

Since the uncapacitated assignment problem can be solved very efficiently, a natural solution strategy 

is to transform it into a sequence of uncapacitated problems, tending to one which is equivalent to 

the original, capacitated, problem. The second method is to solve the corresponding uncapacitated 

problem with travel time functions adjusted by the corresponding optimal shadow prices. See, for 

example, Jorgensen (1963), Hearn (1980), and Inouye (1987). Larsson and Patriksson (1995) extend 

this to the general, convexly constrained traffic equilibrium assignment model [7, 11, 15, and 29]. 

2.4 BRAESS’ PARADOX 

Braess’ paradox motivates two types of network design problems. The first is the discrete network 

design problem. It ascertains which arcs to add to the network to improve the value of a specified 

objective function. The second asks, given a network, which edge should be moved to get the best 

performance in the Nash equilibrium? Or equivalently, given a network, which sub-network will 

exhibit the best performance when the users are selfish? 

 

Roughgarden (2004) provides several near-optimal results and approximate algorithms for different 

network types. He concludes that it is impossible to detect Braess’ paradox efficiently [33]. Lin, 

Roughgarden, Tardos and Walkoverwe (2006) construct an infinite family of two-commodity 

networks, related to the Fibonacci numbers. They use these networks to establish nearly matching 

upper and lower bounds for both the price of anarchy with respect to the maximum latency and the 

worst-possible severity of Braess’ Paradox. They also prove that there is no polynomial-time 

algorithm for specific network design problems [11]. LeBlanc (2004) uses a mix integer 

programming formulation to implement a branch and bound algorithm [3]. Particular attention is 

paid to the computational aspect of large scale problems. Poorzahedy and Turnquist (1982) provide 

two algorithms which save computational work by approximating the original problem with a new 

formulation which is easier to solve. The first algorithm proposed solves this approximate problem 

exactly, while the second is more efficient, but provides only a near-optimal solution to the 

approximate problem [24]. 

 

These network design problems motivate a similar thought, which is the capacity allocation problem. 

IN this case, a network designer wants to allocate capacity to optimize the network performance 

according to some certain system criteria. This problem is usually solved by a bottleneck analysis, 

but such analyses are only valid for centrally controlled systems. For decentralized systems and non-

cooperative systems, this problem becomes complex and potentially counterintuitive, like Braess’ 

paradox.  

 

Korilis, Lazar and Orda (1995) discuss strategies to improve the performance in non-cooperative 

networks [18].  

 

1) Network design during the provisioning phase. The problem is formulated as one of 

allocating additional capacity to an existing network. It is shown that the problem exhibits 

paradoxical behavior. The authors prove that for a system of parallel links, adding capacity 



 

24 

 

always improves the network’s performance. They give the sufficient conditions for Braess 

paradox not to occur.  

2) Improving the performance during the actual operation stage. This problem is a Stackelberg 

game. The authors discuss the thresholds of the amount of network flow that is controlled 

by leader in order to get system optimal solution. Methodologies for upgrading general 

networks while avoiding the Braess’ paradox are also investigated. The results show that 

the capacity can be expanded throughout the whole network. 

Korilis, Lazar and Orda (1997, 1999) discuss the optimal strategy for adding capacity to a system of 

parallel links. Two strategies are considered. The first is the addition of capacity to a system and the 

second is the transfer of capacity toward the link with the originally highest capacity. The authors 

prove that in systems with parallel links, both these strategies improve the performance, which means 

Braess’ paradox will not happen in these cases. The authors use the example of the original Braess’ 

network to show that under non-cooperative conditions, adding capacity to the network, even if it is 

infinite, can make the performance worse [16,17]. 

 

 Altman, Azouzi and Pourtallier give some guidance on avoiding the Braess’ paradox when 

upgrading the network. The paper uses the original Braess network but is asymmetric. Three cases 

are considered: 

 

1) Add capacity to the link in the middle, this will lead to the performance degrading, that is, 

Braess paradox happens in under this case.  

2) Add capacity to all the links.  

3) Add a new link to connect the origin and destination. Both the second and third method will 

not cause the Braess paradox.   

The authors mentioned above discuss the network design problem in computer networking, however 

the results can be applied to other network where Braess’ paradox is observed. 

 

The results shown in Blumsack and Ilić (2006) mirror those of Korilis, Lazar and Orda (1997, 1999) 

in electric power systems: 

 

• If the boundary links represent the bottleneck constraint, then the optimal policies are to either 

reduce demand or expand capacity on both links. 

• If the Wheatstone bridge is viewed as the active system constraint, then the optimal policy is 

to remove the bridge entirely; or, equip the bridge with fast relays or regulate the power to 

allow use of the bridge only during contingencies [25]. 

Masuda and Whang (1999) model the network as a queuing system and investigate the capacity 

expansion problem for a decentralized system with a general network topology. The authors discuss 

the problem for both the short run and long run condition. In the short run, they prove that extreme 

pricing can solve the joint problem of demand and routing. In the long run, whether the capacity 

expansion strategy is valid depends on the short run optimality [34]. 
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Abbad, Azouzi and Kamili (2006) extend Korilis (1997) by considering the case of elastic traffic. 

Agents are assumed to have a utility function that is concave in the amount of flow that they route, 

and their price is defined to be the total cost of passing their traffic over the network minus their 

utility. The authors prove that prices only decrease when capacity is increased (in networks of parallel 

links) and that users do have an interest in improving their requests. The authors did not give results 

for when the objective is to minimize user costs, which is considered in Korilis (1997). 

 

2.5 SUMMARY 

This section has reviewed prior research efforts that focused on efforts that are the same as or very 

similar to the ones addressed in this report. A prior project report, see List et al. (2015), provides a 

more comprehensive review of much of the literature focused on path choice. 

 

Clearly, there is a lot of work that examines routing. Some of it pertains to trucks. Some pertains to 

the use of real-time information. This study examines the nexus of these two aspects, which makes 

it somewhat unique.  

 

A lot of studies also focus on traffic assignment. It may be the most-explored topic in all 

transportation research literature. But, the number of papers that explicitly focus on putting freight 

(trucks) first is very limited. And, the number that focus on multi-commodity assignment is also 

limited. Moreover, the number that incorporate capacity constraints into the scope of the problem is 

also limited. Those are among the important aspects of the problem considered here. So, this work 

is a contribution to the state-of-the-art in that regard. 

 

Also limited at the number of traffic assignment studies that have focused on network resilience; 

specifically, managing the v/c ratios among the arcs in the network. This idea is very uncommon. 

But, it is critical, the study team suggests, in the context of freight(truck) routing. It is not so much 

that the v/c ratios need to be kept low for the truck assignments to be either feasible or optimal. But, 

rather, that keeping the v/c ratios low helps ensure that the network can deal with unforeseen 

situations that arise, from accidents, incidents, weather, or other situations. Hence, a min max 

objective is incorporated that endeavors to keep the v/c ratios for the arcs below target values.   

 

Also unusual is the use of a gap function to measure the achievement of the user optimal solution. 

Beckmann’s formulation is used far more often, with an emphasis on satisfying the KTT conditions 

that their objective function creates. Instead, in this study a gap concept is used where the travel times 

on the path are compared with a target path time that is desirable. The target might be the travel time 

(or cost) associated with the user equilibrium solution. Or, it could be some other travel time that is 

a policy objective from the perspective of the network operator. An advantage to adopting this 

perspective is that the user optimal objective function value obtained in any solution can be compared 

against the value of 0 that would be obtained were the user optimal solution actually achieved. The 

Beckmann objective function cannot be used for this purpose. 

 

The section has set the stage for the work that follows. It shows what has been done and how that 

body of work relates to the ideas and results presented here.  
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3.0 DATA-DRIVEN PATH CHOICE 

This section addresses the topic of path choice as informed by real-time data. It is especially focused 

on trucks, which have a complex, multi-objective, long-term perspective on the selection of paths. 

The focus on real-time data implies that path choice is informed by evolving network conditions, 

caused by incidents, weather, work zones and influences. List et al. (2017) describe ways to assess 

the travel time distributions associated with specific operating conditions. Here, it is assumed that 

suitable travel times, costs, and risks have been established for the links (arcs) in the network and 

that those values are sensitive to (reflective of) the operating conditions extant at the time the trips 

would take place. 

3.1 PROBABILISTIC PATH CHOICE 

One option for dealing with multi-objective routing is to use a probabilistic path choice algorithm. 

This idea was originally put forward by Dial (1971). It is commonly referred to as Dial’s probabilistic 

assignment algorithm. List (1993) and more recently List (2016) used this procedure to develop path 

choices for truck flows on urban networks.  

 

3.1.1 Algorithm Description 

The algorithm identifies the likelihood that paths might be employed between origin O and 

destination D based on multiple objectives. If o1 and o2 are two objectives of interest, then z = w1 o1 

+ w2 o2 can be a weighted combination of those objectives, and zp can be the value of z for path p. 

Also, if Pod is the set of paths for OD, then the likelihood that path p will be employed can be based 

on a multinomial probabilistic choice model: 
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The value of β can vary widely. In the case study presented here, a value of β = 1 has been used, but 

it should be calibrated based on observed path choices using real-time data. Higher values of β drive 

the solution toward all-or-nothing assignment where only one path sees use. Lower values of β 

encourage more paths and distribute the probabilities more broadly. In the limit, as β approaches 0, 

the path probabilities become the same (because the cost does not matter; any path is OK to choose). 

 

From a practical standpoint, after the algorithm is applied, a lower bound can be imposed on the 

smallest probability that a path is retained in the path set for a given OD pair. Paths with low 

probabilities can be removed. The probabilities for the remaining paths are upward adjusted 

proportional to their initial probability of use so the sum once again totals 100%.   

 

Since the probabilities relate to paths, and those paths are sequences of arcs, the algorithm also 

indicates the likelihood that specific arcs will be used among the paths for each OD. That is: 
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The intersection between 
odp P and 

ap P captures the paths that both belong to OD and traverse 

arc a. For example, if two paths for a given OD use arc a (but before and after they use different arc 

sequences) and their probabilities are 5% and 18%, then the total probability of flow from O to D 

using arc a is 23%. 

 

The values of Paod are sometimes written as αaod and called arc utilization coefficients, or more 

simply, arc utilizations. They capture the percentage of flow for OD that use arc a. These values are 

used extensively in network assignment algorithms. For example, if fp is the flow on path p and fa is 

the flow on arc a, then fa can be computed as:  
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The details of the algorithm can be found in Dial et al. (xxx). Simplistically, a forward pass is made 

through the network from the origin to develop likelihoods that a single unit of flow from the origin 

would traverse any given arc. Then a backward pass is made from each destination back to the origin 

and the probabilities of arc use are identified. Implicitly, paths are identified; with the likelihood of 

path use being ascertained based on a proportional sharing of total inbound percentage of flow at 

each node (from all entering arcs) onto the outbound arcs.  

 

One significant drawback to the procedure is that the objectives are not considered individually. They 

are treated as terms in a composite objective that uses weights to combine the objective function 

values. Ex post facto, it is possible to determine the values that pertain to the individual objectives, 

but those values are produced by the combination of weights employed. 

 

It is possible to “overcome” this deficiency, at least in part, by parametrically varying the values for 

the weights employed. For example, if the weight for cost is made large and all the other weights are 

small, then the path that minimizes cost will be identified. If the weights are made equal between 

cost and risk, or two other objectives, then the path that minimizes that weighted combination of the 

objectives will be identified. In Figure 1.1, selection of these weights results in a slope to line for the 

blended objective function. This makes it possible to identify the “convex hull” of the non-dominated 

surface, but the “gap points” that are still non-dominated but lie within this convex hull are missed.  

 

3.1.2 Case Study Example 

An example helps illustrate the results this algorithm produces. In a prior research project, a 

simplified network for the Albany area of New York was created (List and Turnquist, 1991). It is 

shown in Figure 3.1. There are 86 nodes and124 links (248 arcs). Each arc (link) has a functional 

class designation ranging from limited access freeway to local street. (The exact interpretation of the 

classes is not important, but 1 is for limited access freeways, 2 is for high-quality arterials, etc., and 

the values range from 1 to 9). Each arc (link) also has a length (in miles), a cost (in nominal dollars) 

and risk (population exposed within a certain distance). The network was used in the previous 

research project to identify non-dominated paths for hazardous materials (HazMat) shipments 

between selected OD pairs. The purpose then was to identify a) how many paths existed, b) what 
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were their costs and risks, and c) which ones represented reasonable tradeoffs between cost and risk, 

from the perspective of society (e.g., the government) and the carrier. (These perspectives might have 

been different.)  

 
Figure 3.1: Case Study Network. Source: List and Turnquist (1991). 

 

In this instance, the purpose of the analysis is to identify the likelihood that specific arcs will be used 

for specific OD pairs based on 1) a cost equation and 2) a value for β. Three examples are described. 

In the first, only the cost related to time and distance is considered, as might pertain for auto trip 

making where there are no tolls on the network. In the second, cost and risk are both considered, as 

might pertain to a truck where, again, there are no tolls in the network. In the third, there are tolls on 

the network, and these tolls are considered along with cost and risk, in selecting paths. 

 

Table 3.1 presents the results for the situation where and the weights for cost, risk and tolls are 1.0, 

0.0, and 0.0 respectively. The columns are, respectively, the origin, the destination, the arc, a flag 

indicating whether trucks can use the arc (1) or not (0), the functional class for the arc, and the arc 

utilization coefficient. A value of uArc = 100 means that 100% of the OD flow uses the arc. For 
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example, in the case of OD pair (1,13), 100% of the traffic uses arc 1 while only 24% of the traffic 

uses arc 3; 77% of the traffic uses arcs 12, 17, 27, and 137, while 24% uses arcs 3, 29, 26, and 152. 

Since these numbers sum to 101 (effectively 100%), the implication is that traffic is split between 

two paths, about 76.5% on one path and 23.5% on the other. 

 

Table 3.2 shows the results for these same OD pairs when the weights are equal for cost and risk. 

(Tolls are ignored.) The arc utilizations are clearly different from those shown in Table 3.1. The 

number of arcs employed has changed and the arcs are now exclusively either from class 1 or 6. The 

use of arcs in class 8 (local streets) has disappeared. 

  
 

Table 3.3 shows the results when tolls are included. That is, there are equal weights among cost, risk 

and tolls. Counter-intuitively, there are tolls on the local streets to keep the vehicles from using them, 

as might be done to discourage truck traffic. The results have again changed. The values and lists in 

this table are different from both Table 3.1 and 3.2. The arc utilizations, arc lists, and class choices 

have changed. With regard to the latter, there are more 6’s and one 8. 

 

 

    
Table 3.1: Illustrative arc utilizations when 

only cost is considered 

 

 orig  dest arc class tFlag uArc

1 10 1 6 1 100

1 10 12 8 1 100

1 10 17 6 1 100

1 10 137 8 1 100

1 11 1 6 1 100

1 11 3 1 1 100

1 11 126 1 1 100

1 11 152 1 1 100

1 12 1 6 1 100

1 12 3 1 1 100

1 12 126 1 1 100

1 13 1 6 1 100

1 13 3 1 1 24

1 13 12 8 1 77

1 13 17 6 1 77

1 13 27 6 1 77

1 13 29 1 1 24

1 13 126 1 1 24

1 13 137 8 1 77

1 13 152 1 1 24

 orig  dest arc class tFlag uArc

1 14 1 6 1 100

1 14 11 6 1 100

1 14 15 6 1 100

1 14 137 8 1 100

1 14 159 6 1 100

1 15 1 6 1 100

1 15 7 1 1 51

1 15 8 6 1 50

1 15 22 1 1 51

1 15 24 1 1 100

1 15 43 6 1 50

1 15 134 1 1 100

1 15 160 6 1 100

1 16 1 6 1 100

1 16 12 8 1 100

1 16 16 8 1 100

1 16 20 8 1 100

1 16 137 8 1 100
   

Table 3.2: Illustrative arc utilizations 

when cost and risk have equal weights 

 

 orig  dest arc class tFlag uArc

1 10 1 6 1 100

1 10 5 1 1 20

1 10 7 1 1 100

1 10 19 1 1 100

1 10 24 1 1 81

1 10 126 1 1 20

1 10 134 1 1 100

1 10 142 1 1 100

1 11 1 6 1 100

1 11 3 1 1 100

1 11 126 1 1 100

1 11 152 1 1 100

1 12 1 6 1 100

1 12 3 1 1 100

1 12 126 1 1 100

1 13 1 6 1 100

1 13 3 1 1 100

1 13 29 1 1 100

1 13 126 1 1 100

1 13 152 1 1 100

 orig  dest arc class tFlag uArc

1 14 1 6 1 100

1 14 3 1 1 100

1 14 15 6 1 100

1 14 126 1 1 100

1 14 138 1 1 100

1 14 152 1 1 100

1 14 159 6 1 100

1 15 1 6 1 100

1 15 5 1 1 20

1 15 7 1 1 100

1 15 22 1 1 100

1 15 24 1 1 81

1 15 126 1 1 20

1 15 134 1 1 100

1 15 160 6 1 100

1 16 1 6 1 100

1 16 5 1 1 20

1 16 7 1 1 100

1 16 20 8 1 100

1 16 24 1 1 81

1 16 126 1 1 20

1 16 134 1 1 100

1 16 142 1 1 100

            
Table 3.3: Illustrative link utilizations when cost, risk and tolls have equal weights 

 

 orig  dest arc class tFlag uArc

1 10 1 6 1 100

1 10 5 1 1 20

1 10 7 1 1 100

1 10 19 1 1 100

1 10 24 1 1 81

1 10 126 1 1 20

1 10 134 1 1 100

1 10 142 1 1 100

1 11 1 6 1 100

1 11 3 1 1 100

1 11 126 1 1 100

1 11 152 1 1 100

 orig  dest arc class tFlag uArc

1 12 1 6 1 100

1 12 3 1 1 100

1 12 126 1 1 100

1 13 1 6 1 100

1 13 3 1 1 100

1 13 29 1 1 100

1 13 126 1 1 100

1 13 152 1 1 100

1 14 1 6 1 100

1 14 3 1 1 100

1 14 15 6 1 100

1 14 126 1 1 100

1 14 138 1 1 100

1 14 152 1 1 100

1 14 159 6 1 100

 orig  dest arc class tFlag uArc

1 15 1 6 1 100

1 15 5 1 1 20

1 15 7 1 1 100

1 15 22 1 1 100

1 15 24 1 1 81

1 15 126 1 1 20

1 15 134 1 1 100

1 15 160 6 1 100

1 16 1 6 1 100

1 16 5 1 1 20

1 16 7 1 1 100

1 16 20 8 1 100

1 16 24 1 1 81

1 16 126 1 1 20

1 16 134 1 1 100

1 16 142 1 1 100
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These three examples show how the weights for the objectives can change the results obtained. The 

algorithm responds to the combinations of cost, risk and tolls that pertain to the links based on the 

weights employed. 

 

From a real-time data perspective, this algorithm would be sensitive to the changing travel times, 

since those affect the costs, and the tolls. If the tolls were time-of-day dependent or dynamic in 

response to traffic conditions (or incidents or some other consideration), the algorithm would take 

those changes into account and provide different suggestions for arc utilizations (and, implicitly, 

classes). 

3.2 K-SHORTEST PATHS 

A second option for dealing with multi-objective routing is to use a k-shortest path algorithm. In this 

case, multiple paths are identified for each OD pair based on a weighted composite objective function 

and how many paths to be identified, K. (The weighted composite objective function is the same as 

before. If o1 and o2 are two objectives of interest, then a weighted composite objective, z, can be 

computed as z = w1 o1 + w2 o2, and zp can be the value of z for path p). Pod is the set of K paths for 

OD pair od, and the set is in ascending order from the one with the best (lowest) value of zp to the 

worst (highest).  

 

3.2.1 Algorithm Description 

The procedure is an extension of Dijkstra’s (1959) algorithm, and it is as follows: 

 
1) For each OD pair in the network. 

a. Let ne be the current node n from which partial paths are being extended. Let r be an 

alternate label for ne. Initialize ne = r = O.  

b. Let aNode designate the “from” node for any arc. For the arcs emanating from a given 

node r, this means r is the aNode. Let bNode be the “to” node and let s be an alternate 

label for the bNode of the arc. Let a be a designation for a specific arc.  Let za be the 

composite objective function value for arc a.   

c. Let P(ne) be the sorted list of paths that are candidates for extension from ne. Let K be the 

number of paths in that set (hence K-shortest paths) and let I(ne) be the index on that set. 

Let k be the kth member of that indexed set. Set P(n) = Φ, the null set for all nodes n. Let 

I(n) = Φ as well, for all n.  

d. Let ke be the kth shortest path to ne and the one for which paths are being extended. Set ke 

= 1. (ne = r = O was set in 1a above). (There will be no other k values for the origin.)  

e. Let A(ne) be the arcs for which the aNode is ne. Set A(ne) = A(O) = A(r). Set Pnd = Φ. 

2) Create new partial paths that are one-arc extensions of ke from r. That is, for arcs a that are 

members of A(r), create new paths that extend to the nodes reachable via A(r) from r. 

a. See if the partial path would lead backwards (back to the node that created the current 

partial path). If it would, reject it. 

b. Otherwise, compute a composite objective function value for the new partial path. Let it 

be ze, being the sum of za values leading to s from O for this partial path.  

c. Check ze against the existing composite objective function values zk that already exist for 

s. If ze is smaller than z1, then place it first and bump the others up one value of k. Discard 



 

31 

 

the last one. If it is not first, then identify the k, k + 1 pair between which ze fits. Once this 

pair is found, including being last, bump the ones from k + 1 to K – 1 to one-higher value 

of k. Again, discard the last one.  

3) For all the partial paths P(n) that exist among all nodes n  

a. Select the one that has the smallest composite objective function value. Make it the new 

path for extension. 

b. Set r = s, the bNode for the arc that produced the partial path and update A(r). 

4) If a new path to extend has been identified, then go to step 2), otherwise terminate. 

 

3.2.2 Case Study Example 

The algorithm has been applied to the same network shown in Figure 3.1. Various weight 

combinations have been explored and insights developed. 

 

Figure 3.2 shows the 

findings for equal weights 

among cost and risk for 

OD pair (1,3). Since K 

was set to 4, four paths are 

shown. The numbers in 

the ovals indicate the 

sequence. The line from 

(0,115) to (115,0) shows 

the locus of points in the 

bi-objective space for 

which the composite 

objective function value is 

the same. Moving that line 

outward from the origin 

(without changing its 

slope) shows the locus of 

bi-objective points for 

which the composite 

objective function value is 

the same. Hence, the line touches path 1 first, then 2, 3, and 4. It is admittedly difficult to tell whether 

the line touches 1 or 2 first, and the same for 3 and 4, but examination of the numerical values for 

the composite objective function shows that this sequence is correct.  

3.3 MULTI-OBJECTIVE SHORTEST PATH 

A third option for dealing with multi-objective routing is to use an explicit multi-objective shortest 

path algorithm. This is somewhat computationally intensive, and it requires care. This section 

describes a procedure for creating multi-objective shortest paths. It is based on List and Turnquist 

(1991) and Turnquist (1987). 

 

Addressing the multi-objective shortest path problem explicitly means finding the paths that have 

non-dominated combinations of the objective function values. This has been illustrated in Figure 1.1 

 
Figure 3.2: K-shortest paths for OD pair (1,3) where equal 

weight is given to cost and risk.  
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using a bi-objective example. In that figure, paths A through H lie on the non-dominated surface. No 

other paths (down and/or to the left) dominate these. But, J and K are dominated. For them, there are 

other paths that have better combinations of the objectives. For example, D dominates both J and K. 

Drawing lines up from D and to the right will show this. J will lie within the space created by those 

lines. E also dominates K, but not J. In general, for paths A and B, A dominates B if, for every 

objective i, A has a better value than does B. If the objectives are all to be minimized, and zi is the 

objective function value for objective i, then, if zi(A) ≤ zi(B)   I, then A dominates B. It is useful to 

think of this as a backwards test that checks every pair of paths. That is, path B is dominated if there 

is any other path that dominates it. Hence, every path must be checked against every other path to 

see if it is dominated or not. In the case of Figure 1.1, it is possible to do the line creations described 

earlier and see, graphically, that, for paths A through H, no other path dominates these paths. There 

are no paths downward and to the left that “shadow” them. For path D, for example, there is no path 

closer to the origin that has a combination of the two objectives where both are better than the values 

for D. This is true despite the fact that paths A, B, and C have better values for objective 1, and paths 

E, F, G, and H have better values for objective 2. But, none of those paths have a combination of 

objective function values where both z1(*) ≤ z1(D) and z2(*) ≤ z2(D) where * is any one of the other 

paths. Even path C, which at first glance might appear to be dominated, is not. If the vertical and 

horizontal lines are created upward and to the right from paths B or D, the “shadows”, open boxes, 

that are upward-and-to-the right of these paths do not contain path C. Hence, C is not dominated by 

either of these paths (or by any other). 

 

3.3.1 Solution Algorithm 

An extension of Dijkstra’s algorithm can be created to obtain the non-dominated set of paths from O 

to D. The extension has three elements. First, the objective values for each path must be placed in a 

specified order that is always followed. The order is not important, it can be hierarchical if desired, 

with the value for the “most important” objective being placed first and the least, last, but that is not 

necessary. Just, the same order must always be used. To illustrate, if there are objectives z1, z2, z3, 

and z4, and the values for each can be from “a” to “z” with “a” being first and “z” last (for reasons 

that will be apparent momentarily), then the multi-objective “word” for each path is formed by 

placing the objective function values in a  specific sequence [z1, z2, z3, z4], or z1&z2&z3&z4 where & 

is the concatenation operator. For example, if path A has the values a, c, m, and d for objectives 1 

through 4 respectively, then the “word” for this path is “acmd”.  

 

The second element is to use a lexicographic (word)-sorted list of the paths, just like a dictionary 

does with words. That is, if there are two paths A and B, and the multi-objective word for A is “acmd” 

and for B it is “bqef”, then A comes before B in the sorted list. By extension, if there are four paths, 

A, B, C, and D, and their multi-objective words are acmd, bqef, acme, and rtuv, then their order is A, 

C, B, D, or acmd, acme, bqef, and rtuv. Moreover, if the objectives are measured numerically instead 

(which, clearly, is far more common), and paths A, B, C, and D have multi-objective words of [25, 

15, 23, 79], [23, 10, 15, 18], [25, 15, 23, 78], and [25, 15, 20, 73], then the their lexicographic order 

is B, D, C, A, or [23, 10, 15, 18], [25, 15, 20, 73], [25, 15, 23, 78], and [25, 15, 23, 79].  

 

The third element is to extend the partial paths based on their lexicographic sequence. This is the 

same as it is for the original Dijkstra’s algorithm, where the partial paths are kept in objective 

function value order, from lowest to highest (or best to worst), and the one with the lowest value is 

always the next one selected for extension. If the four partial paths above were the candidates for 
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extension, regardless of where they end (what node), then B would be selected. Moreover, if that 

partial path ended at node G, then the new, partial paths would be created by extending path B to the 

nodes that can be reached by using the arcs that start at G. (Those new paths would then be added to 

the lexicographic order and placed in their proper location.) 

 

An algorithm that implements this logic has been created using VBA inside an Excel workbook. It 

finds non-dominated paths for all OD pairs within a network. The pseudocode describing the 

algorithm is as follows: 
 

5) For each OD pair in the network. 

a. Let ne be the current node from which partial paths are being extended. Let r be an 

alternate label for ne. Initialize ne = r = O.  

b. Let aNode designate the “from” node for any arc. For the arcs emanating from a given 

node r, this means r is the aNode. Let bNode be the “to” node and let s be an alternate 

label for the bNode of the arc. Let a be a designation for a specific arc.   

c. Let Pe be the (lexicographic sorted) list of non-permanent paths that are candidates for 

extension and let pe be the one selected for extension. Let Np be the number of partial 

paths in that set and let Ip be the lexicographic index on that set. Let k be the kth member 

of that set. Set Pe = Φ, the null set, Ie = Φ, pe to φ, “null” and k = 0. 

d. Let A(ne) be the set of arcs for which the aNode is ne. Set A(ne) = A(O) = A(r). Set Pnd = 

Φ. 

e. Let Pnd be the set of non-dominated paths (to all nodes in the network starting from O).  

6) Create new partial paths that are one-arc extensions from r. That is, for arcs a that are 

members of A(r), create new paths that extend to the nodes reachable via A(r) from r. 

a. Check to see if the partial path would lead backwards (back to the node that created the 

current partial path). If it would, reject it. 

b. Otherwise, add the new partial path to Pe. 

c. Place it in its correct spot in the lexicographic order 

7) For the partial paths in Pe 

a. Select the one that is first in the sorted order. Make it the new candidate path for extension. 

b. Remove the candidate path from Pe. 

c. Check to see if it is non-dominated 

i. If it leads to a node that has never been visited, treat it as though it was non-

dominated and keep it. (It may, in fact, be dominated.) 

ii. Otherwise, check to see if it is dominated by any other path to s that has previously 

been saved to the list of non-dominated paths, Pnd.   

iii. If it is not dominated, then add the new partial path to Pnd.  (It has already been 

removed from Pe, so it no longer exists in that list either.) 

iv. If it is dominated, then “discard” it. (It will never be used as the basis for path 

extension because it is dominated.) 

d. If the partial path is not dominated, and its bNode is not D, then select the candidate path 

as the new one to be extended and set r = s, the bNode for the arc that produced the partial 

path and update A(r). 

8) If a new path to extend has been identified, then go to step 2), otherwise terminate. 

 



 

34 

 

3.3.2 Case Study Example 

In the current analysis, the non-dominated paths for cost and risk between every pair of nodes has 

been identified. Since the number of non-dominated paths can become countably infinite (until all 

possible non-looping paths are identified), an upper bound was placed on the extent to which the cost 

and risk values, separately, could be larger than the average values identified in the Dial-based 

algorithm. For the results presented here, that upper bound was set to 50% higher than the average.  

 

Since there are 86 nodes, there are 7,310 OD pairs (86*85) excluding the instances where O=D. 

Among those, 16,020 non-dominated paths were identified, or slightly more than 2 for each OD pair. 

The maximum number of non-dominated paths for a specific OD pair is 15 for OD pair (46,18). This 

means there are some OD pairs for which only one path exists. A total of 128,877 partial paths were 

saved among all OD pairs, or an average of between 17-18 for each OD pair. The maximum number 

saved was 171 for OD pair (46,83). 

 

An example non-dominated surface is shown for an OD pair (1,13) in Figure 3.2. The cost ranges 

from 170 to 230 and the risk 150 to 350. (The units are unimportant.) It is “obvious” that paths 1, 2, 

and 4 are non-dominated. But, paths 3 and 5 are also non-dominated. Careful examination of their 

numerical values for cost and risk show that neither paths 2 or 4 dominate 3; and path 4 does not 

dominate path 5.  

 

Similar results could be displayed for all other OD pairs, but the figures would not contain new 

revelations. The same trend would be seen. The paths stretch in a rough crescent from top left to 

bottom right, and there are some paths, like 3 and 5 that appear to be dominated; but, in fact, the 

numerical values would show they are not. 

 

 

 

 
Figure 3.3: Non-dominated paths for OD pair (1,13) 
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3.4 SUMMARY 

This section has focused on data-driven path choices, especially for trucks (freight). As a topic, path 

choice has been explored extensively. It may be the most comprehensively explored topic in the 

transportation research literature.  

 

But, much of the research work focuses on path choice in the abstract, simply assuming that there is 

an origin, a destination, a network, and paths to be identified. The notion that the path choice problem 

should emphasize trucks, especially, or path choice factors that are of special concern to trucks is 

uncommon. One exception is the HazMat literature, that explicitly focuses on path choice for trucks. 

Admittedly, the commodity is special, and there are special concerns, but the findings are 

generalizable to trucks more generally. This is especially true in two senses. First, there are only 

some links (arcs) in the network that are available for use. Many urban areas designate a truck 

network that can (must) be used except for local pick-ups and deliveries. Second, multiple objectives 

are considered. In the case of HazMat, the post common ones are cost and risk. But, there can be 

others, such as exposure to accidents or challenging geometric conditions.  

 

This study effort simply suggests that multiple objectives are typically important. And, it uses cost, 

risk, and tolls to motivate that thought. In fact, the tolls are seen as a control mechanism that network 

managers can use to encourage specific tendencies in the selection of truck routes. The idea is 

somewhat counter-intuitive since the “objective” is to keep the trucks off local streets and encourage 

them to use high0type facilities. This is important, because the more common purpose in introducing 

tolls is to rationalize the use of capacity-challenged facilities, like bridges and tunnels, that have 

limited capacity but high demand. Those tolls tend to discourage traffic from using facilities that are 

“good” from the perspective of truck paths. Hence, this motivates the idea that two toll structures 

might be useful. One would focus on auto trips, and discourage highly peaked demands, and highly-

peaked flows, and the use of capacity-challenged facilities where other (lower class facility) options 

are available. In contrast, the pricing structure for the trucks should encourage the use of high-type 

facilities (e.g., freeways) and discourage the use of low-type facilities (like local streets). It is 

important to see that this difference in perspective is important and to utilize this insight to design 

the network pricing structure. 

 

The section presents three ways to develop truck-focused paths. The first follows the paradigm 

created by Dial et al. (xxx) that emphasizes the distribution of flows among paths based on their 

relative “impedances” or costs. That is, paths with better (lower) costs would see a higher percentage 

of the flows and those with worse (higher) costs would see less. A drawback is that the procedure 

does not examine the objectives individually, it combines them through a generalized cost function 

and uses that function to compute the “cost” of each route. Also, the method is “weak” in that it does 

not identify paths explicitly. Rather, it ascertains the percentage of each OD flow that will use 

specific arcs. These values are commonly called arc utilizations and are employed heavily in traffic 

assignment procedures. In a truck context, the main nuance is that the generalized cost functions are 

different for the flow classes. Autos are focused on cost (based on travel time and distance) and to 

some degree tolls. But, the trucks are far more focused on tolls; and, to some degree risks. So, in 

identifying paths by class, it is important that these different generalized cost functions be employed. 

 

The second methodology identifies the K-shortest paths for each OD pair. As might be obvious, these 

paths range from the “shortest” (lowest cost) to the “longest” (highest cost). In the sense that a (linear) 
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generalized cost function is employed to identify the paths, all K of the paths reflect the weights 

employed by that function. The non-dominated paths that reflect trade offs among those objectives 

are not identified. In fact, as Figure 3.2 shows, the relative combination of the objectives can vary 

widely from one of the K shortest paths to another. This means the decision maker needs to be 

comfortable with seeing the ratios between the objectives vary considerably as the paths progress 

from k = 1 to k = K.  

 

The second methodology explicitly identifies the non-dominated set of paths for each OD pair. If 

there are two objectives, then the result is akin to Figure 1.3, as is shown by Figure 3.3, where a set 

of four non-dominated paths were found for a specific OD pair. An advantage to this methodology 

is that it identifies the set of paths that has the “optimal” tradeoffs among the objectives. That is, if 

switching from path A to path B allows one objective’s value to be made better at the expense of 

making another objective’s value “worse”, the least damage to the second objective is done by 

selecting path B. Also, unlike the first path choice algorithm, the paths are identified explicitly. The 

two significant drawbacks are 1) the algorithm, unlike Dial’s (1971) algorithm, it provides no 

guidance about the probabilities that the paths should be chosen. Or, alternately put, the percentage 

of flow that should use any path. Also, if flow is moved from one path to another, then a shift must 

be made to a path that proportionally involves a different weighted combination of the objectives, 

because it lies on the non-dominated surface, and those paths, inherently, span the space between 

and among the solutions that optimize the objectives one at a time. 

 

It is not that one of these path choice options is “best” or “correct”. They have strengths and 

weaknesses. Any one of them provides path choices for the traffic assignment problem that are useful 

and valuable. Also, they can all be sensitive to multiple objectives, either through a generalized cost 

function, or through an explicit identification of the non-dominated multi-objective path options. 

Which one is best to use depends on the manner in which the traffic assignment problem is 

approached. In this study, the third one has been carried forward because it provides a set of paths 

that lie on the non-dominated surface. 

 

All the path choice methods can be made sensitive to real-time information about the evolving 

network conditions. They can all make use of emerging trends in the network travel times (rates). 

And, they can be sensitive to the inclusion / exclusion of specific arcs because of use restrictions (no 

trucks), either permanent, temporary, or condition (time-of-day) dependent; and they can be sensitive 

to changes in the “impedances” for the arcs in the sense of varying tolls. The one unexpected insight 

is that the tolls pertaining to trucks might be different from and motivated by a different objective 

that those that pertain to autos. In fact, the two may have opposite trends. While the auto-focused 

tolls may be intended to discourage peaking and the use of capacity-challenged arcs, the truck tolls 

may want to discourage use of local streets and low-type facilities; and encourage trucks to use the 

high-quality facilities, which may, in fact, be the ones that are capacity-challenged. This means the 

trucks are (or should be) encouraged to use the “best” facilities so that they do not “rat run” through 

the network to avoid tolls on the best facilities available. Rather, the tolls should encourage the trucks 

to stay on the best arcs in the network so that they do not seek paths that use local streets. This is a 

pricing strategy that has significant, “freight-first” implications. 
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4.0 TRAFFIC ASSIGNMENT  

This section addresses the issue of traffic assignment in the context of a truck-first perspective. As 

described in Section 1.0, researchers typically think about traffic assignment in the context of urban 

highway networks, with the “objective” of finding “the best” way for trips to traverse a capacitated 

network, across space and time, from origins to destinations. The idea of “best” focuses on 

optimizing one or more measures of network (system) performance.  

Section 1.0 provides a detailed description of the math typically involved in formulating traffic 

assignment problems. This section focuses more narrowly on the algorithm that has been developed 

to place an emphasis on trucks. 

4.1 PROBLEM FORMULATION 

There are many ways to formulate the problem. Consistent with Section 1.0, the network is assumed 

to be comprised of one-way arcs. Every bi-directional link has two one-way arcs. Paths are sequences 

of arcs. The paths that exist between origin and destination nodes are the most important ones.  

The “objective” is to find path flows (between the OD pairs) that “optimize” one or more objectives. 

Here, three are considered: total cost, equity in cost among all OD travelers, and network resilience. 

The first is equivalent to the system optimal objective described in Section 1.0; the second, the user 

equilibrium “objective”; and the third, the network resilience objective. 

Two ways are common for “solving” the problem. One is to formulate it as a mathematical 

programming problem for which a simultaneous optimal solution is to be found and solve it using a 

general-purpose problem solver, like LINGO or CPLEX. The other is to treat it algorithmically with 

a sequential, customized solver, that iterates between path development and traffic assignment. The 

math programming approach is employed here. 

The notation for the model is as follows. Let z be a vector of objectives to be considered. Specifically, 

z1 is the total cost of all travel; z2 is the sum of exceedance “gaps” that exist between target travel 

costs for the OD pairs and the costs that arise for the flows; and z3 is the sum of exceedance “gaps” 

between target v/c (volume to capacity) targets that exist for the arcs in the network and the v/c ratios 

that arise. Set N is the set of all nodes, and n is an index on those nodes. Some of the nodes are origin/ 

destination locations. That is, network flows originate and terminate at those nodes. The others are 

junctions between network arcs. Set A is the set of all arcs. Each arc a has a set of attributes: its multi-

class flow rates (e.g., autos and trucks), vaa and vta; the overall flow rate combining the classes, va; 

the target upper bound for that flow rate, va0; the extent to which that target is exceeded, vae; the  

number of lanes nla, used to compute the capacity Ca; and the additional capacity dCa, needed to 

accommodate the flow (and to ensure that feasible solutions are found). The paths have a flow rate 

for autos, vap, and trucks vtp; a cost for the autos, cap, and the trucks ctp; target values for those costs, 

ca0p and ct0p; and extents to which those target costs are exceeded, caep and ctep. The path costs are 

computed by summing the arc costs, caa and cta. There are sets that map that paths to the ODs, Pod, 

and the arcs, Pa.    

The paths are created by the multi-objective path building algorithm described in Section 3.3. The 

fact that all non-dominated paths are employed means that the objective functions affect the paths 
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that are chosen for any given problem solution. The two objectives considered in the multi-objective 

path search algorithm were cost and risk. And, tolls were included in the computation of the cost. 

Separate paths could be identified for autos and trucks, with the tolls being included or not, but this 

has not yet been done. Moreover, real-time data about the distributions of travel times on the arcs 

could be used to determine the assignments identified; and, from a feedback perspective, then 

influence the vector of tolls employed. 

The objective is to minimize the weighted sum of the objectives zi: 

i i

i

z w z            (4-1) 

The first objective is the total cost of all travel: 

1 ( )p p p p

p

z ca fa ct ft           (4-2) 

Summing over the OD pairs is implicit because each path belongs to some OD pair. This objective 

can also, alternately, be computed based on the arc flows and costs: 

1 ( )a a a a

a

z ca fa ct ft           (4-3) 

The second objective is the sum of the extent to which the path costs exceed target values: 

2 ( )p p

p

z cae cte           (4-4) 

where: 

0 0p p p p p pcae ca ca and cte ct ct           (4-5) 

The values of caep and ctep are zero if cap ≤ ca0p and ctp ≤ ct0p respectively. This is a surrogate for 

the user equilibrium objective. If the target values are set to the equilibrium costs, then (4-4) measures 

the extent to which those values are exceeded among all paths. 

The third objective captures the extent to which target v/c ratios are exceeded on the arcs: 

2 a

a

z fe            (4-6) 

where: 

0a a afe f f            (4-7) 

and 

a a af fa ft            (4-8) 
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where  is the passenger car equivalent of a truck (typically 2.0 for urban settings) and the values of 

faa and fta are computed as follows: 

a a

a p a p

p P p P

fa fa and ft ft
 

           (4-9) 

The target values are based on a policy-based upper limit β on the v/c ratio that is to be achieved, the 

nominal capacity of the arc Ca and the capacity, if any, that has been added, dCa : 

 

0 ( )a a af C dC            (4-10) 

The fourth objective captures the cost of adding capacity to the network: 

4 a a

a

z d dC             (4-11) 

where λ is the per-unit cost of adding capacity to an arc and da is the length of the arc. 

The travel times on the arcs a function of the flows on the arc: 

0 (1.0 ( / )a a a at t v C            (4-12) 

where, the value of α is 0.1 and β is 1.0 (to avoid strong non-linearity). The costs are given by a 

weighted combination of these travel times and the arc lengths, to capture time and distance-related 

cost elements. The fact that the times are sensitive to the flow rates means the overall problem is 

non-linear. 

All the flow Fod for each OD pair must be assigned to one or more of the paths that exist: 

 

od od

p od p od

p P p P

fa Fa and ft Ft
 

          (4-13) 

4.2 CASE STUDY 

To show how the model can be used to obtain traffic assignment solutions, it has been applied to the 

same Albany network used previously and described in Section 3.1. The problem formulation shown 

in Section 4.1 was translated into a LINGO problem statement. The actual LINGO model statement 

is shown below. It may be of limited value to most readers. But, to some, it will be particularly clear 

about the way in which the problem has been represented:  

 

************************************* 

 

model: 

 

  sets: 

    objs/1 .. 4/: z, w; 

    node/1 .. 86/;  
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    arc/1 .. 248/: va, vaa, vat, va0, nln, d, ca, ra, csta, cstt, dv, dv0, cap, dcap; 

    path/1 .. 224/: vpa, vpt, cpa, cpt, cpea, cpet, cp0a, cp0t, pfr, pto, ptf; 

    flow/1 .. 202/: odo, odd, oda, odt, odflow; 

    pamap/1 .. 393/: pk, ak; 

  endsets 

 

   [obj] min = @sum(objs(i): w(i)*z(i)); 

   z(1) = @sum(arc(n): csta(n)*vaa(n) + cstt(n)*vat(n)); 

   z(2) = @sum(path(p): cpea(p) + cpet(p)); 

   z(3) = @sum(arc(n): dv(n)); 

   z(4) = @sum(arc(n): d(n)*dcap(n)); 

    

   @for (flow(k): [aflw] oda(k) = (1-tpc)*odflow(k)*100); 

   @for (flow(k): [tflw] odt(k) = tpc*odflow(k)*100); 

   @for (flow(k):[toda]  

       @sum(path(p) | pfr(p) #eq# odo(k) #and# pto(p) #eq# odd(k): vpa(p)) = oda(k) );  

   @for (flow(k):[todt]  

       @sum(path(p) | pfr(p) #eq# odo(k) #and# pto(p) #eq# odd(k): vpt(p)) = odt(k) );  

   @for (path(p)| ptf(p) #eq# 0:[ntrk] vpt(p) = 0 );  

 

   @ for (arc(n): [avol] vaa(n) = @sum(pamap(k) | ak(k) #eq# n : vpa(pk(k))) ); 

   @ for (arc(n): [tvol] vat(n) = @sum(pamap(k) | ak(k) #eq# n : vpt(pk(k))) ); 

   @ for (arc(n): [tavol] va(n) = vaa(n) + 2.0*vat(n) ); 

   @ for (arc(n): [capa] va(n) < cap(n) + dcap(n) ); 

   @ for (arc(n): [dvval] dv(n) > va(n) - 0.7*(cap(n) + dcap(n)) ); 

   @ for (arc(n): [acsta] csta(n) = ca(n)*(1.0 + 0.2*dv(n))); 

   @ for (arc(n): [acstt] cstt(n) = ca(n)*(1.0 + 0.2*dv(n)) + ra(n) ); 

   @ for (arc(n): [acap] cap(n) = 1700*nln(n) ); 

   @ for (arc(n): [udcap] dcap(n) < 1700 ); 

 

   @for (path(p): [pcsta] cpa(p) = @sum(pamap(k) | pk(k) #eq# p: csta(ak(k))) );  

   @for (path(p): [pcstt] cpt(p) = @sum(pamap(k) | pk(k) #eq# p: cstt(ak(k))) );  

   @for (path(p): [covra] cpea(p) > cpa(p) - cp0a(p) ); 

   @for (path(p): [covrt] cpet(p) > cpt(p) - cp0t(p) ); 

   @for (path(p): [pcst0a] cp0a(p) = @sum(pamap(k) | pk(k) #eq# p: ca(ak(k))) );  

   @for (path(p): [pcst0t] cp0t(p) = @sum(pamap(k) | pk(k) #eq# p: ca(ak(k)) + ra(ak(k))) );  

 

data: 

  w     = 1.0, 1.0, 1.0, 1.0; 

  tpc   = 0.1; 

  va0   = @ole('Albany.xlsm','va'); 

  d     = @ole('Albany.xlsm','dist'); 

  odo   = @ole('Albany.xlsm','odo'); 

  odd   = @ole('Albany.xlsm','odd'); 

  odflow = @ole('Albany.xlsm','odflow'); 

  ca    = @ole('Albany.xlsm','ca'); 

  ra    = @ole('Albany.xlsm','ra'); 
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  nln   = @ole('Albany.xlsm','nln'); 

  pfr   = @ole('Albany.xlsm','pfr'); 

  pto    = @ole('Albany.xlsm','pto');  

  ptf    = @ole('Albany.xlsm','ptf'); 

  pk     = @ole('Albany.xlsm','pk'); 

  ak     = @ole('Albany.xlsm','ak'); 

  @ole('Albany.xlsm','vpa') = vpa; 

  @ole('Albany.xlsm','vpt') = vpt; 

  @ole('Albany.xlsm','cpa') = cpa; 

  @ole('Albany.xlsm','cpt') = cpt; 

  @ole('Albany.xlsm','csta') = csta; 

  @ole('Albany.xlsm','cstt') = cstt; 

  @ole('Albany.xlsm','vaa') = vaa; 

  @ole('Albany.xlsm','vat') = vat; 

  @ole('Albany.xlsm','dcap') = dcap; 

  @ole('Albany.xlsm','zVal') = z; 

  @ole('Albany.xlsm','objAssn') = obj; 

enddata 

 

*********************************** 

  

The “sets” section defines the size of the problem and the choice variables employed. The statements 

between the “endsets” and “data” lines define the equations in the problem. The @for statements 

identify the ranges over which the 

statements pertain; the @sum statements 

identify the limits over which sums are to 

be computed; the labels in […] identify 

names for the constraints; and the 

qualification statements following the 

vertical lines “|” qualify the conditions for 

which the equations are to be created 

and/or the linkages between choice 

variables that are in different sets. The 

@ole statements connect the LINGO 

formulation to an Excel workbook that 

contains the data. Where the @ole is on the 

right-hand side of the assignment, data are 

being transferred from the Excel workbook 

into LINGO. Where they are on the left-

hand side, results from LINGO are being 

deposited into the Excel workbook. The 

named ranges that follow identification of 

the workbook indicate where the data 

reside or into which the results should be 

placed. 

 

 
Table 4.1: Excerpt of the path-based results from 

solving the multi-class traffic assignment 

problem 

 

o d p tf vpa vpt cpa cpt

1 9 1 1 1283 143 60 145.3

2 9 2 1 4920 547 3625 3629

2 12 3 1 2206 245 76.8 112.8

2 47 4 1 647 71.9 32.4 40.43

2 84 5 1 1028 114 11.3 13.47

3 4 6 1 1133 126 24 82.27

3 8 7 1 5091 566 8102 8120

3 18 8 1 353 39.2 54 275.1

3 18 9 1 0 0 8143 8177

3 67 10 1 4568 508 2264 2268

3 84 11 1 1643 183 14.2 23.37

4 3 12 1 1133 126 24 82.27

4 5 13 1 212 23.5 54 262.2

5 4 14 1 212 23.5 54 262.2

5 11 15 1 670 74.4 12 12.9

5 75 16 1 1643 183 9 12.13

6 10 17 1 1238 138 30 95.06

7 8 18 1 1138 126 14.4 21.15

7 10 19 1 3940 438 365 373.2

7 17 20 1 1601 178 31.2 71.41

7 17 21 1 0 0 44.4 83.22



 

42 

 

The results from exercising the model can be presented in a tabular format. Table 4.1 shows an 

excerpt of the path-based output. Each row shows the origin, destination, path, a truck-use flag (1 

means trucks can use the path), the auto flow rate on the path, the truck flow rate on the path, the 

auto cost on the path and the truck cost for the path. The auto and truck costs are different because 

the cost equations involve different weights for a) time, distance, and toll-based costs and b) risk. 

 

An excerpt of the results from an arc perspective are shown in Table 4.2. Each row shows the arc, its 

from and to nodes, its class, truck use flag, and number of lanes; its nominal flow rate based on field 

observations, its nominal cost and risk, predicated on field observations (especially of the travel 

times) during the timespan (e.g., AM peak) of interest, and the results of the traffic assignment: the 

auto and truck flow rates, the auto and truck costs (again, different because of the weights employed), 

and the capacity, if any, added to the arc to accommodate the flow rates.  

4.3 SUMMARY 

This section has described a realization of the traffic assignment problem in which trucks are 

represented separate from autos. The problem is non-linear in that the travel times on the arcs are 

sensitive to the arc flows. And that, in turn, leads to one of the objectives being quadratic. The terms 

involve the multiplication of one choice variable times another. Fortunately, for small problems, 

there are generalized solvers that can deal with such situations. For large-scale problems, like the 

ones that are faced for most metropolitan areas, such a non-linear formulation is not practical to solve 

explicitly. But, for illustration purposes, a simplified network for the Albany, NY metropolitan area 

is used in the case study to show the type of results obtained.  

 

The most important nuance in the model is the fact that the path choices for the trucks are different 

from those for the non-trucks (autos). The generalized cost function is different and the network over 

 
Table 4.2: Excerpt of the arc-based results from solving the multi-class traffic assignment 

problem 

 

Link Arc From To Class tFlag Dist nLane Flow Time Cost Risk vaa vat csta cstt dcap

1 1 1 9 6 1 5 1 1426 8.6 60 85.3 1283 143 60 145.3 541

2 2 2 9 1 1 1.2 3 5467 1.1 14.4 4.24 4920 547 3625 3629 1700

3 3 2 12 1 1 6.4 3 2451 5.9 76.8 36 2206 245 76.8 112.8 0

4 4 2 47 1 1 2.7 1 719 2.5 32.4 8.03 647 71.9 32.4 40.43 0

5 5 2 84 1 1 0.94 3 1142 0.9 11.3 2.19 1028 114 11.28 13.47 0

6 6 3 4 6 1 2 1 1259 3.4 24 58.3 1133 126 24 82.27 278

7 7 3 8 1 1 2.3 3 5657 2.1 27.6 18.6 5091 566 8102 8120 1700

8 8 3 18 6 1 4.5 1 392 7.7 54 221 353 39.2 54 275.1 0

9 9 3 67 1 1 1.14 3 5075 1.1 13.7 4.43 4568 508 2264 2268 1700

10 10 3 84 1 1 1.18 3 1826 1.1 14.2 9.21 1643 183 14.16 23.37 0

11 11 4 5 6 1 4.5 1 235 7.7 54 208 212 23.5 54 262.2 0

12 12 4 6 8 1 0.5 1 0 1.2 6 10.9 0 0 6 16.91 0

13 13 4 9 8 1 3.6 1 0 8.6 43.2 142 0 0 43.2 184.8 0

14 14 5 11 1 1 1 3 744 0.9 12 0.9 670 74.4 12 12.9 0

15 15 5 75 6 1 0.75 2 1825 1.3 9 3.13 1643 183 9 12.13 0

16 16 6 7 8 1 1.2 1 0 2.9 14.4 28.4 0 0 14.4 42.83 0

17 17 6 10 6 1 2.5 1 1375 4.3 30 65.1 1238 138 30 95.06 461

18 18 7 8 1 1 1.2 3 1264 1.1 14.4 6.75 1138 126 14.4 21.15 0

19 19 7 10 1 1 2.5 3 4378 2.3 30 8.37 3940 438 364.8 373.2 1700

20 20 7 16 8 1 2.7 1 0 6.5 32.4 35 0 0 32.4 67.42 0
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which the trucks can travel is more restrictive. The trucks take into consideration the risk associated 

with traversing the arcs (as in exposure to accidents) and the tolls are given considerable weight. 

Also, the toll structure is different for trucks than it is for autos. The tolls for autos discourage use of 

capacity-challenged facilities like bridges, tolls, and heavily used freeway links, encouraging the 

vehicles to use other, comparable, but “lower quality” facilities, like the arterials, in their paths. For 

the trucks, however, the toll structure discourages the use of local streets and other “lower class” 

facilities so that neighborhoods are not exposed to unnecessary truck traffic. And, they are 

encouraged, through low tolls, to use the “high type” facilities, such as freeways, except for local 

pickups and deliveries. This bi-pronged pricing strategy helps to put “freight-first” in the context of 

the traffic assignment. And, it leads to solutions that the public is “more likely” to accept because it 

discourages trucks from using local streets and highways. 

 

The mathematical equations that are involved in the traffic assignment model are presented and 

described as well as the LINGO problem statement which implements them. A case study example 

is presented, with excerpts of the results, so that the reader can gain a sense of the results obtained. 

(The complete, machine readable workspaces exist and are available for anyone wishing to use 

them.)   
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5.0 BRAESS’ PARADOX 

This section focuses on an examination of Braess’ paradox under stochastic conditions. Much of 

what is presented is based on the research work of Yi Chen, a doctoral student. The paradox asserts 

that adding capacity to a network, in the form of a new arc, can degrade overall performance; for 

example, increasing travel times. For example, as was discussed in Section 1, for the network shown 

in Figure 5.1, adding arc RS to the network increases the travel times.  

If the total flow between O and D is 1000 trips per hour and arc RS is absent, then the trips will 

divide equally between path ORD and path OSD. It is easy to see this because the total travel time 

equations on the two paths are the same: 60 + 

0.04*f. So, if fORD = fOSD, then tORD = tOSD.  

And, if the total flow is 1000 trips, then 500 

trips should use each of the paths because the 

travel times would both be 80 = 60 + 

0.04*500.  

If arc RS is introduced, however, from R to 

S, and nothing else changes, Wardrop’s 

(1952) second principle suggests that users 

will check to see if ORSD is faster. And if so, 

they will switch. For the first user to switch, 

say from ORD to ORSD, the travel time will 

be tORSD = 40.05 = 0.04*500 + 0.01*1 + 

0.04*501 = 20 + .01 + 20.04. In this case, that 

switching will continue from both ORD to ORSD and OSD to ORSD until if fORD = 0, fOSD = 0, and 

if fORSD = 1000. At that point, tORSD = 90 = 40 + 10 + 40; and tORD = 100 = 40 + 60; and tOSD = 100 = 

60 + 40. No user has an incentive to shift from ORSD to one of the other two paths. Yet, 

unfortunately, this equilibrium condition involves a trip time for everyone which is larger than it was 

without arc RS, 90 versus 80. But, under the premises of user equilibrium, there is no incentive for 

any user to leave path ORSD. So, introducing arc RS, even though it produces a much shorter travel 

time for the first user, 40.05 versus 80, in the limit, once all the traffic shifts, the result is a higher 

travel time.  

5.1 SETTING THE CONTEXT 

Milchtaich (2005) concludes that Braess’ paradox cannot occur unless the network contains a 

network (or subnetwork) like the one shown in Figure 5.1 This diamond-shaped structure with a 

transverse connection is called a Wheatstone (1843) bridge. It is the operation of the two competing, 

parallel, and nearly identical cost routes that is confounded (compromised) by the new arc. 

 

Most studies of Braess’ paradox assume the flows are directional, from O to D, there are no other 

flows. Also, the arc cost functions are such that one arc, from R to S in this case, can cause the 

paradox to occur.  

 

 
Figure 5.1: A setting where Braess’ paradox 

arises 
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In this study, however, the coefficients of the arc cost functions are random variables, so it is not 

known a priori, whether the network will exhibit the paradox at all; and if it does, it is not possible 

to pre-determine whether arc RS will cause the paradox. It might be arc SR instead. Hence, both arcs 

RS and SR are included in the network. (This is also a more realistic, since, when links are added to 

the network, in most cases two-way flow is allowed.)  

 

Most studies focusing on Braess’ paradox assume that the network is operating under user 

equilibrium conditions, as has been done in the example above. But, in the study presented here, the 

users are assumed to be of two types as was assumed by Bennett (1993): those that align with the 

user equilibrium (UE) objective and those that adhere to the system optimal (SO) objective. The 

former, it could be argued, could be trucks; since they are profit motivated. The latter could be autos, 

since citizens, in general, are “expected” to follow public agency edicts about minimizing the societal 

cost of the transport activity.  

 

Given the six-arc network shown in Figure 5.1, there are four paths (arc sequences): [1, 3], [2, 4], 

[1, 5, 4], and [2, 6, 3]. Given the way that the network is drawn, some of these paths, like [2, 6, 3] 

seem like non-starters. But, the reader must keep in mind that the coefficient values on the arcs are 

being treated as random variables, so the actual travel time-scaled depiction of the network might 

be very different from the one drawn. 

 

5.2 PROBLEM DEFINITION 

The following inputs are involved: 

 
:           .

:           .

:   ,   .

:     ,  1 6.i

i

Vu demand for the traffic that subject to user equilibrium criteria

Vs demand for the traffic that subject to system equilibrium criteria

V total demand V Vu Vs

ca capacity for link i i

a

 

 

:        .

:       .i

slope of the link travel time function

intercept of link travel time functionb

 

 

The variables are:  

 

u :             path ,  

:             path ,  .

:      ,  

i

i

i

volume for the traffic that subject to user equilibrium criteria on i i I

s volume for the traffic that subject to system equilibrium criteria on i i I

vp traffic volume on path i





,  .

:             link j,  j J.

:             link j,  j J..

:   

i i i

j

j

j

i I vp u s

u volume for the traffic that subject to user equilibrium criteria on

s volume for the traffic that subject to system equilibrium criteria on

va traffic v

  





n

   j,  j J,  s .

:      ,           ta *va ,j J.             

j j j

j j j j j

olume on link va u

ta travel time on link i as a linear function of traffic volume on it a b

  

  
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6

1
:      ,  

1,  j is on path i
:

            0,o/ w                      

:  index set for path,I={1,2,3,4}.

J: index set for link, J={5,6,7,8,9,10}

i i ij jj

ij

tp travel time on path i tp ta i I

link

I






 


 




 

 

Feasible flows for the network must satisfy the following constraints: 
 

tp = ( , )*                             i I                                                               (5.1)

( , )*                              j                                    

i jj J

j ii I

i j ta

u i j u J











 



                             (5.2)

( , )*                               j                                                                (5.3)

va =u +s                                          

j ii I

j j j

s i j s J


 
  j ;                                                               (5.4)    

vp  = u +s                                           i ;                                                               (5i i i

J

I



 .5)

 = Vu;                                                                                                              (5.6)

 = V-Vu;                                                        

ii I

ii I

u

s








n

                                                  (5.7) 

ta  = b  + a *va                               j ;                                                               (5.8)

va  < ca                

j j j j

j j

J

                             j ;                                                               (5.9)

1 0 1 0 0 0

0 1 0 1 0 0
( , )                                                       

1 0 0 1 1 0

0 1 1 0 0 1

J

i j



 
 
   
 
 
 

'

                    (5.10)

(i, j)                                                                                                          (5.11)Z  
 

 

The SO problem can be stated as: 

 

 

( 1)    min  ta *va *

           :     (5.1)-(5.11)

j j i ij J i I
P tp vp

st

 
 

  

 

The UE problem can be stated as: 

 

 

va

0
( 2)    min  

             :     (5.1)-(5.11)

j

jj J
P ta dx

st

   

 

Bennett (1993) shows that the multi-class traffic assignment problem involving both SO and UE-

motivated users can be formulated as follows: 
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0

1
( 3)   min  ( s )

1

           :     (5.1)-(5.11)

jva
n

j j j j jj J
P a x dx b u b

n

st


 


   

 

Bennett (1993) does not consider capacity constraints. However, Larsson and Patriksson (1995) show 

that under user equilibrium conditions, capacity can be included as a side constraint. The revised 

formulation is equivalent to solving the traditional Wradrop (1952) equilibrium problem with a 

generalized link travel cost function. The augmented objective function becomes the original travel 

cost function plus a Lagrange multiplier for each capacity constraint. It can be proved that the same 

equivalence holds under the multi-equilibrium situation and thus the capacity constraints can be 

included by adding side constraints to the model. 

 

Theorem 5.1. In P3, let 𝛽 = (𝛽1 … 𝛽6)𝑡 be the vector of Lagrange multipliers for the capacity 

constraints (5.9) and let 𝜇 = (𝜇1 … 𝜇31)𝑡 be the Lagrange multipliers for constraints 1 to 8). Then P3 

is equivalent to following traditional multi-equilibrium problem: 

 

0

n

1
( 4)   min  ( ( ) ( )s )

1

           st: (5.1)-(5.11)

and

           ta  = b  + + a *va           ;                                                                       (

jva
n

j j j j j j jj J

j j j j j

P a x dx b u b
n

j J

 




   





 

5.12)

 

 

The proof is as follows: in cases where the travel cost functions are separable, then (P2) is a convex 

network optimization problem. Thus, for (P3) and (P4) the first part of the objective function can be 

shown to be convex and the second and third parts of the objective function are linear and convex. 

Since the sum of convex functions is still convex, the objective function is also convex. 

 

Problem P3 can be written in the following general form: 

 

( 5)    min f(x)

           st:  h(x)=0;

                g(x) 0;

P



  

 

This is a convex programming problem. 

 

 is the vector of Lagrange multipliers for the constraints h(x)=0.

 is vector of Lagrange multipliers for the contraints g(x)=0



   

The optimal solution for P5 can be found by solving: 
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( ) ( ) ( ) ( ) 0           (5.13)

( )

(5.13) ( ) ( ) ( ) 0        (5.14)

i i i i

i i

i i

L x f x h x g x

g x e

L x f x h x

 

 

      

 

      

 



  

Problem P4 can be re-written in the following form: 

 
1

1

( 6)    min f (x)

           st:  h (x)=0;

P
 

This is a convex programming problem; hence:
1 1( ) ( ) and f ( ) ( )h x h x x f x      . This means 

the optimal solution for P6 is the solution for: 

 
1 1 1( ) ( ) ( ) ( ) ( ) ( ) 0i i i iL x f x h x L x f x h x             . 

 

Thus, P5 and P6 have the same optimal solution. And, in as much as they are both convex problems, 

they are equivalent. Thus, the problem with capacity-related side constraints can be treated as a 

generalized Wardrop equilibrium problem. 

  

The link travel times can be assumed linearly depend on the traffic volume on the link:  

 

 *j j j jta a va b   

 

By rearranging the equations and setting the traffic volume on each path as a decision variable, it is 

possible to write the problem P3 as follows: 
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5.3 CASE STUDIES 

As mentioned previously, the main objective of this study is to examine the relationship between the 

network parameters and system performance. Although the network shown in Figure 5.1 is simple, 

it has many parameters that need to be studied. These are 1) the slope and intercept values for the 

travel time functions on the arcs, 2) the capacity values for each arc, 3) the total traffic volume 

assigned to the network, and 4) the breakdown of users between altruistic and selfish.  
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To stress the importance of this experimental design, unlike most studies of the paradox, it is assumed 

that the users are of two types, altruistic and selfish, with a breakdown between the two. This means 

the solutions are not just UE or SO. They are a combination. So, the travel times on the paths may 

or may not all be the same. If the users are all UE and the capacities of the arcs are non-binding, then 

the travel times will be the same on all paths (because the UE solution will pertain), but otherwise, 

they may not. Also, the capacity of the new arc can vary. (In Braess’ original study it was only either 

zero or infinite.) It is purposefully varied parametrically from zero to infinity; looking to see if the 

paradox arises for any two capacity values c1 and c2 across the spectrum, where c2 > c1. It is concluded 

that it does arise if the average travel time for c2 is greater than it is for c1, that is 2 1t t , or if the 

maximum travel time among all paths for c2 is greater than it is for c1, that is 
2 1
ˆ ˆt t . The notation, 

here, is that t•  is the average travel time for all paths and t̂•  is the maximum travel time among all 

used paths.  

 

From preliminary analyses, it became apparent that Braess’ definition of the paradox would be 

insufficient to capture the results of the analyses. An expanded set of three paradox conditions was 

needed (the definition of t can be either the maximum or the average):  

 

1) max 0t t . This is the original definition of the paradox, if only UE users exist, with the 

nuance that the travel times may not all be the same since both SO and UE users exist. 

2) For some c1, where c0 < c1 < cmax, 1 0t t . That is, the paradox arises for at least one value 

of capacity in-between c0 and cmax.  

3) For some c1 and c2, where c0 < c1 < c2 < cmax, 2 1t t . That is, the paradox arises for some 

intermediate pair of capacities. 

 

A random number generator is used to create realizations of the network. For each, the performance 

trends are obtained such as the influence of the capacity of the new arc. That is, how the patterns in 

the maximum and average travel times are influenced by the capacity. Many realizations are 

examined so that the percentage occurrence of the paradox can be tracked to the combinations of 

parameter values. Statistical analyses are conducted to gain a general understanding of the trends.  

 

Illustrations of the three conditions are shown in Figure 5.2 for the averages and maximums. The 

left-hand graph shows the average travel time trends. The one at right shows the maximum.  

 

 
Figure 5.2: Trends in travel times as a function of arc capacity  
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It is important to note that the trends are piecewise linear. The travel times (average and maximum) 

do not simply increase as the capacity increases, which is the impression given by Braess’ original 

analysis. Rather, they increase and decrease as the capacity changes, showing the impacts on the path 

choices. For the graph at the left, conditions 1, 2, and 3 are all satisfied. The first increasing trend 

satisfies condition 2; the second upward trend satisfies condition 3, and the graph, overall, satisfies 

condition 1. For the maximum travel time trends, condition 3 is satisfied, but not either 1 or 2. That 

is, there are combinations of c1 and c2, where c0 < c1 < c2 < cmax, such that 
2 1
ˆ ˆt t , but there is no c1 

such that 
1 0
ˆ ˆt t , nor is it true that 

max 0
ˆ ˆt t . This does show that the paradox assessment is complex, 

and care is required in analyzing and presenting the results, but the nuances do show that the paradox 

can arise under various conditions.  

 

To gain a sense of when the paradox occurs, 30,000 network realizations were examined. Each one 

was created by randomly sampling values of the intercepts and slopes for the six arcs and the 

percentage of UE users (the others are SO). The values of aj, bj, and Vu, were sampled as follows: 

 

a [0,0.02],

[0,90],

[0, 4000]

j

j

Unif j J

b Unif j J

Vu Unif

  

  



  

 

For each realization, the nonlinear network flow optimization problem was solved multiple times for 

discrete values of capacity on arcs 5 and 6. The capacities of both arcs were increased simultaneously 

with the expectation that only one of the two arcs would be used for any realization. The main metrics 

of interest were:  1) the traffic volumes on the four paths 2) the travel times on the four paths, 3) the 

weighted average path travel time, and 4) the maximum path travel time. 

 

A graphical tool was used to visualize the trends in the average and maximum travel times. By 

generating a set of plots for each realization it was possible to ascertain:  

 
1) Whether the paradox occurs for the average travel time or the maximum travel time; 

2) The number of local minimum/maximum points and their coordinates; 

3) The number of increasing/decreasing intervals and how those intervals were ordered; 

4) The piecewise linear relationship between the maximum/minimum points and the 

increasing/decreasing intervals based on the crossroad capacity. 

An example realization helps illustrate. The parameter values that pertain are shown in Table 5.1. 

 

a1 a2 a3 a4 a5 a6 

0.0121 0.0192 0.0022 0.0069 0.0044 0.0050 

b1 b2 b3 b4 b5 b6 

14.1635 65.8377 61.7673 0.9927 6.8979 69.3316 

Vu      
1983.3699      

Table 5.1: Parameter values for the realization 
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The trends in the traffic assignments are shown in Figure 5.3. The average travel time is at top left; 

the maximum travel time at top right; the path flows are shown at bottom left; and the path travel 

times at bottom right. 

 

 
Figure 5.3: Trends in the travel times for a realization 

 

As can be seen, the patterns are complex. The plot at top left plot shows the trends in the average 

total travel time. The one at top right plot shows the corresponding trend for the maximum travel 

time. The bottom left shows the trends in the path flows and the bottom right shows the trends in the 

path travel times. The average time increases at first, then decreases, then increases for a second time, 

decreases again, and finally remains constant. The maximum travel time increases and then stays 

constant. Hence, the average time has four intervals: two increasing and two decreasing; while the 

maximum travel time only has one. In terms of the paradox definitions, the second and third pertain 

to the average, but not the first. For the maximum trend, all three pertain.  

 

A second example has the parameter values shown in Table 5.2. 

 

 

Table 5.2: Parameter values for the second example realization 

 

The trends in the traffic assignments are shown in Figure 5.4. As before, the average travel time is 

at top left; the maximum travel time at top right; the path flows are shown at bottom left; and the 

path travel times at bottom right. 

a1 a2 a3 a4 a5 a6 

0.0100 0.0153 0.0112 0.0190 0.0142 0.0053 

b1 b2 b3 b4 b5 b6 

30.4518 25.0503 0.0594 66.6014 39.1486 6.3119 

Vu     
 3858.9780     
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Figure 5.4: Trends in the travel times for a second realization  

 

In this realization, the average time increases, decreases, increases, and then remains constant. It has 

three intervals. The maximum travel time has only one interval. The paradox only happens for the 

average travel time, but all three definitions are all satisfied.  

 

A third example has the parameter values shown in Table 5.3. 

  

a1 a2 a3 a4 a5 a6 

0.0194 0.0104 0.0006 0.0067 0.0055 0.0029 

b1 b2 b3 b4 b5 b6 

30.8361 43.6451 76.9689 11.2087 1.6696 42.1350 

Vu      

1527.8      
Table 5.3: Parameter values for the third example realization 

 

The trends in the traffic assignments are shown in Figure 5.5. As before, the average travel time is at 

top left; the maximum travel time at top right; the path flows are shown at bottom left; and the path 

travel times at bottom right. In this realization, the average time has two intervals: an increase and 

then a decrease. The maximum time increases monotonically.  The maximum time satisfies 

definitions 4, 5, and 6. The average travel time trends satisfy only the second and third definitions. 
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Figure 5.5: Trends in the travel times for a third realization  

 

A fourth example has the parameter values shown in Table 5.4. 

 

a1 a2 a3 a4 a5 a6 

0.0046 0.0199 0.0160 0.0056 0.0192 0.0016 

b1 b2 b3 b4 b5 b6 

52.2448 5.3131 49.3495 77.6966 6.8670 0.6498 

Vu      

2810.1      
Table 5.4: Parameter values for the fourth example realization 

 

The trends in the traffic assignments are shown in Figure 5.5. As before, the average travel time is at 

top left; the maximum travel time at top right; the path flows are shown at bottom left; and the path 

travel times at bottom right.  
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Figure 5.6: Trends in the travel times for a fourth realization  

 

In this case, the trend in the average time has three intervals - increase, decrease, and then increase - 

while the trend for the maximum has two - decrease then increase. The average satisfies definitions 

1, 2, and 3. The maximum only satisfies the third. 

 

To summarize the trends in the four realizations: 

 

1) All the stable intervals are last, which should be true under all circumstances since the 

changes in travel times are due to the amount of traffic assigned to the connecting arc. And, 

eventually, that stabilizes. 

2) The traffic starts to use the connecting arc as soon as its capacity is non-zero.  

3) The average travel time has more complex trend patterns.  The maximum number of intervals 

for the average is four but for the maximum it is only two.  

4) For any realization and capacity range, the first definition seems to be the most limiting one. 

The second is less limiting and the third is the least. Each definition is increasingly more 

inclusive. That is, if the first definition is met, all three will be met. If the second is met, then 

the third will be met.  

 
These observations suggest that two pieces of information can be used to categorize the trend 

patterns: 1) the paradox definition that pertains, and 2) the number and order of intervals that occur.  

 

Based on these pieces of information, the outcomes from the 30,000 realizations were obtained: 

 

1) A 2 x 4 matrix that indicates which paradox (including none) occurred for the average and 

the maximum travel time  
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2) A count of the number of increasing and decreasing intervals for both the average and 

maximum travel time.  

3) Two Boolean vectors, variable in length, that indicate the sequence of increases (1) and 

decreases (0) for the average and maximum travel times. For example, [0, 1, 0] indicates a 

decrease, then an increase, and then a decrease.  

4) The flow rates associated with the inflection points. These are the capacity values at which 

the local minima and maxima occur.  

Of the 30,000 different network realizations, 29,998 proved to be useful for analysis. Two had 

illogical results. Table 5.5 presents a breakdown of the observations for all three paradox definitions. 

Each is classified based on whether the paradox was satisfied for neither the average nor maximum 

travel time, just the average, just the maximum, or both.  

 

  
Table 5.5: Interval combinations and definition categorizations for all 29,998 realizations 

 

Maximum Intervals -> Maximum Intervals -> Maximum Intervals ->

Average Intervals -v Average Intervals -v Average Intervals -v

0 22819 0 0 0 22819 0 0 0 22819 0 0

1 0 1910 0 1 0 1910 0 1 0 1910 0

2 0 255 0 2 0 140 0 2 0 0 0

3 0 45 0 3 0 25 0 3 0 0 0

4 0 16 0 4 0 4 0 4 0 0 0

Total: 25045 Total: 24898 Total: 24729

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1854 0 1 0 1854 0 1 0 1854 0

2 0 226 0 2 0 129 0 2 0 0 0

3 0 66 0 3 0 37 0 3 0 0 0

4 0 12 0 4 0 5 0 4 0 0 0

Total: 2158 Total: 2025 Total: 1854

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1048 1 1 0 1048 1 1 0 1048 0

2 0 235 0 2 0 350 0 2 0 490 0

3 0 38 1 3 0 58 1 3 0 83 0

4 0 13 0 4 0 25 0 4 0 29 0

Total: 1336 Total: 1483 Total: 1650

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1163 0 1 0 1163 0 1 0 1163 1

2 0 241 0 2 0 338 0 2 0 467 0

3 0 40 0 3 0 69 0 3 0 106 1

4 0 15 0 4 0 22 0 4 0 27 0

Total: 1459 Total: 1592 Total: 1765

No - Average / No Maximum

No - Average / Yes - Maximum

Yes - Average / No - Maximum

Yes - Average / Yes - Maximum

0 1 20 1 2 0 1 2

Counts of Paradox Combinations (Average and Maximum Travel Times) - 29,998 Total

Paradox Definition #1 Paradox Definition #2 Paradox Definition #3
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The three blocks of columns are for the three paradox definitions. The columns within the column 

blocks indicate how many intervals exist for the maximum travel time. The rows indicate how many 

intervals exist for the average travel time. 

 

Many trends can be observed: 

 

• The greatest number of intervals for the maximum travel time is two. For the average it is 

four. 

• Under any paradox definition, most do not exhibit the paradox. For definition #1 there are 

25,045 realizations where it does not occur; for definition #2, there are 24,898; and for 

definition #3, there are 24,729. Alternately put, the definition #1 is satisfied for only 4,953 

realizations (16.5%); for definition #2, only 5,100 (17%); and for definition #3, only 5,269 

(17.6%). 

• As the paradox definition becomes more inclusive, the number of realizations exhibiting the 

paradox increases. Conversely, the number not exhibiting the paradox decreases.  

• As the paradox definition becomes more inclusive, the number of realizations exhibiting the 

paradox for just the maximum and not the average decreases (2,158 -> 2,025 -> 1,854). For 

the average and not the maximum, it increases (1,336 -> 1,483 -> 1,650) and for realizations 

where both fulfill a definition, the trend is increasing (1,459 -> 1,592 -> 1,765). 

• Of the realizations that do not exhibit the paradox, most (22,819) have no increasing or 

decreasing interval for either the average or the maximum. 

• All the realizations exhibiting the paradox have one or more intervals for the average and one 

or two for the maximum. Alternately put, there are no instances where the average has no 

intervals; or the maximum has no intervals. 

• Most of the realizations exhibiting the paradox have one interval for the maximum and one 

interval for the average. For example, in the case of paradox definition #1 for the realizations 

where the maximum exhibited the paradox, 1,854 of the 2,158 realizations have one interval 

for the maximum and one for the average.  

• In contrast to the above, the realizations that change their paradox classification have two or 

more intervals for the average, not one. 

Table 5.6 shows the incremental changes in Table 5.5 as the paradox definition becomes more 

inclusive. The first block of columns shows the changes from definition #1 to #2. The second block 

shows similar information for definition #2 to #3.  

 

As might be expected the cells with the largest changes are those for which the number of intervals 

for the average is 2-4 and for the maximum is 1. The interval combinations with the most changes 

are 2 intervals for the average and 1 interval for the maximum. These realizations will be studied in 

more detail shortly. 
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Table 5.6: Changes in the distribution of realizations by definition and paradox occurrence  

 

Some important observations from this table are the following: 

 

• There appears to be significant symmetry in the cell values. The decreases in the cells 

where neither the average nor the maximum exhibit the paradox (e.g., the top block of rows, 

including -115 for definition #1 to #2 for two average intervals and one maximum) seem to 

match the increases for the realizations where the average satisfies definition #2. This 

makes sense because the paradox for definition #2 holds if for some capacity the average 

travel time exceeds the initial value for capacity = 0.  

• Similarly, the decreases for the condition where only the maximum satisfies the paradox 

(the second block of rows) match with the condition where both the average and the 

maximum satisfy the paradox (the fourth block of rows). This also makes sense because in 

the second block the average did not satisfy the definition while in the fourth block it does.  

Maximum Intervals -> Maximum Intervals ->

Average Intervals -v Average Intervals -v

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

2 0 -115 0 2 0 -140 0

3 0 -20 0 3 0 -25 0

4 0 -12 0 4 0 -4 0

Total: -147 Total: -169

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0

2 0 -97 0 2 0 -129 0

3 0 -29 0 3 0 -37 0

4 0 -7 0 4 0 -5 0

Total: -133 Total: -171

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 -1

2 0 115 0 2 0 140 0

3 0 20 0 3 0 25 -1

4 0 12 0 4 0 4 0

Total: 147 Total: 167

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1

2 0 97 0 2 0 129 0

3 0 29 0 3 0 37 1

4 0 7 0 4 0 5 0

Total: 133 Total: 173

No - Average / No Maximum

No - Average / Yes - Maximum

Yes - Average / No Maximum

Yes - Average / Yes - Maximum

Incremental Changes

Definition #2 - Definition #1 Definition #3 - Definition #2

0 1 2 0 1 2



 

58 

 

• The changes from row block #1 to #3 and from row block #2 to #4 both appear to be caused 

by changes related to the average. This makes sense because it is the average and not the 

maximum that has numerous realizations for two or more intervals. 

• The one notable exception to the above observations is for the difference between 

definitions #2 and #3 where there are two “-1” values for “Yes – Average / No – 

Maximum” and corresponding “+1” values for “Yes – Average / Yes – Maximum”.   

• The cells with the most significant changes involve two intervals for the average and one 

for the maximum (e.g., -115 for “No – Average / No – Maximum”. As indicated before, 

these realizations will be studied in more detail next. 

Table 5.7 shows the realizations involving two intervals for the average and one for the maximum 

broken down based on whether the intervals for the average were down/up or up/down and whether 

the interval for the maximum was down or up.  

 

  
Table 5.7: Breakdown of the realizations involving two intervals for the average and one for 

the maximum 

 

Several observations can be made based on this table. 

   

• For the realizations that do not satisfy the paradox for either the average or the maximum, 

All the maximum intervals are “down” and all of the average intervals are either down/up or 

up/down. 

• The same holds true for the realizations where the average satisfies the paradigm, but not the 

maximum. 

Maximum Interval -> 

Average Intervals -v
Down Up

Maximum Interval -> 

Average Intervals -v
Down Up

Maximum Interval -> Average 

Intervals -v
Down Up

Down Up 115 0 Down Up 0 0 Down Up 0 0

Up Down 140 0 Up Down 140 0 Up Down 0 0

Total: 255 Total: 140 Total: 0

Down Up 0 97 Down Up 0 0 Down Up 0 0

Up Down 0 129 Up Down 0 129 Up Down 0 0

Total: 226 Total: 129 Total: 0

Down Up 52 0 Down Up 167 0 Down Up 167 0

Up Down 183 0 Up Down 183 0 Up Down 323 0

Total: 235 Total: 350 Total: 490

Down Up 0 69 Down Up 0 166 Down Up 0 166

Up Down 0 172 Up Down 0 172 Up Down 0 301

Total: 241 Total: 338 Total: 467

No - Average / No Maximum

No - Average / Yes - Maximum

Yes - Avervage / No - Maximum

Yes - Average / Yes - Maximum

Counts of Paradox Combinations (Average and Maximum Travel Times) - 29,998 Total

Paradox Definition #1 Paradox Definition #2 Paradox Definition #3
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• For the instances where the maximum satisfies the paradox, the maximum interval is “up”. 

This makes sense, the maximum must increase to satisfy the paradox.  

• The same holds true for the realizations where both the average and the maximum satisfy the 

paradox. This makes sense, again, because the maximum must increase to satisfy the paradox. 

• As the definitions become more inclusive, realizations for which only the maximum satisfied 

the paradox migrate to realizations where both the average and the maximum satisfy the 

paradox. 

Table 5.8 makes the definition-to-definition changes clear. 

  

  
Table 5.8: Changes in realization classifications as the paradox definition changes 

 

As was the case for Table 5.6, there are similar observations about the information in Table 5.8: 

 

• There is symmetry between the incremental changes (decreases) for the “No – Average / No 

– Maximum” block and the “Yes – Average / No – Maximum” block.  

• In the case of definition #1 to #2, there is similar symmetry for the “No – Average / No – 

Maximum” block and the “Yes – Average / No – Maximum” block. For example, the “-115” 

in the “No – Average / No – Maximum” block for “down/up” and “down” is matched by the 

“+115” in the “Yes – Average / No – Maximum” block.  

• Similar symmetry exists for the “No – Average / Yes – Maximum” block and the “Yes – 

Average / Yes – Maximum” block. For example, the “-97” in the “down/up” and “up” cell in 

Maximum Interval -> 

Average Intervals -v
Down Up

Maximum Interval -> 

Average Intervals -v
Down Up

Down Up -115 0 Down Up 0 0

Up Down 0 0 Up Down -140 0

Total: -115 Total: -140

Down Up 0 -97 Down Up 0 0

Up Down 0 0 Up Down 0 -129

Total: -97 Total: -129

Down Up 115 0 Down Up 0 0

Up Down 0 0 Up Down 140 0

Total: 115 Total: 140

Down Up 0 97 Down Up 0 0

Up Down 0 0 Up Down 0 129

Total: 97 Total: 129

Incremental Changes

Definition #2 - Definition #1 Definition #3 - Definition #2

No - Average / No Maximum

No - Average / Yes - Maximum

Yes - Average / No - Maximum

Yes - Average / Yes - Maximum
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the “No – Average / Yes – Maximum” block is matched by the “+97” in the “Yes – Average 

/ Yes – Maximum” block. 

• In the case of definition #2 to #3, there is symmetry between the same pairs of blocks. For 

example, the “-140” in the “No – Average / No – Maximum” block for “up/down” and 

“down” is matched by the “+140” in the “Yes – Average / No – Maximum” block. And the 

“-129” in the “up/down” and “up” cell in the “No – Average / Yes – Maximum” block is 

matched by the “+129” in the “Yes – Average / Yes – Maximum” block. 

• This again seems to be evidence that it is the classification of the paradox for the average 

travel time (yes or no) that is causing the shifts. 

Table 5.9 looks at the trends for the average travel time, ignoring the trends for the maximum. The 

table organization is different from the earlier tables. The first two column blocks show 

classifications of the realizations based on whether the paradox was satisfied (on the right) or not (on 

the left). The individual columns show the number of descending intervals and the rows show the 

number of ascending intervals. For example, if the number of descending intervals is 2 and the 

number of ascending intervals is 2, then the total number of intervals is 4 (2+2). The right-most 

column block shows the incremental changes in the realization classifications as the paradox 

definition changes from #1 to #2 and then #3.  

 

 
Table 5.9: Trends in the classification of realizations for the average travel time alone 

 

Several observations are useful for this table: 

 

• There are 2795 realizations that satisfy definition #1, 3,075 for definition #2, and 3,415 for 

definition #3.  

• The 2212 realizations for 1 ascending interval and no descending intervals satisfy definition 

#1, as they should, and they carry forward to satisfying definitions #2 and #3. 

• For definition #1 there are 583 realizations in four other cells that satisfy the paradox. 

• For definition #2, an additional 280 realizations in those same four cells satisfy the paradox. 

• For definition #3, an additional 340 realizations in those same four cells satisfy the paradox. 

Decending intervals --> 

Ascending intervals -v
0 1 2

Decending intervals --> 

Ascending intervals -v
0 1 2

Decending intervals --> 

Ascending intervals -v
0 1 2

0 22819 3764 0 0 0 0 0 0 0 0 0

1 0 481 86 1 2212 476 30 1 2212 476 30

2 0 25 28 2 0 49 28 2 0 49 28

Total 27203 Total 2795 Total 2795

0 22819 3764 0 0 0 0 0 0 0 0 0

1 0 269 62 1 2212 688 54 1 0 212 24

2 0 0 9 2 0 74 47 2 0 25 19

Total 26923 Total 3075 Total 280

0 22819 3764 0 0 0 0 0 0 0 0 0

1 0 0 0 1 2212 957 116 1 0 269 62

2 0 0 0 2 0 74 56 2 0 0 9

Total 26583 Total 3415 Total 340

No - Paradox Definition #3 Definition #3 - Definition #2

Average Travel Time - Counts of Realizations (29,998 total)

Yes - Paradox Definition #1

Yes - Paradox Definition #2

Yes - Paradox Definition #3

No - Paradox Definition #1 Initial Increment

No - Paradox Definition #2 Definition #2 - Definition #1
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Table 5.10 looks at trends for the maximum travel time, ignoring the average. The table 

organization is the same as in Table 5.9. 

 

 
Table 5.10: Trends in the classification of realizations for the maximum travel time alone 

 

The observations for this table are quite different from those for Table 5.8: 

 

• There are 3617 realizations that satisfy definition #1, the same for definition #2, and 3,619 

for definition #3. Hence, only two realizations are added in going from definition #2 to #3 

and none are added going from #1 to #2. 

• These 3,617 realizations arise for conditions where there is one ascending interval and no 

descending interval. 

• Two additional realizations satisfy definition #3 that did not satisfy either #1 or #2. They arise 

for the condition where there is one ascending interval and one descending interval.   

Observations based on Tables 5.9 and 5.10 combined are as follows: 

 

• The percentage of realizations for which the maximum travel time satisfies the paradox is 

larger than that of average travel time, for all three paradox definitions. 

• For all definitions of paradox, if the paradox occurs, there is at least one increasing interval. 

• The maximum travel time has simpler trend patterns. Only two of the 29,998 realizations 

have more than one interval. 

5.4 SUMMARY 

This section has presented a study of Braess’ paradox in the context of multi-class traffic assignment. 

The material is relevant for two reasons. First, the combined auto-truck traffic assignment problem 

is multi-class. And, this section presents a novel way to address that situation where one class pursues 

the system optimal solution for the traffic assignment (the autos) and the other pursues the user-

optimal solution (the trucks). Second, the illustration, and condition, are relevant because pricing is 

an effective way to combat the occurrence of the paradox. And, simple rules about how to price the 

Decending intervals --> 

Ascending intervals -v
0 1 2

Decending intervals --> 

Ascending intervals -v
0 1 2

Decending intervals --> 

Ascending intervals -v
0 1 2

0 22819 3560 0 0 0 0 0 0 0 0 0

1 0 2 0 1 3617 0 0 1 3617 0 0

2 0 0 0 2 0 0 0 2 0 0 0

Total 26381 Total 3617 Total 3617

0 22819 3560 0 0 0 0 0 0 0 0 0

1 0 2 0 1 3617 0 0 1 0 0 0

2 0 0 0 2 0 0 0 2 0 0 0

Total 26381 Total 3617 Total 0

0 22819 3560 0 0 0 0 0 0 0 0 0

1 0 0 0 1 3617 2 0 1 0 2 0

2 0 0 0 2 0 0 0 2 0 0 0

Total 26379 Total 3619 Total 2

Yes - Paradox Definition #2

Yes - Paradox Definition #3

No - Paradox Definition #2 Definition #2 - Definition #1

No - Paradox Definition #3 Definition #3 - Definition #2

No - Paradox Definition #1 Initial Increment

Maximum Travel Time - Counts of Realizations  (29,998 total)

Yes - Paradox Definition #1
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use of the arcs can lead to “poor” traffic assignment solutions. Ones that could be improved, in terms 

of one or both objectives, through a more thoughtful pricing structure. 

 

Ultimately, as connected and automated vehicles become more prevalent, and the route guidance 

devices in the vehicles become more dependent on and informed by real-time information about 

the network’s current and future conditions, these pricing structures will be used by the network 

operators to guide the arc loading in a desirable direction. So, examining these pricing issues in a 

setting where the network can perform “badly” if the prices are not set “right”, provides useful 

insights about how prices should be set, and the network should be controlled, so that its 

performance is “the best possible”.   
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6.0 SCHEDULED SYSTEM MANAGEMENT 

The currently rapid innovations and developments of transportation system intelligence in multi-

source sensing and information sharing continuously generates huge volumes of various data and 

information for planners and managers to better observe time-varying traffic conditions and 

accordingly propose adaptive travel demand management and supply (capacity) control strategies. 

However, the data sparsity problem still exists, because it is impossible to install fixed sensors on 

each link or to cover all links by point-to-point moving sensors. As a result, it surely requires new 

methodologies to recover the system-wide transportation conditions based on the limited 

observations (Zheng et al., 2014). It leads to a fundamental question; that is, how well the time-

dependent transportation system states can be estimated or observed based on currently available 

heterogeneous source data. In other word, the research motivation is how to quantify the 

transportation system observability for further optimal control and policy making. 

 

Specifically, as shown in Figure 6.1, the continuous multi-source sensor data that include fixed 

sensor data (loop detector, video imaging processing data), mobile sensor data (GPS trajectory data, 

mobile phone data, AVI, AVL, AFC) and social media with useful travel information, provide a 

heterogeneous information flow to transportation systems for observing different level of system 

states (flow, density, travel time), covering from link level, route level, OD pair level to the whole 

network level, which are usually evaluated by transportation system managers under different goals 

for further operation, planning and policy making as the fundamental inputs. To reach the desired 

transportation system performances, it requires to actively manage the demand and supply sides in 

corresponding level of requests as follows. Travel cost (pricing/incentive), route choice (route 

guidance, travel reservation), departure time choice (transit station entry flow control, travel 

reservation), and total demand control (rationing, license plate lottery) are usually considered in the 

demand management side. On the other hand, the available transportation supply resources are 

optimized or increased, for example, adaptive signal control, dynamic lane use control, dynamic 

speed limit control, transit vehicle update and rescheduling, new infrastructure constructions. 

Meanwhile, the feedback loop between system states and optimal control keeps moving forward 

along the time horizon with any external new disturbances, such as, weather, incidence, special 

events, new land use, population changes, etc. 

 

As pointed out by Daganzo (2007), the most recent computer transportation models can theoretically 

predict almost anything but not in practice, because it is difficult to obtain accurate dynamic origin-

destination matrices, capture travelers’ unpredictable gaming behaviors, and catch the hypersensitive 

response of congested networks to any mini inputs. However, the increasingly available multi-source 

big data and powerful computation capability are creating great opportunities to continuously provide 

accurate model inputs, capture individually complicated travel behaviors, and efficiently calculate 

the outputs. For example, the AFC data, mobile phone data and travel request apps greatly improve 

the accuracy of observed OD travel demand, and the GPS-enable devices enable us to record each 

passenger/vehicle’s high-resolution trajectory in real time. In the meantime, it should be not ignored 

that the overwhelming volume of data are also incurring new challenges on data use and 

transportation modeling.  

 



 

64 

 

Transportation System Observability
(Uncertainty Quantification of Estimated 

System States)

States in traffic/transit systems
1. Dynamic Origin-Destination Travel 

Demand

2. Dynamic Station-Station Travel Demand

3. Time-dependent road flow/density/speed

4. Time-dependent transit station/vehicle/

transfer corridor passenger flow/density/speed

5. Time-dependent vehicle/passenger route 

flow/ travel time

6. Time-dependent system-wide flow/density/

speed

Multi-source Sensor Data

1. Loop detector

2. Vehicle/Passenger GPS trajectory 

data

3. Mobile phone trajectory data

4. Automatic Vehicle Identification 

(AVI)

5. Automatic Vehicle Location (AVL)

6. Video Imaging processing data

7. Automatic Fare Collection (AFC)

8. Social media data

Information 

Flow
State 

Evaluation

Transportation System Managers

Active Demand Management
1. Congestion pricing/incentive/tradable credits

2. Real-time routing guidance

3.Transit station entry flow control

4. Future travel reservation

5. Road space rationing

6. License plate lottery

Active Supply (capacity) Management
1. Adaptive signal control/ramp metering

2. Dynamic lane use control
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Decisions

Decisions

Control
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Figure 6.1: Transportation system management under multi-source sensor data 

 

In the data use side: (i) Is the big data useful enough and what is the value of the data? (ii) Under 

what goals, one kind of data is more useful that others? (iii) How to fuse multi-source data to keep 

observation result consistency? Meanwhile, in the transportation modeling side: (i) how to 

mathematically represent the available multi-source information so that different system states can 

be estimated in a unified modeling framework; (ii) how to model the exact inner relation between 

the information and some interested system states, (iii) how to quantify the system observability 

(uncertainty of estimated states) for further optimal control and management, and (iv) how to design 

efficient and scalable algorithms for solving those models. Motivated by the general challenges 

above, this research aims to explore the theoretical relation among sensor data, system states, and 

system observability in transportation systems by proposing insightful analysis and theoretically 

sound linear programming models, especially taking the urban rail transit system as a starting point.  

6.1 STATE ESTIMATION AND SENSOR NETWORK DESIGN 

Observability is a concept introduced by Kalman (1959) for linear dynamic systems in control theory. 

It is a measure for how well internal states of a system can be inferred by knowledge of its external 

outputs. In other words, it aims to quantify or measure the uncertainty of estimated internal states 

based on the available external observations under a given sensor environment with sampling errors, 

sensor error and model errors. A comprehensive literature review can be found at the paper by 

Castillo et al. (2015). As for evaluating the estimation uncertainty or accuracy, origin-destination 

(OD) trip matrix estimation is a widely studied classical problem due to its under-determination 

attribute, which means that there is an infinite number of OD trips that can generate link flows 

consistent with the observations. Yang et al. (1991) first introduced the concept of Maximum 

Possible Relative Error (MPRE) to theoretically investigate the estimation uncertainty and reliability 

of the OD estimated trips obtained by the entropy model. Bianco et al. (2001) further explored the 

accuracy of estimated OD matrix bound under different sensor location strategies. In addition, 

Bierlaire (2002) proposed the novel concept of total demand scale as a new measure to examine the 

quality of estimated OD trip tables from link counts, by maximizing/minimizing the total travel 
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demand satisfying all observations. In the general transportation observability problems, many 

studies (Castillo et al., 2007; Castillo et al., 2008; Gentili and Mirchandani, 2012) modeled the 

problems as a system of linear equations and/or inequalities and then determine whether the system 

or one unknown variable is observable or not by analyzing the properties of its coefficient matrix. 

 

Meanwhile, in the system of linear inequalities, a general bound of unknown variables can be derived 

through the dual cone approach. In general, the observability problem more cares about the list of 

variables to be observed rather than the specific system states uncertainty ranges. 

 

To increase the estimation quality, the integration of ubiquitous sensor network design and state 

estimation has received growing attentions in the past 2 decades. Yang and Zhou (1998) proposed 

integer linear programming models and four sensor location rules to determine the optimal number 

and location of point sensors for origin-destination matrix estimation. Based on the trace of the a 

posteriori covariance matrix produced in a Kalman filtering model, Zhou and List (2006) offered an 

information-theoretic framework for locating fixed sensors in the traffic OD demand estimation 

problem. In addition, based on the observability problem definition, the optimal count number and 

location of active sensors (Gentili and Mirchandani, 2005) and counting and scanning sensors 

(Castillo et al., 2012) for estimating path/link flows are studied by analyzing a set of linear equations. 

Hu et al. (2009) proposed one “basis link” method to find the smallest subset of links in a network 

to locate sensors so that the traffic flow of all links can be accurately estimated under steady-state 

conditions. Further, Ng (2012) introduced a new solution approach (‘‘synergistic sensor location’’) 

to avoid possible path enumeration under the assumed steady-state conditions. Xu et al. (2016) 

proposed a robust network sensor design to completely observe link flows whiling accounting for 

the accumulation of observation errors.  

 

For other traffic states, link travel time estimation errors are commonly selected as the optimization 

criterion for point sensor location problems (Ban et al., 2009; Danczyk and Liu, 2011), and a reliable 

sensor location method is proposed to consider probabilistic sensor failures (Li and Ouyang, 2011). 

Herrera et al. (2010) developed a real-time traffic monitoring system by using vehicles with GPS-

enable mobile phones and suggested that 2-3% penetration rate of mobile phones can provide 

accurate traffic speed estimations.  Based on a Kalman filtering structure, Xing et al. (2013) 

developed measurement and uncertainty quantification models to explicitly consider several 

important sources of errors in path travel time estimation/prediction. In the real-time traffic 

situations, Eisenman et al. (2006) conducted a sensitivity analysis of estimation and prediction 

accuracy under different sensor locations and coverage scenarios based on a real-time dynamic 

simulation system, DYNASMART-X. Boyles and Waller (2011) studied the optimal location 

selection for providing the real-time traffic information to drivers with the adaptive travel behavior 

by proposing heuristic algorithms, and Ban et al. (2011) studied the real-time queue length estimation 

at signalized intersections by focusing on queuing delay patterns and queue length changes based on 

travel times from mobile traffic sensors. 

  

Under the framework of urban computing, Zheng et al (2014) reviewed the related date-mining and 

machine-learning approaches used in transportation system state estimation and prediction. 

Thiagarajan et al. (2009) applied the WiFi signals to estimate route travel time and identify delay-

prone segments by using a hidden Markov model (HMM)-based map matching scheme. Focusing 

on the GPS trajectory data, the normal traffic patterns are mined for real-time city-wide travel time 

estimation and prediction by building landmark graphs (Yuan et al., 2011) and for 
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estimating/detecting the traffic anomalies based on the representative terms from twitter-like social 

media data (Pan et al., 2013). Zhang et al. (2015) proposed a context-aware tensor factorization 

model to estimate the time spent of each GPS-equipped taxicab on gas stations with consideration of 

gas price, brand, and weather conditions. Tang et al. (2016) proposed a novel time-dependent graph 

model to estimate the most likely space-time paths of vehicles with point-to-point data and then 

implemented a dynamic programming algorithm for the offline and online map-matching 

applications. Using crowdsourced data from location-based service apps, Zhao and Zhang (2017) 

examined the individual dynamic choices of activity chains by proposing a data-driven Markov chain 

approach in activity-travel space-time-state network. Recently, Zhu et al (2018) developed a data-

driven link-based network sensor location model to maximize the travel time information gain with 

accounting for the uncertainty in the prior travel time distribution. Wu et al. (2018) proposed a novel 

deep-learning-based framework to simultaneously estimate static OD demand and road traffic 

conditions based on multi-source sensor information by developing a transportation computational 

graph tool.  

6.2 TRANSIT SYSTEM CONSIDERATIONS 

In urban transit systems, usually, the automatic fare collection system (AFC) or smart card usually 

records both the time and station for entry and exit for each passenger in rail transit systems, but only 

the boarding time and stop and route number normally can be reported in bus transit systems. A 

comprehensive literature review about smart card data use can be found in the papers (Pelletier et al., 

2011; Ma et al., 2013). Obviously, the unknown destination information greatly increase the state 

uncertainty of bus transit system. Trépanier et al. (2007) estimate the alighting point for each 

passenger based on the smallest distance to the boarding stop of his/her next route from individually 

continuous riding records in smart card. Seaborn et al. (2009) proposed maximum elapsed time 

thresholds to identify transfers for bus-to-underground, underground-to-bus, and bus-to-bus to 

identify and assess multi-modal trips in London. Meanwhile, Munizaga and Palma (2012) estimated 

a multimodal transport OD matrix from smartcard and GPS data whiling consider unobserved trips 

by expansion factors in Santiago, Chile. Yuan et al. (2013) proposed a space alignment approach by 

aligning the monetary space and geospatial space with the temporal space to infer each passenger’s 

trajectory and the results improve the detection of uses’ home and work places. Nassir et al. (2015) 

applied the smart card data to detect activity and identify transfers to estimate the true origins and 

destinations. Nunes et al. (2016) further proposed four endogenous spatial validation rules to enhance 

the accuracy of estimated passenger destination choice. Alsger et al. (2016) evaluated and improved 

existing OD estimation method according to available OD information and assessed the previous last 

destination assumptions in bus transit systems. Under the situation that passenger’s boarding stop 

information is not record in smart cards, Ma et al. (2012) developed a Markov chain based Bayesian 

decision tree algorithm to estimate the sequential stops on the bus route and then match those stops 

with the recorded boarding time to infer passengers’ origin. Further, Ma et al. (2015) improved their 

previous algorithms to increase the estimation accuracy and computation efficiency. In addition, in 

case that buses don’t have Automatic Vehicle Location data, Zimmerman et al. (2011) developed a 

system named Tiramisu that can estimate and predict the real-time bus arrival time by applying the 

crowd-sourcing data from commuters sharing their GPS-enabled mobile phones. 

 

Depending on the available OD travel information from smart card in urban rail transit systems, 

many studies focus on the route choices and transfer patterns, which can be viewed as different 

system states required for estimation. Kusakabe et al. (2010) focused on the passengers’ train choice 
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behavior by assuming that each passenger aims to minimize the total waiting time at the departure 

station, loss time at the arrival station, and the transfer frequency. Zhao et al. (2007) chose the logit 

discrete choice model, but the tight side constraints (e.g. strict vehicle capacity constraint) are still 

hard to include. Ceapa et al. (2012) mined the regular spatial-temporal trip relations from AFC data 

to estimate and predict the crowding level for providing more accurate personalized trip planning 

services. Sun and Xu (2012) estimated the path choice based on the observed overall probability 

density of journey time and the derived distribution of individual path travel time from the rail transit 

smart card. In addition, Zhou and Xu (2012) used a matching degree function value to assign the trip 

to the most likely path based on derived boarding plan of path. Remarked that the verification of 

those assigned path flows above has not been soundly performed due to the limit of observed data 

and complicated route choice behaviors, such as passenger’s travel preference. Kusakabe and 

Asakura (2014) proposed a data fusion methodology to consider both the smart card data and person 

trip survey data by Bayes probabilistic model to estimate behavioral attributes of trips in the smart 

card data. Based on passenger OD matrix information and vehicle stop time and location data, Zhu 

et al. (2017a; 2017b) proposed probabilistic models to estimate the individual train loads, left behind 

probabilities, time-dependent crowding levels at stations under tight vehicle capacity considerations. 

In addition, Nair et al. (2013) focused on a large-scale bicycle sharing system and analyze the 

connection between bicycle usage and public transit systems. 

6.3 CONCEPTUAL ILLUSTRATION 

Through applying some concepts from game theory and control theory into the problem (LaValle, 

2012), a state space is defined as the all possible internal system state based on the external physical 

transportation world, and an information space is a place where the internal states live when available 

information is involved. A state is specifically defined and can be associated with the available 

information. As shown in Figure 6.2, the information space is formed by the available information, 

and the states are tightly connected by different projection functions, which mathematically define 

the states according to the managers’ needs. The bound among all possible states represents the state 

uncertainty under current available information. 

Information/
observations

Information Space: Polyhedron

1-D State

Maximum

Minimum

Uncertainty Bound

Projection function 1

Projection function 2

H-D States

Projection function 1

Projection function 2

x

y

z

U
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Figure 6.2: Relation among Information, Information Space, and Flexible States 
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When the information space is generated as one single point, it can state that the system is observable; 

otherwise, a non-empty set or space leads to unobservable or partially observable system. In this 

section, the connection between the internal states and the external states (observation or 

information) is built by information space as a bridge or communication channel, and further quantify 

the corresponding uncertainty of states defined by users. How to design sensor network 

configurations to alter information space and further increase the state estimation accuracy will be 

addressed in the future research. 

 

For illustrative purposes, Figure 6.3(a) depicts a simple transportation network with four nodes and 

five links. The link travel time and capacity are also provided as physical network attributes. Let 𝑥1, 

𝑥2 and 𝑥3 represent the path flow on paths 1, 2 and 3. Based on the tight capacity constraints, the 

following relation can be obtained: 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 3, and 0 ≤ 𝑥3 ≤ 1, which defines the 

system state space shown as a blue cuboid in Figure 3.3(b). 
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(a) Physical transportation network (b) State space of path flow  
Figure 6.3: An Illustrative Transportation Network and Its State Space 

 

Assume that the OD information is available through survey that there are four vehicles departing 

from node 1 to node 4. Then, one corresponding constraint will be 𝑥1 + 𝑥2 + 𝑥3 = 4. Figure 6.4(a) 

displays the information space as the intersection of the red triangle and the blue cuboid based on the 

available OD information. Two scenarios are designed as follows to analyze the relation between 

system states and available information. 

 

• Scenario 1: Assume that there is one flow count detector on link (2, 4) and its link count is 1. The 

relation gets updated as follows: 1 + 𝑥2 + 𝑥3 = 4 , 0 ≤ 𝑥2 ≤ 3 , and 0 ≤ 𝑥3 ≤ 1 , so the 

corresponding information space is reduced to be the intersection of the red triangle and the green 

rectangle shown in Figure 6.4(b).  

• Scenario 2: Suppose that the automatic vehicle identification (AVI) detectors are available at nodes 

1 and 4. One vehicle’s travel time is observed as 7min. Since only path 3’s travel time is 7 and its 

capacity is just 1, it implies that path flow 𝑥3 = 1. As a result, the relation changes as follows: 𝑥1 +
𝑥2 + 1 = 4 , 0 ≤ 𝑥1 ≤ 2 , and 0 ≤ 𝑥2 ≤ 3 . The corresponding information space becomes the 

intersection of the purple rectangle and the red triangle displayed in Figure 6.4(c).  
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Figure 6.4: Information Spaces and Its Projected Bound based on Available Information 

 

As shown in Figure 6.4, the information spaces are generated as polyhedrons based on different 

available information. A projection function is defined to map the information space into one 

dimension state (total travel time). It should be remarked that, the projection functions could be 

defined based on different goals interested by the system managers, such as, the total system travel 

time, the number of vehicles in one area, etc. In Figure 6.4(a), one projection function is defined as 

𝑓(𝒙) = 6𝑥1 + 6𝑥2 + 7𝑥3 , which means that the total system travel time is the analysis goal. 

Accordingly, different optimization models are solved by maximizing and minimizing 𝑓(𝒙) subject 

to different information spaces.  

 

As demonstrated in Figure 6.4(a), there are five feasible integer solutions in the information space 

and the bound of total travel time formed by projection is [24,25]. When the link count data are 

added in Figure 6.4(b), the information space by integer solutions is reduced, but the projected bound 

is still the same. It indicates that the new information from link count doesn’t contribute to reduce 

the uncertainty of this state estimation, even though a smaller information space is generated in 

Figure 6.4(b). It reminds us that the value of “big data” is determined by not only “big volume” but 

also the usefulness of information to the system. 

 

In addition, the point-to-point Bluetooth data (end-to-end passenger id detector data) in Figure 6.4(c) 

makes the projected bound converged to be one unique value, which implies that the point-to-point 

data is more powerful than the point detector for increasing the observability of system travel time 

in this case. Therefore, evaluating the values of different information should be based on which states 

the system manager really cares. One information that seems worthless for one goal may be much 

useful for other state estimation applications. Moreover, the information space in Figure 6.4(c) is 

bigger than that in Figure 6.4(b), but the uncertainty of state estimate in Figure 6.4(c) is 0 and less 

than that in Figure 6.4(b). Thus, the volume of information space might not be the best criteria to 

judge the bound of state estimate uncertainty or system observability.  

 

Except for those information from physical sensors above, the previous travel experiences or 

currently published traffic information from transportation agencies could also take important roles 

in quantifying the state uncertainty for managers’ further actions. For example, if everyone has  

perfect information over the network attributes based on their experiences and each one aims to find 
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the best route for his/her trip, which is usually entitled Wardrop’s first principle, the information 

space will be redefined as, 𝑥1 + 𝑥2 = 4, 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 3. Compared with the two scenarios 

above, the information space could be further reduced by this assumed and (potentially questionable) 

travel behavior. Therefore, one accurate travel behavior can also provide much rich information to 

determine system states, and this could help us understand why many studies focus on travel behavior 

estimation to better understand the system, from the information space perspective.  

 

As a remark, the information space concept in game theory and control theory for storing the amounts 

of ambiguity in state also may have a connection with Shannon’s information theory using entropy-

based constructs. For example, the entropy-maximization approach is usually used to represent the 

most likely traffic state, a kind of stable equilibrium state, for origin-destination travel demand 

estimation problems. However, in information space theory, the system state is unknown and 

gradually constructed based on available information. It is possible that the system state derived from 

the information space is finally the same as the equilibrium state based on maximum entropy. 

6.4 PROBLEM STATEMENT 

Table 6.1 lists the general indices, sets, parameters and variables in the proposed models.  

 

Table 6.1: Indices, sets, parameters and variables 

Indices Definition 

𝑖, 𝑗 Index of nodes, 𝑖, 𝑗 ∈ 𝑁 
(𝑖, 𝑗) Index of physical link between two adjacent nodes, (𝑖, 𝑗) ∈ 𝐿 

𝑎 Index of passenger group, 𝑎 ∈ 𝐴 

𝑜(𝑎) Index of origin node of group 𝑎 

𝑑(𝑎) Index of destination node of group 𝑎 

𝑡, 𝑠 Index of time intervals in the space-time network 

𝜏 Index of time period for the observed passenger flow  

𝑝 Index of paths, 𝑝 ∈ 𝑃 

𝑟 Index of transit companies 

Sets  

𝑁 Set of nodes in the physical transit network  

𝐿 Set of links in the physical transit network 

𝐴 Set of passenger groups 

𝑉 Set of vertices in the space-time network 

𝐸 Set of edges/arcs in the space-time network 

𝐺 Set of time periods for the observed passenger flows 

𝑆𝑝,𝑎 Set of paths 𝑝 of group 𝑎 

𝐺(𝑖, 𝑗, 𝜏) Set of arcs on observed link (𝑖, 𝑗) at time period 𝜏  

Parameters  

𝛽1, 𝛽2 The weights on target passengers’ trip time and observed link/arc flows, 

respectively 

𝜇𝑎 The observed aggregated trip time of group 𝑎 from smart card data 

𝜇𝑖,𝑗,𝜏 The observed aggregated passenger count on link (𝑖, 𝑗) during time period 𝜏 

𝑤𝑝 The travel time of path 𝑝 

𝑐𝑝
𝑟 The earning collected on path 𝑝 of transit company 𝑟 
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𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝐷𝑇𝑎 The departure time of group 𝑎 

𝐴𝑇𝑎 The assumed arrival time of group 𝑎 

𝐷𝑎 The number of passengers in group 𝑎 

𝑐𝑖,𝑗,𝑡,𝑠 Travel cost of traveling arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝑇 The time horizon in the space-time network 

𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎

 Path-link incidence index of route 𝑝 of group 𝑎 on arc (𝑖, 𝑗, 𝑡, 𝑠) 

𝑤𝑝 The path travel time of path 𝑝 

Variables  

𝑥𝑖,𝑗,𝑡,𝑠
𝑎  The number of passengers in group 𝑎  is assigned on traveling/waiting 

arc (𝑖, 𝑗, 𝑡, 𝑠) in the space-time network 

𝜃𝑎 , 𝜃𝑖,𝑗,𝜏 Continuous positive deviation variables for group 𝑎’s trip time and link (𝑖, 𝑗) 

during time period 𝜏, respectively 

𝑥𝑎
𝑝
 The number of passengers of group 𝑎 choosing their feasible path 𝑝 

𝜇𝑎
∗  The preprocessed aggregated trip time of group 𝑎 from smart card data 

𝜇𝑖,𝑗,𝜏
∗  The preprocessed aggregated passenger count on link (𝑖, 𝑗) during time period 

𝜏 
 

 

6.4.1 Space-time Network Construction  

To properly account for the evolution of system dynamics over time, Ford and Fulkerson (1958) first 

introduced dynamic network flow models to solve the dynamic maximum flow problem in time 

extended networks. The space-time network flow models are then widely used in dynamic 

transportation systems, such as, dynamic system optimal with a point queue model (Zawack and 

Thompson, 1987), dynamic user equilibrium with a spatial queue model (Drissi-Kaıtouni and 

Hameda-Benchekroun, 1992), dynamic system optimal with departure time, route choice and 

congestion toll (Yang and Meng, 1997), dynamic user equilibrium with link travel time functions 

(Chen and Hsueh, 1998), activity-based dynamic user equilibrium (Lam and Yin, 2001). Recently, 

in order to maximize network accessibility, Tong et al. (2015) proposed a space-time network flow 

model with binary decision variables, which actually derives a number of agent-based models in 

space-time networks later. 

 

There are a number of studies providing how to construct specific time-expanded networks for 

different transportation systems, such as, freeway network (Lu et al., 2016), road network with signal 

settings (Li et al., 2016), urban transit network (Liu and Zhou, 2016), bike-sharing network (Lu, 

2016), road network with activity requests (Liu et al., 2017), and vehicle trajectory network (Wei et 

al., 2017). This section considers a physical urban rail transit network with a set of nodes 

(stops/stations) 𝑁 and a set of links 𝐿 as a starting point. Each link can be denoted as a directed link 

(𝑖, 𝑗) from upstream node 𝑖 to downstream node 𝑗. A deterministic transit schedule is supposed to be 

obtained from Automatic Vehicle Location (AVL) data from vehicle tracking systems. A space-time 

network is then constructed, where V is the set of vertices and 𝐸 is the set of arcs. Node 𝑖 is extended 

to a set of vertices (𝑖, 𝑡) at each time interval 𝑡 in the study horizon, 𝑡 = 1,2, … , 𝑇, where 𝑇 is the 

length of the optimization horizon. The transit schedule from node 𝑖 to node 𝑗 from time 𝑡 to time 𝑠 

can be represented by a travelling arc (𝑖, 𝑗, 𝑡, 𝑠) where (𝑠 − 𝑡) is the exact scheduled/running link 

travel time and should be integer multipliers of one time interval. The capacity of travelling arcs can 
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be viewed as the transit vehicle’s carrying capacity. In addition, a waiting arc is built from (𝑖, 𝑡) to 

(𝑖, 𝑡 + 1)  at node 𝑖  with waiting time of one time unit and its capacity is defined as the 

station/platform storage capacity. 

 

In urban rail transit systems, individual passengers should have a trip record with origin, departure 

time, destination and arrival time from the smart card. However, transit agencies may just provide 

aggregated trip data for groups of passengers. Each group 𝑎 with 𝐷𝑎 passengers has a departure time 

𝐷𝑇𝑎 at origin node 𝑜(𝑎) to its destination node 𝑑(𝑎). At each destination node, there is one assumed 

large arrival time 𝑇 for all groups so that the following proposed model will be one-origin-one 

destination problem in the space-time network. It should be noted that the travel cost of waiting arcs 

on the destination node is 0, which means that once the passengers in a group arrive at the destination, 

the waiting cost to the super-destination (at larger arrival time 𝑇) is 0. Finally, the estimated trip time 

in the model should be equal to the observed trip time, which will be presented in the following 

sections. 

 

In addition, one transfer node can be divided as multiple nodes, depending on how many transit lines 

intersect at this node. One illustrative example is shown in Figure 6.5(a) where two lines intersect at 

node 2 and make it as a transfer station. Then node 2 is split to node 2′ and node 2" and the modified 

physical network is drawn in Figure 6.5(b). The travel time of transfer links could be the actual 

walking time, and its capacity is the maximum passenger throughput at transfer corridors. As a 

remark, based on the maximum transfer distance accepted by passengers, it is possible to connect 

different stops by transfer links or extended to multimodal networks. Figure 6.5(c) shows the transfer 

process where all transfer time is assumed to be one time unit. In addition, it is also feasible to 

consider the uncertainty of walking time on transfer links or from station entry to the platform 

through constructing more service/travelling arcs with different arc travel times. Furthermore, in 

traffic networks, the road can provide its service at each time interval with a specific arc capacity 

and the signal timing rules whether those service arcs are open or closed, which is represented in a 

space-time network in Figure 6.5(d) to show the unified modeling framework. 
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Figure 6.5: Information space-time network construction 

 

 

6.4.2 Information space generation based on multi-source sensor data  

Information space (LaValle, 2012) works as a communication channel to connect the external 

physical world and the internal system states. The external physical world is sensed by heterogeneous 

sensors in terms of different observations or information, which finally forms a corresponding 

information space. Meanwhile, the internal system states are reflected through the information space 

based on the specific state definitions. 

 

In addition to the physical transit lines and schedules as useful information, the possible observations 

in the urban transit systems are summarized in Error! Reference source not found.. 

 

Table 6.2: Available trip information in urban transit systems 

Bus transit system Rail transit system 

(1) origin, boarding time, destination, alighting 

time for each person in individual bus 

(1) origin, entry time, destination, exit time for 

each person or aggregated for each passenger 

group in transit network 

(2) origin and boarding time for each person in 

individual bus 

(2) origin and boarding time for each person or 

aggregated for each passenger group in transit 

network 

(3) historical time-dependent OD information 

for transit networks 
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In bus transit systems, (i) when the origin, boarding time, destination, alighting time for each person 

in individual buses are available from smart card data, the state in each vehicle can be completely 

observed when the transit schedule or transit vehicle trajectory is available from AVL data, and that 

accurate trip information can provide great values for the operational transit planning. (ii) If only the 

origin, and boarding time can be recorded, algorithms are needed to estimate the individual 

destination. Usually it is estimated as the nearest stop to the boarding stop of traveler’s next route 

based on the continuous riding records, so the corresponding alighting time will be also available. 

However, if travelers just have a single transit trip, it is still difficult to estimate the destination, 

which causes a large uncertainty for state estimation. (iii) If the market penetration rate of smart card 

is very low or the goal is for operational transit planning, the historical time-dependent OD 

information has to be used to perform transit network assignment with assumed travel behaviors 

(Szeto and Jiang, 2014; Jiang and Szeto, 2016; Cats et al., 2016; Liu and Zhou, 2016; Codina et al., 

2017), which could create a larger uncertainty in the system and needs to be carefully calibrated and 

validated by real-world survey and observations. 

 

In rail transit systems, (i) the origin, entry time, destination, exit time usually are available for each 

passenger or group, but the path/vehicle/transfer selection in the network level still has a large 

uncertainty. (ii) When the destination and exit time to stations are not recorded, the system 

uncertainty will be increased more. 

 

In addition, with the development of sense technologies, more available sensor information from big 

data applications can be used in the transit systems. 

 

i. Video data processed to gain the aggregated passenger flow at key points during specific time 

periods, such as, transfer corridors, the entry and exit of stations, or the stop/platforms. 

ii. Cellphone/GPS based point-to-point trajectory data. A general path choice ratio bound is 

available when the penetration/sample rate of cell phone used as sensors is big enough. The 

granularity of the trajectory points is highly depended on the cell tower locations. Also, 

Bluetooth data can provide a point-to-point travel time and general path choice ratio. 

iii. General travel behavior data (e.g. preference) through survey. It can provide the path choice 

of some specific passengers, so the path choice uncertainty of all passengers can be reduced, 

to some extent. 

iv. Social media: it can share the location information, users’ interests, and events happening 

around them, which could be used to mine the human mobility pattern and predict the travel 

demand related to those events. 

 

Taking the transit network as an example, the possible observations are illustrated in Figure 6.6(a) 

and (b) for fixed sensors and mobile sensors, respectively. 
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Figure 6.6: Observations from multi-source sensors 

 

The specific modeling on generating information space based on those available sensor data is 

developed as follows. It should be remarked that, the first-in-first-out (FIFO) rule is not incorporated 

in the proposed space-time network, because it can be violated in transit networks and the multi-

source information can better present travelers’ decision by reducing the feasible space of 

information space. Also, readers who are interested in FIFO in space-time networks can refer to the 

details in the paper (Shang et al., 2018). 

 

Taking the rail transit system as the modeling example, following formulation can be developed. 

According to the physical network, transit schedule, and dynamic OD information from smart card 

data, the standard flow balance constraint can be given as 

 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−𝐷𝑎 ∀𝑎, 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

𝐷𝑎 ∀𝑎, 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (6-1) 

 

Strict vehicle and station platform capacity constraint 

 

 ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴      (6-2) 

 

As stated previously, the estimated trip time of each group in the model should be consistent with 

the observation (average trip time of each group) from smart card.  

 

 ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ) = 𝐷𝑎 × 𝜇𝑎, ∀ 𝑎      (6-3) 

 

Estimated aggregated passenger flow count on link (𝑖, 𝑗) during time period 𝜏 is expected to be the 

observation from video data or counting by person. 

 

 ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑡∈𝜏𝑎 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏)       (6-4) 

 

(v) Non-negative arc flow variables 
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 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 ≥ 0          (6-5) 

 

Note that if a passenger is viewed as a group of passengers and 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  will be a binary variable, the 

above modeling is still available and an agent-based model arises. Usually, agent-based trajectory 

data can provide more point-to-point travel time information rather than just path choice.  

 

The above presents an arc-based formulation for constructing the information space. In comparison, 

a path-based formulation can be offered in the following based on the feasible path generation.  

 

Flow balance constraint: 

 

 ∑ 𝑥𝑎
𝑝

𝑝 = 𝐷𝑎, ∀𝑎          (6-6) 

 

Capacity constraint: 

 

 ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎 × 𝑥𝑎

𝑝) ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴(𝑝,𝑎)∈𝑆(𝑝,𝑎)
    (6-7) 

 

Trip time constraint: 

 

 ∑ 𝑥𝑎
𝑝

𝑝 ∗ 𝑤𝑝 = 𝐷𝑎 × 𝜇𝑎, ∀𝑎         (6-8) 

 

Aggregated passenger flow count constraint: 

 

 ∑ ∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝,𝑎 × 𝑥𝑎

𝑝)𝑡∈𝜏𝑎 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏)      (6-9) 

 

Non-negative path flow: 

 

 𝑥𝑎
𝑝 ≥ 0           (6-10) 

 

Given the time-expanded space-time network constructed in subsection 3.1, the general feasible path 

set for a passenger group with specific OD pair and a departure time can be generated by a forward 

label correcting algorithm from the vertex (origin and departure time) to its destination node based 

on the observed trip time of that group as a prism. 

 

It should be remarked that when considering the bus transit systems, the smart card data usually only 

have the origin and departure time without passengers’ destination and arrival time information. To 

model this condition that dynamic OD trips are unknown, 𝐷𝑎 will be a variable in equation (1) and 

the summation of 𝐷𝑎 with same origin and departure time should be equal to the recorded total trip 

production at this origin and departure time from smart card data. If the structure of each OD pair 

with departure time is given based on the historical OD information, the number of unknown OD 

variables will be greatly reduced.  In addition, from the data mining perspective, interesting readers 

can refer to the paper (Ma et al., 2013) to find studies related to estimate destination probabilities. 
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6.4.3 Dantzig-Wolfe decomposition for special flow-balance blocks  

As shown in the arc-based and path-based formulation in section 3.2, the flow balance constraint is 

a special block that can be solved by classical shortest path algorithms and further be incorporated 

by Dantzig–Wolfe decomposition. Actually, this method has been adopted for static traffic 

assignment (Larsson and Patriksson, 1992), side constrained traffic equilibrium (Larrson et al., 

2004), time constrained shortest path problem (Desrosiers and Lubbecke, 2005), etc. The advantage 

of this decomposition allows to solve the special blocks in parallel via independent computation 

threads to address large-scale networks, especially when the computer hardware has a rapid 

development in current days. It also has the re-optimization capability if the travel demand, arc 

performance function or network topology has any changes in future (Larsson and Patriksson, 1992).  

Specifically, Dantzig–Wolfe decomposition is originally proposed by Dantzig and Wolfe (1960) for 

solving linear programming problems with special structure. A general primal linear program can be 

represented as: min 𝑐𝑇𝒙, subject to, 𝐴𝒙 ≤ 𝒃, 𝐷𝒙 ≤ 𝒅, and 𝒙 ≥ 0. According to Minkowski-Weyl's 

Theorem, given the convex set 𝑋 = {𝑥 ∈ ℝ𝑛|𝐴𝑥 ≤ 𝑏} where 𝐴𝑥 ≤ 𝑏 is a special block, 𝑋 can be 

represented by the extreme points and extreme rays of 𝑋 : 𝑋 = {𝑥 = ∑ 𝜆𝑖𝑥
𝑖 + ∑ 𝜇𝑖𝑦𝑗| ∑ 𝜆𝑖 =𝑖𝑗𝑖

1, 𝜆𝑖 ≥ 0, 𝜇𝑗 ≥ 0}. When 𝑋 is a bounded polyhedron, 𝑋 can be represented by the extreme points, 

𝑋 = {𝑥 = ∑ 𝜆𝑖𝑥
𝑖| ∑ 𝜆𝑖 = 1𝑖 ,𝑖 𝜆𝑖 ≥ 0}. 

 

Substituting the expression above to the original model leads to the following Master Problem: 

 

 min ∑ 𝑐𝑇𝜆𝑖𝒙
𝑖

𝑖   (11) 

 Subject to, ∑ 𝐷𝜆𝑖𝒙
𝑖

𝑖 ≤ 𝒅, ∑ 𝜆𝑖 = 1𝑖  and 𝜆𝑖 ≥ 0     (6-11) 

 

Suppose that a subset of extreme points 𝑃 is available. The Restricted Master Problem (RMP) can 

be obtained: min ∑ 𝑐𝑇𝜆𝑖𝒙
𝑖

𝑖∈𝑃 , subject to, ∑ 𝐷𝜆𝑖𝒙
𝑖

𝑖∈𝑃 ≤ 𝒅, ∑ 𝜆𝑖 = 1𝑖∈𝑃  and 𝜆𝑖∈𝑃 ≥ 0. Assume that 

𝜆∗ and (𝜋, 𝜔) is the optimal and dual solutions to the RMP, respectively. The reduced cost is defined 

as 𝛾(𝒙) = 𝑐𝑇𝒙 − 𝜋𝑇𝐴𝒙 − 𝜔. Solve the subproblem: min 𝑐𝑇𝒙 − 𝜋𝑇𝐴𝒙 − 𝜔, subject to 𝐴𝒙 ≤ 𝑏 and 

𝒙 ≥ 0. If the reduced cost is non-negative, the solution is optimal; otherwise, the solution can be 

viewed as a new extreme point and added to the RMP until the reduced cost is non-negative. 

With different objective functions related to different estimated states, the proposed models in section 

4.1 based the generated information space in Section 3.2, will be solved under the framework of 

Dantzig–Wolfe decomposition in section 4.2. Specifically, based on the flow-balance constraint, the 

flow on a particular path (or path flow for a passenger group 𝑎) can represent one extreme point. A 

path flow uniquely corresponds to its path, so a particular path implicitly indicates a specific extreme 

point. This enables us to express the arc flow of group 𝑎  on arc (𝑖, 𝑗, 𝑡, 𝑠)  as 𝑥𝑖,𝑗,𝑡,𝑠
𝑎 =

∑ (𝛿(𝑖,𝑗,𝑡,𝑠)
𝑝(ℎ),𝑎

× 𝑥𝑎
𝑝(ℎ)

× 𝜆(𝑎,ℎ)ℎ ) , where 𝑥𝑎
𝑝(ℎ)

= 𝐷𝑎  for each generated extreme point ℎ , and 

∑ 𝜆(𝑎,ℎ) = 1ℎ𝜖𝐻(𝑎) . Since variable 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  is continuous rather discrete, it should be a continuous 

combination of extreme points and 𝜆(ℎ,𝑎) ≥ 0 according to Minkowski-Weyl's Theorem. On the 

other hand, the link flow vector of each group 𝒙𝑖,𝑗,𝑡,𝑠
𝑎  can also be seen as one extreme point, as it is 

the result of one specific path flow vector.  

 

The system state uncertainty reflected by observability mainly arises from two sources: one is no 

useful information, which results in the many-to-one mapping between the many possible system 

states and one partial observation, and the other is the possible measurement error due to the noise 
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and disturbance in sensing systems. This section will focus on quantifying the uncertainty of state 

estimates based on available limited useful observations. How to address the measurement error 

issues will also be discussed later. 

 

As illustrated previously, the generated information space can work as a channel to connect available 

observations with different states. This section will propose different projection functions as the 

mapping between the feasible information space and specific transit system states. Table 6.3 

introduces the focused states, which are also displayed in Figure 6.7. Those important states in traffic 

systems will not be focused here, but the modeling approach proposed in this paper can be well 

extended those systems. 

 

Table 6.3: Focused states and motivations 
Focused states Motivations 

(1) Arc flow/density state: passenger density on station 

platforms, in vehicles, and transfer corridors 

(i) identify possible dangerous spots for safety; 

(ii) make decisions on vehicle updates, line/timetable 

changes and stop location adjustment 

(2) Path flow state: the number of passengers taking 

one specific line segment 

(i) clear the total ticket fare to each company based on 

the service they provide; 

(ii) evaluate the current liquidation policy and quantify 

the unreasonable income bound for each company 

(3) Path flow state: the path flow range of each time-

dependent OD pair 

(i) compare or verify the traditional logit route choice 

model for better understanding travel behavior 

(4) Network-level arc flow/density state: network-

level time-dependent passenger flow/density states on 

serval key stations/vehicles 

(i) distribute the network-level transit condition and 

intelligent passenger trip guidance 

(ii) evaluate network-level control and policy 
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Figure 6.7: States illustration in a space-time network 

 

The focused states and its uncertainty quantification are listed as follows. 

 

• Projection function 1 for arc flow state: the number of passengers on one specific arc 

(𝑖, 𝑗, 𝑡, 𝑠)  (station platform, vehicle, transfer corridor) in the space-time network is 
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represented as ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 , so the arc flow uncertainty can be quantified by maximizing and 

minimizing ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎 , subject to constraints (1) to (5).  

• Projection function 2 for path flow state 1: the earnings that one transit company 𝑟 can 

obtain is represented as ∑ ∑ (𝑥𝑎
𝑝

𝑝𝑎 × 𝑐𝑝
𝑟), where 𝑐𝑝

𝑟  is the income of using the segment in 

company 𝑟’s operation area of path 𝑝. It can be calculated as a parameter in advance based 

on the ticket price and segment and path distance. Therefore, the earning bound is estimated 

by maximizing and minimizing∑ ∑ (𝑥𝑎
𝑝

𝑝𝑎 × 𝑐𝑝
𝑟) subject to constraints (6) to (10). 

• Projection function 3 for path flow state 2: the flow rate on path 𝑝  is ∑ 𝑥𝑎
𝑝

𝑎 , so the 

uncertainty bound of path flow is measured by maximizing and minimizing ∑ 𝑥𝑎
𝑝

𝑎 , subject 

to constraints (6) to (10). 

• Projection function 4 for network-level arc flow state: the passenger flow (density) states 

on key station platforms at one time index (e.g., at 7:30am) is a high-dimensional vector 

{𝒒(𝒊, 𝒕)} where 𝑖 is one of key stations. For one specific station 𝑖, 𝑞(𝑖, 𝑡) = ∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎

𝑎  is the 

number of passengers at station 𝑖 at time 𝑡. Since the state is not one dimension anymore, the 

concept of the Maximal Possible Relative Error (MPRE) first introduced by Yang et al. 

(1991) is adopted to quantify the state uncertainty of high-dimensional variables. As shown 

in Figure 3.8(a), the state solution (vector {𝒙𝒊,𝒋,𝒕,𝒔
𝒂 }) based on different projection functions 

for one-dimensional state above is one feasible solution in the information space, so each 

solution (vector {𝒙𝒊,𝒋,𝒕,𝒔
𝒂 }) can be mapped to high-dimensional states to generate new state 

points (vector 𝒒(𝒊, 𝒕) )illustrated in Figure 6.8(b), which are used as sample points to 

approximately obtain the MPRE. Specifically, the average relative error between any two 

points needs to be calculated, and find the maximal one as the MPRE. 
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Figure 6.8: Relation of information space and different types of states 

 

For example, the average relative error between point 1 and point 2 is calculated as follows (Yang 

et al., 1991), where 𝒒𝟏(𝒊, 𝒕) and 𝒒𝟐(𝒊, 𝒕) are a m-dimensional vector recording 𝑚 stations’ 

passenger flow at time 𝑡. The relative deviation is 𝜆(1,2,𝑖,𝑡) =
𝑞1(𝑖,𝑡)−𝑞2(𝑖,𝑡) 

𝑞1(𝑖,𝑡)
 and the average relative 

deviation 𝐴𝑉(𝜆(1,2,𝑡)) = √
𝜙(𝜆(1,2,𝑡))

𝑚
        (6-12) 

 

where: 
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 e𝜙(𝜆(1,2,𝑡)) = ∑ 𝜆(1,2,𝑖,𝑡)
2𝑚

𝑖=1 and 𝜆(1,2,𝑡) = {𝜆(1,2,1,𝑡), 𝜆(1,2,2,𝑡), … , 𝜆(1,2,𝑚,𝑡)}.  

 

In addition, Yang et al. (1991) defined the concept of Estimation Reliability as a measure about the 

state uncertainty; that is, 𝑅𝑒 =
1

1+𝐴𝑉(𝜆)
, which shows that when the 𝐴𝑉(𝜆) is 0, the reliability of the 

estimated state is 1. In contrast, when 𝐴𝑉(𝜆) tends to infinity, there is almost no reliability guarantee. 

This result is just based on some sample points, so it is still an approximation approach. 

 

From the perspective of Dantzig-Wolfe decomposition, based on the master problem in formulas 

(11) and (12), 𝒙𝑖 as one extreme point can be replaced by variable vector 𝒙𝒊,𝒋,𝒕,𝒔
𝒂  and variable 𝒙𝒂

𝒑
 for 

arc-based and path-based models above, respectively, and 𝑐𝑇  is the corresponding cost on each 

variable.  

 

Taking minimizing the flow on arc (𝑖, 𝑗, 𝑡, 𝑠) as an example, the general procedure of the algorithm 

is described as follows: 

 

• Step 1: Initialization. Find one feasible passenger arc flow vector {𝒙𝒊,𝒋,𝒕,𝒔
𝒂,𝒌

} on the shortest 

path as the 𝑘𝑡ℎ extreme point for each passenger group 𝑎. It indicates that (𝑘 − 1) extreme 

points have been generated before finding one feasible solution, which will be explained after 

Step 3 as a remark. 

• Step 2: Solve the restricted master problem to obtain the duals of side constraints. 

 

o Min ∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,𝑘)𝑎𝑘        (6-13) 

• Subject to,  

o ∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,1)𝑎𝑘 ≤ 𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠, ∀(𝑖, 𝑗, 𝑡, 𝑠) ∈ 𝐴    (6-14) 

o ∑ ∑ [(𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,1) × 𝑐𝑖,𝑗,𝑡,𝑠(𝑖,𝑗,𝑡,𝑠) ]𝑘 = 𝐷𝑎 × 𝜇𝑎, ∀ 𝑎    (6-15) 

o ∑ ∑ ∑ (𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘 × 𝜆𝑎,1)𝑡∈𝜏𝑎𝑘 = 𝜇𝑖,𝑗,𝜏, ∀(𝑖, 𝑗, 𝜏)     (6-16) 

o ∑ 𝜆𝑎,𝑘𝑘 = 1, ∀ 𝑎        (6-17) 

o 𝜆𝑎,𝑘 ≥ 0         (6-18) 

o  

𝜋𝑖,𝑗,𝑡,𝑠, 𝜋𝑎, 𝜋𝑖,𝑗,𝜏 and 𝜔𝑎 are the duals of side constraints (14)-(17), respectively. 

• Step 3: Solve each sub-problem as a time-dependent shortest path problem to calculate its 

reduced cost for each passenger group, which can be implemented by parallel computing 

techniques, such as, Multi Process Interface(MPI). The sub-problem for each passenger group 

𝑎 is: 
Min (𝑐𝑖,𝑗,𝑡,𝑠

𝑎 〖 × 𝑥〗_(𝑖, 𝑗, 𝑡, 𝑠)^(𝑎, 𝑘 + 1)) − ∑ (𝜋𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

(𝑖,𝑗,𝑡,𝑠) ) −

𝜋𝑎 × ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1)(𝑖,𝑗,𝑡,𝑠) − ∑ (𝜋𝑖,𝑗,𝜏 × ∑ 𝑥𝑖,𝑗,𝑡,𝑠

𝑎,𝑘+1
𝑡∈𝜏(𝑖,𝑗,𝜏) ) − 𝜔𝑎    

 (6-19) 

 

Subject to: 

∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

𝑖,𝑡:(𝑖,𝑗,𝑡,𝑠)∈𝐸 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡
𝑎,𝑘+1

𝑖,𝑡:(𝑗,𝑖,𝑠,𝑡)∈𝐸 = {
−𝐷𝑎 ∀𝑎, 𝑗 = 𝑜(𝑎), 𝑠 = 𝐷𝑇𝑎

𝐷𝑎 ∀𝑎, 𝑗 = 𝑑(𝑎), 𝑠 = 𝑇 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6-20) 

Actually, the reduced cost is: 
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(𝑐𝑖,𝑗,𝑡,𝑠
𝑎 × 𝑥𝑖,𝑗,𝑡,𝑠

𝑎,𝑘+1) − ∑ (𝜋𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

(𝑖,𝑗,𝑡,𝑠) ) − 𝜋𝑎 × ∑ (𝑐𝑖,𝑗,𝑡,𝑠 × 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1)(𝑖,𝑗,𝑡,𝑠) − ∑ (𝜋𝑖,𝑗,𝜏 ×(𝑖,𝑗,𝜏)

∑ 𝑥𝑖,𝑗,𝑡,𝑠
𝑎,𝑘+1

𝑡∈𝜏 ) − 𝜔𝑎.  

 

If it is negative, add the solution of the sub-problem to the restricted master problem at step 2 and 

begin next iteration. When the reduced costs of all sub-problems are non-negative, the optimal 

solution is achieved. 

 

In the initialization step, to find one feasible solution from the shortest path problem as initial extreme 

points,it is possible to introduce artificial variables for those coupling constraints and solve the 

problem by the Dantzig-Wolfe decomposition again (Kalvelagen, 2003). For example, 

corresponding the example in section 3.3, the coupling side constraint is ∑ 𝐷𝑖,𝑗𝑥𝑖 ≤ 𝑑𝑖𝑗 , soit is 

possible to add artificial variable 𝑦𝑖 ≥ 0 to have ∑ 𝐷𝑖,𝑗𝑥𝑖 − 𝑦𝑖 ≤ 𝑑𝑖𝑗 , and minimize ∑ 𝑦𝑖𝑖  as a master 

problem. Based on the Dantzig-Wolfe decomposition algorithm, when the ∑ 𝑦𝑖𝑖  is equal to 0,it is 

possible to conclude that one feasible solution for the primal problem is obtained and can be used for 

step 2.  

 

In addition, for the maximum problem, this can be transformed into a minimum problem by changing 

the positive arc costs to be negative. Since there is no circle in the space-time network, the label 

correcting algorithm can always be used to find the shortest path.  

 

The analyses on small card data (Trépanier et al., 2007; Barry et al., 2009) show that the data must 

be thoroughly validated and corrected prior to the practical use. Therefore, it might happen that no 

feasible solution exists when the observed data are directly used in built models. Even though each 

observation is tested in the model and can provide feasible solutions, it is still possible to have 

infeasible solutions when different measurement/observations are considered simultaneously, 

because the inconsistency among different kinds of sensors may still exist. Hence, the data need to 

be processed to obtain estimated measurements which are as close as possible to the corresponding 

measurements under real-world physical constraints. There are different approaches to clean and 

verify those measurements. The approach adopted here is to minimize the generalized least squares 

between the observed and corrected measurements, subject to constraints (1), (2) and (5). The model 

is explained at Appendix A in detail. Therefore, the measurement values 𝜇𝑎 and 𝜇𝑖,𝑗,𝜏 in information 

space generation and uncertainty quantification need to be replaced by 𝜇𝑎
∗  and 𝜇𝑖,𝑗,𝜏

∗  from the 

proposed prepressing model. 

 

The model is a linearly constrained quadratic programming model. Frank-Wolfe algorithm is usually 

used to solve the optimization problem where the objective function is convex differentiable real-

valued function and the feasible region of side constraints is compact convex (Frank and Wolfe, 

1956).  

 

The uncertainty of real-time system state increases the difficulty of real-time state prediction and 

optimal control. Compared with the offline state estimation in this paper, the challenges in the real-

time condition include that (i) the real-time rail transit OD travel information is not available and (ii) 

the state transition along the time is highly required.  
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(i) Real-time OD demand estimation: Based on day-to-day historical and accurate dynamic OD 

demands in urban rail transit systems,it is possible to classify 𝑘 representatives 𝑂𝐷𝑜,𝑑,𝜏
𝑘 for 

each OD pair at different time periods, so the estimated real-time OD demand is 𝑂𝐷𝑜,𝑑,𝜏 =

∑ (𝑤𝑘 × 𝑂𝐷𝑜,𝑑,𝜏
𝑘 )𝑘  where 𝑤𝑘 is a binary variable, which indicates that only one OD candidate 

𝑘 will be chosen. As a result, the dynamic OD travel demand’s spatial structure can be well 

captured, compared with those OD estimation models which mainly optimize one departure 

time profile for all or one-class total static OD trips.  In addition, the real-time trip generation 

at each station/origin with departure time is available from the smart card data, so 

∑ 𝑂𝐷𝑜,𝑑,𝜏 = 𝑂𝐷𝑜,𝜏
𝑜𝑏𝑠

𝑑  provides more information to generate the real-time information space. 
(ii) Real-time state transition: the rolling horizon approach has been widely chosen for real-time 

transportation operations and control (Peeta and Mahmassani, 1995; Zhou and Mahmassani, 

2007; Meng and Zhou, 2011). Under this mechanism, when focusing on one time period, it 

needs a look-back period and a look-ahead period, because the generated passengers from the 

look-back period could still in the transit network during the focused time period, and in the 

look-ahead periodit is possible to assume that all passengers can arrive at their destination for 

the network modeling. Along the planning time horizon, once some trips are finished at the 

focused time period, their true OD information can be obtained in real time, so the 

corresponding estimated OD trips can be replaced by the real ones, which can also reduce the 

information space for the state uncertainty estimation. 

(iii)Like the offline modelling, the states can be flexibly defined based on the managers’ analysis 

goals. The min/max models on one-dimensional state and the MPRE for multi-dimensional 

states are also available for quantifying the real-time state uncertainty, which provides a 

fundamental input for the measure of future real-time prediction and optimal control. 

6.5 EXPERIMENTS 

This section demonstrates the proposed models and algorithms in Sections 4 and implement them in 

a general purpose optimization package GAMS. All source codes can be downloaded at the website: 

https://www.researchgate.net/publication/326020738_Observability_Scenarios_1-4. 

 

The experiments are performed in the following transit network shown in Figure 6.9(a), where 7 

urban rail lines exist in the transit systems. To model the passenger count observation at transfer 

corridors, specific transfer links are built as shown in Figure 6.9(b).  

 

https://www.researchgate.net/publication/326020738_Observability_Scenarios_1-4
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Figure 6.9:  Hypothetic urban rail transit network 

 
1) (1) Error! Reference source not found. lists the existing transit service arcs based on given the 

timetable of the seven transit lines, and the corresponding space-time network is constructed in Figure 

6.10.  

2) (2) The origin, destination, departure time and aggregated trip time of each passenger group are listed 

in Error! Reference source not found., and each group represents 100 passenger in this test.  

3) (3) The vehicle capacity of each line is assumed in  
Group 

No 

OD Pair Departure 

Time 
Average Trip Time 

Group 

No 

OD Pair Departure 

Time 
Average Trip Time 

1 1 → 6 0 6 15 1 → 6 3 7.5 

2 1 → 6 0 7 16 1 → 6 3 7 

3 1 → 6 0 8 17 1 → 6 3 8 

4 1 → 6 0 6.5 18 2 → 6 3 6 

5 2 → 6 0 7 19 2 → 6 3 7 

6 2 → 6 0 7.5 20 2 → 6 3 6.5 

7 2 → 6 0 6.5 21 2 → 6 3 7.5 

8 2 → 6 0 6 22 2 → 6 3 8 

9 3 → 6 0 7 23 2 → 6 3 6.8 

10 3 → 6 0 7.5 24 3 → 6 3 7 

11 3 → 6 0 8 25 3 → 6 3 7.5 

12 1 → 6 3 6 26 3 → 6 3 7.4 

13 1 → 6 3 7 27 3 → 6 3 7.8 

14 1 → 6 3 6.5 28 3 → 6 3 8 

 
4) , where it can be observed that the capacity of rail transit vehicles could have its adjustment at different 

time periods by increasing or decreasing the number of train units.  

5) (4) The passenger count data from video processed data at transfer corridor (7, 4) is available; that is, 

450 and 810 passengers are observed at time points 3 and 6. 

 

Table 6.4: Hypothetic transit service arcs lists 

Service Arc Start Time End Time Service Arc Start Time End Time 

(1,7) 0 3 (1,7) 3 6 

(7,4) 3 4 (7,4) 6 7 

(4,6) 4 6 (4,6) 7 9 

(1,6) 0 8 (1,6) 3 11 
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(2,7) 0 3 (2,7) 3 6 

(2,5) 0 4 (2,5) 3 7 

(5,6) 4 7 (5,6) 7 10 

(3,8) 0 3 (3,8) 3 6 

(8,5) 3 4 (8,5) 6 7 

(3,6) 0 8 (3,6) 3 11 

 

1

2

7

4

6

5

8

3

10 32 54 76 98 1110

Station

Time
 

Figure 6.10: The corresponding space-time transit service network 

 

 

 

Table 6.5: Trip attributes of each passenger group 
Group 

No 

OD Pair Departure 

Time 
Average Trip Time 

Group 

No 

OD Pair Departure 

Time 
Average Trip Time 

1 1 → 6 0 6 15 1 → 6 3 7.5 

2 1 → 6 0 7 16 1 → 6 3 7 

3 1 → 6 0 8 17 1 → 6 3 8 

4 1 → 6 0 6.5 18 2 → 6 3 6 

5 2 → 6 0 7 19 2 → 6 3 7 

6 2 → 6 0 7.5 20 2 → 6 3 6.5 

7 2 → 6 0 6.5 21 2 → 6 3 7.5 

8 2 → 6 0 6 22 2 → 6 3 8 

9 3 → 6 0 7 23 2 → 6 3 6.8 

10 3 → 6 0 7.5 24 3 → 6 3 7 

11 3 → 6 0 8 25 3 → 6 3 7.5 

12 1 → 6 3 6 26 3 → 6 3 7.4 

13 1 → 6 3 7 27 3 → 6 3 7.8 

14 1 → 6 3 6.5 28 3 → 6 3 8 

 

Table 6.6: Vehicle capacity of transit lines 
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Line No L1 L2 L3 L4 L5 L6 L7 

Capacity of vehicles departing at time 0 300 300 600 200 400 300 200 

Capacity of vehicles departing at time 3 400 400 800 300 600 400 300 

 

The states for this experiment are as follows. 

 

1) Arc flow state: passenger count (congestion) in transfer corridor (8, 5) at time points 3 and 

6, respectively. 

2) Path flow state 1: the passenger flow departing at node 2 and time 0 to use line 1. 

3) Path flow state 2: the earning collected in the ticket for company line 1 on its first vehicle. 

4) Network-level arc flow state: the system-wide passenger count (congestion) on the running 

vehicles at time point 5. 

 

6.5.1 Scenario Design  

As a short summary, based on the available supply and demand data, the tasks are to (i) preprocess 

the measurements in case there is no feasible solution due to the possible existence of measurement 

errors in step 1, and (ii) quantify the uncertainty of the focused states in step 2. Five scenarios are 

designed to demonstrate the value of information based on the proposed models. 

 

• Scenario 1 (S1: base case): it is assumed that the origin, destination, and departure time of 

each passenger group is given, and no other information is available. 

• Scenario 2 (S2: base case + count): based on scenario 1, the passenger count data from video 

processed data at transfer corridor (7, 4) is available. 

• Scenario 3 (S3: base case + end-to-end travel time): based on scenario 1, the averaged 

group trip time from smart card is available. 

• Scenario 4 (S4: base case + end-to-end travel time + count): based on scenario 1, both the 

passenger count data and average group trip time data are available. 

• Scenario 5 (S5: ground truth): since the observed data may have its measurement errors, it 

is assumed that a ground truth can be obtained and will be compared with other scenarios. 

The ground truth is assumed as the system conditions based on maximizing the arc flow at 

time point 3 in scenario 3. 

 

 

In step 1, the measurement is preprocessed by the proposed model at Appendix A. In step 2, the 

uncertainty range of states (1)-(3) is computed by maximizing and minimizing the state goals, and 

state (4) is addressed based on the solutions from the previous three states as a sample-based 

approximation. Before analyzing different state results in different scenarios, it is important to clearly 

illustrate the conditions under which those results are obtained from the proposed models.  

 

1) In scenario 1, there is no available sensor data, so the measurement doesn’t need to be 

preprocessed.  

2) In scenario 2, the measurement is preprocessed for the passenger count data at transfer 

corridor (7, 4). The total squared errors in objective function (A.1) in step 1 is not equal to 0, 

which indicates that there will be no feasible solution if the observed measurement is directly 

used to step 2. The estimated passenger counts at transfer corridor (7, 4) at time points 3 and 
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6 is 450 and 800, respectively, compared with the observed values of 450 and 810. The total 

absolute error for the observed passenger count is 10.  

3) In scenario 3, when step 1 is conducted using the observed average trip time, the total error 

is also not equal to 0 as well. The estimated average group trip time for each group is shown 

in Error! Reference source not found.. The total absolute error for the average group trip 

time is 2.58. 

4) In scenario 4, in step 1, there are two different sensor data, so it will require weights on 

different measurements. As discussed by Lu et al. (2013), the weights should reflect the 

degrees of confidence on different observed data and can be represented by the inverses of 

the variances of the distinct sources of measurements. Therefore, the weights on aggregated 

average trip time and passenger count are calculated as 2.36 and 0.31, respectively. Finally, 

the total absolute errors for observed average group trip time and passenger count are 3.83 

and 273, which are greater than the absolute errors in scenario 1 and scenario 2, respectively. 

It shows that the inconsistency among multi-source data makes the model to find a balance 

among those observation.  

5) In scenario 5, the preprocessed group trip time in step 1 is used as the input to maximize the 

passenger count in transfer corridor (8, 5) at time points 3, and the corresponding system 

condition is assumed as the ground truth in this dynamic transit system. 

 

Table 6.7:  The observed and preprocessed average group trip time for each passenger group 

Passenger 

group 

No 

Observed 

values 

Preprocessed 

values in scenario 

3 

Passenger 

group 

No 

Observed 

values 

Preprocessed 

values in scenario 

3 

1 6 6 15 7.5 7.5 

2 7 7 16 7 7 

3 8 8 17 8 8 

4 6.5 6.5 18 6 6 

5 7 7 19 7 6.9 

6 7.5 7 20 6.5 6.4 

7 6.5 6.5 21 7.5 7 

8 6 6 22 8 7 

9 7 7 23 6.8 6.7 

10 7.5 7.5 24 7 7.08 

11 8 8 25 7.5 7.57 

12 6 6 26 7.4 7.47 

13 7 7 27 7.8 7.87 

14 6.5 6.5 28 8 8 

 

Figure 6.11 shows that the estimated maximum and minimal flow rates on each focused arc under 

different scenarios. As the increase of available information, the uncertainty range of passenger flows 

on transfer corridor (8, 5) is reduced. Meanwhile, both scenarios 3 and 4 can assert that their 

estimated state uncertainty is 0 and the state is completely observable. However, the different 

estimated unique states on arc (8,5,6,7) seem conflicted.  

 

Specifically, in scenario 3, the observed trip time is preprocessed due to its measurement error, and 

finally the estimated states on transfer corridor (8, 5) is consistent with the states in the ground truth 

in scenario 5. Note that the estimated states may not be totally consistent with the ground truth, even 
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though the observed data is same as the corresponding data in ground truth, because the observation 

is only a part reflection of the whole system condition. It is also possible that the corrected 

measurement is not consistent with that in this ground truth if other measurement correction 

approaches rather than the least square method are used in step 1. 

 

In addition, in scenario 4, the inconsistency of observed link count data and observed trip time data 

makes the corrected measurement different with the corresponding data in the ground truth, so the 

final estimated unique state in step 2 is not the real-world condition anymore. Therefore, in reality, 

when the transportation system state is estimated by different sensor data, the data quality and 

assigned weight on each data source in step 1 is important and should be clearly stated. How to obtain 

a better weight on each observation source is beyond the scope of this paper. For more details on 

knowledge fusion, readers can refer to the paper (Zheng et al., 2014).  
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Figure 6.11: The estimated flow uncertainty range on each focused arc 

 

Focusing on the passenger flow departing at node 2 and time 0 to use line 1, it is actually the path 

flow of path (2,0) →(5,4)→ (6,7). The path flow uncertainty is shown in Figure 6.12. The uncertainty 

range is similar to the arc flow above. The estimated unique state in scenario 4 is not consistent with 

the state value in ground truth. In addition, if line 1 is managed by one company and the other lines 

are managed by other different company, it needs to assign the fare to each company based on their 

service. However, the number of passengers using one specific line is uncertain in the transit system, 

so based on the proposed method,it is possible to quantify the uncertainty and estimate the general 

fare earning for each company rather than just using some simple rules for fare clearing (Gao et al., 

2011; Zhou, 2014). For example, one simple rule is to calculate the shortest path and then assume 

that passengers will choose the shortest path as their selected lines.  
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Figure 6.12: Estimated flow uncertainty range on the focused path 

 

In each scenario, the passenger flow on arc (8,5,3,4), arc (8,5,6,7), and path of line 1 are maximized 

and minimized as 6 cases, respectively, so six feasible solutions of 𝑥𝑖,𝑗,𝑡,𝑠
𝑎  can be obtained as sample 

points to estimate the defined system-level state uncertainty. For state 4, the system-wide passenger 

count (congestion) on the running vehicles at time point 5 could be represented by the passenger 

flow on arcs (1,6,3,11), (1,6,0,8), (1,7,3,6), (2,5,3,7), (2,7,3,6), (3,6,3,11), (3,6,0,8), (3,8,3,6), 

(4,6,4,6), and (5,6,4,7). The results under six objectives in scenario 1 are listed in Table 6.8.  

 

Table 6.8: Estimated passenger flows on arcs under six objectives in scenario 1 

Arc(i,j,t,s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

(1,6,3,11) 300 300 300 300 200 200 

(1,6,0,8) 200 200 200 200 100 100 

(1,7,3,6) 300 300 300 300 400 400 

(2,5,3,7) 400 400 200 400 200 200 

(2,7,3,6) 200 200 400 200 400 400 

(3,6,3,11) 300 300 100 300 100 100 

(3,6,0,8) 0 200 200 200 0 200 

(3,8,3,6) 200 200 400 200 400 400 

(4,6,4,6) 500 300 300 300 600 400 

(5,6,4,7) 400 400 400 400 400 400 

 

Based on the definitions of Maximal Possible Relative Error (MPRE) and Estimation Reliability 

(Re), the values of MPRE and Re are 16.38 and 5.753%, respectively. As shown in Error! Reference 

source not found., the possible flow on arc (3,6,0,8) is from 0 to 200, which creates a huge 

uncertainty and makes the estimation reliability extremely low. One possible reason is that the 

proposed models don’t assume any travel behavior, so all solutions are based on the physical 

constraints and available sensor observations. 

 

In scenario 2, with passenger count information, the estimated results of 6 cases for the system-level 

state are listed in Error! Reference source not found.. The corresponding values of MPRE and Re 

are 0.267 and 78.93%, respectively. It shows that the estimation reliability gets significantly 
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improved when passenger counts from one key location (transfer corridor) are available, which could 

avoid a large uncertainty range occurred in scenario 1. Scenarios 3 and 4 are performed and their 

values of MPRE and Re are 0 and 100%, respectively, but it is still emphasized that the MRPR and 

Re should be clearly explained with its correspondingly different measurement preprocessing errors 

(assigned weights) and adopted approach.  

 

Table 6.9:  Estimated passenger flows on arcs under six objectives in scenario 2 

Arc(i,j,t,s) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

(1,6,3,11) 200 200 300 300 200 200 

(1,6,0,8) 200 100 200 200 200 100 

(1,7,3,6) 400 400 300 300 400 400 

(2,5,3,7) 200 200 200 400 200 200 

(2,7,3,6) 400 400 400 200 400 400 

(3,6,3,11) 300 300 100 300 100 100 

(3,6,0,8) 50 200 200 200 50 150 

(3,8,3,6) 200 200 400 200 400 400 

(4,6,4,6) 450 450 300 300 450 450 

(5,6,4,7) 400 350 400 400 400 400 

 

6.5.2 Results from Frank-Wolfe algorithm and Dantzig-Wolfe decomposition  

In this section, the Frank-Wolfe algorithm is implemented in step 1 and the Dantzig-Wolfe 

decomposition algorithm in step 2 in GAMS. The case of minimizing the passenger flow on arc 

(8,5,3,4) in scenario 4 is treated as an example to analyze the performance of those algorithms. The 

source code can be downloaded at this link (https://www.researchgate.net/publication/324809217_F-

W_and_D-W_Observability_Quantification). 

 

Previously, the case was solved by the solver MINOS in GAMS directly. In step 1, the solved model 

is a non-linear programming model, and the minimal total generalized least square error in the 

objective function is 5.968. When the model is solved by Frank-Wolfe algorithm as a linear 

programming model, the result shown in Figure 6.13 finally converge to 7.069 after 20 iterations. 

The gap is probably caused by the optimal step size, which is found as a constant value at each 

iteration rather than a constant value vector for each variable. Hence, it could make the final solution 

converge to a local optimal solution. 

 

https://www.researchgate.net/publication/324809217_F-W_and_D-W_Observability_Quantification
https://www.researchgate.net/publication/324809217_F-W_and_D-W_Observability_Quantification
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Figure 6.13: Objective function values under different solving approaches 

 

In step 2, when the linear programming is directly solved by CPLEX, the objective function (minimal 

passenger flow on arc (8,5,3,4)) is 150. On the other hand, when Dantzig-Wolfe decomposition is 

applied to generate extreme points for time-dependent OD pairs, the minimal passenger flow is 142.5 

based on the preprocessed measurements by Frank-Wolfe algorithm rather than by the NLP solver. 

The generated extreme points (feasible paths) and the correspondingly optimal weights are listed in 

Table 6.10. However, if the preprocessed measurements in step 1 are directly obtained from the NLP 

solver, the final minimal passenger count on arc (8,5,3,4) from Dantzig-Wolfe algorithm is 150 as 

well. 

 

Table 6.10:  Generated extreme points and optimal weights in Dantzig-Wolfe decomposition 
Passenger 

Group 

No 

Extreme points (path node 

sequence (𝑖𝑖, 𝑡𝑡)) 

Optimal 

weights on 

extreme points 

Passenger 

Group 

No 

Extreme points (path node 

sequence (𝑖𝑖, 𝑡𝑡)) 

Optimal 

weights on 

extreme points 

1 

(1,0)→(6,8); 0.06 

15 

(1,3)→(7,6) →(4,7) → (6,9); 0.30 

(1,0) → (7,3)  → (4,4) → 

(6,6); 
0.94 (1,3)→(6,11); 0.70 

2 

(1,0)→(6,8); 0.54 

16 

(1,3)→(7,6) →(4,7) → (6,9); 0.51 

(1,0) → (7,3)  → (4,4) → 

(6,6); 
0.46 (1,3)→(6,11); 0.49 

3 

(1,0)→(6,8); 0.93 

17 

(1,3)→(7,6) →(4,7) → (6,9); 0.07 

(1,0) → (7,3)  → (4,4) → 

(6,6); 
0.07 (1,3)→(6,11); 0.93 

4 

(1,0)→(6,8); 0.29 

18 

(2,3)→(7,6) →(4,7) → (6,9); 1 

(1,0) → (7,3)  → (4,4) → 

(6,6); 
0.71 (2,3)→(5,7) →(6,10); 0 

5 

(2,0)→(5,4) →(6,7); 0.93 

19 

(2,3)→(7,6) →(4,7) → (6,9); 0.15 

(2,0) → (7,3)  → (4,4) → 

(6,6); 
0.07 (2,3)→(5,7) →(6,10); 0.85 

6 

(2,0)→(5,4) →(6,7); 0.93 

20 

(2,3)→(7,6) →(4,7) → (6,9); 0.62 

(2,0) → (7,3)  → (4,4) → 

(6,6); 
0.07 (2,3)→(5,7) →(6,10); 0.38 

7 

(2,0)→(5,4) →(6,7); 0.58 

21 

(2,3)→(7,6) →(4,7) → (6,9); 0 

(2,0) → (7,3)  → (4,4) → 

(6,6); 
0.42 (2,3)→(5,7) →(6,10); 1 

8 (2,0)→(5,4) →(6,7); 0.13 22 (2,3)→(7,6) →(4,7) → (6,9); 0 

0

2

4

6

8
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16
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(2,0) → (7,3)  → (4,4) → 

(6,6); 
0.87 (2,3)→(5,7) →(6,10); 1 

9 

(3,0)→(6,8); 0.08 

23 

(2,3)→(7,6) →(4,7) → (6,9); 0.36 

(3,0) → (8,3)  → (5,4) → 

(6,7); 
0.92 (2,3)→(5,7) →(6,10); 0.64 

10 

(3,0)→(6,8); 0.56 

24 

(3,3)→(6,11); 0.09 

(3,0) → (8,3)  → (5,4) → 

(6,7); 
0.44 (3,3)→(8,6) →(5,7) →(6,10); 0.91 

11 

(3,0)→(6,8); 0.93 

25 

(3,3)→(6,11); 0.55 

(3,0) → (8,3)  → (5,4) → 

(6,7); 
0.07 (3,3)→(8,6) →(5,7) →(6,10); 0.45 

12 

(1,3) → (7,6)  → (4,7) → 

(6,9); 
0.94 

26 
(3,3)→(6,11); 0.45 

(1,3)→(6,11); 0.06 (3,3)→(8,6) →(5,7) →(6,10); 0.55 

13 

(1,3) → (7,6)  → (4,7) → 

(6,9); 
0.50 

27 
(3,3)→(6,11); 0.85 

(1,3)→(6,11); 0.50 (3,3)→(8,6) →(5,7) →(6,10); 0.15 

14 

(1,3) → (7,6)  → (4,7) → 

(6,9); 
0.76 

28 
(3,3)→(6,11); 0.93 

(1,3)→(6,11); 0.24 (3,3)→(8,6) →(5,7) →(6,10); 0.07 

 

6.5.3 Tests in a large-scale network  

To address the computational challenges in large-scale networks, an approximation-based approach 

is employed, which provides a k-shortest path set as extreme points for each passenger group (in each 

OD pair with time-dependent departure time) in advance rather than using Dantzig-Wolfe 

decomposition to generate extreme point iteration by iteration. In this section, the public Google 

Transit Feed Specification (GTFS) data from Alexandria Transit Company in 2015 is used as the 

tested large-scale transit network (https://transitfeeds.com/p/alexandria-transit-company). As shown 

in Figure 6.14, it has 12 routes, 1638 trips (866 trips on weekdays, 423 trips on Saturdays, 261 trips 

on Sundays, and 88 trips on Christmas day), and 629 stops. 

 

 
Figure 6.14: Alexandria transit network read from GTFS, in Virginia, USA 

 

https://transitfeeds.com/p/alexandria-transit-company
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In this experiment, the trips on weekdays are considered the provided schedule. Then, 32,029 

vertexes and 713,650 arcs are generated in the corresponding space-time network for one whole 

weekday. The arcs include vehicle running arcs, passengers’ walking arcs from origin to transit stops 

and from transit stops to destination, transfer arcs, and waiting arcs. The space-time arc generation 

rules contain that (i) the trip (path) travel time is less than 120min; (ii) the maximum number of 

transfer times is 3; (iii) the maximum transfer/walking time is 30min; (iv) the maximum 

transfer/walking distance is 0.5mile. 

 

To obtain the time-dependent transit demand, the traffic analysis zones in the city of Alexandria are 

mapped to the transit network as the activity locations. As a result, 42 OD pairs are matched. Plus, 

the time period of 7:00am to 9:00am is divided by 36 time intervals, so the time-dependent OD 

demand is defined by each 5 mins. Finally, 1484 time-dependent OD pairs are obtained based on the 

arc generation rules above.  

 

In addition, as an approximation for those extreme points in Dantzig-Wolfe decomposition for each 

time-dependent OD pair, 3-shortest paths are generated using the developed k-shortest path 

algorithm. Finally, 4452 paths were generated with 7,868 arcs in the space-time network. The k-

shortest path algorithm for each time-dependent OD pair was shown as follows.  

 

(i) Based on the origin vertex (origin node and departure time) in the space-time network, the 

label correcting algorithm is used to generate a shortest path tree from origin vertex to all 

possible vertexes selected based on the space-time arc generation rules. 

(ii) According to the destination physical location,it is possible to find many candidate vertexes 

(stop id and stop time in schedule) connecting the destination node by walking arcs. Thenit 

is possible to add the label costs of those candidate vertexes and its corresponding walking 

arc costs to the destination, so the destination will have many vertexes (destination node and 

arrival time) with different label cost. 

(iii)Sort those label costs of the destination node and select k least-cost destination vertexes and 

back trace to the origin vertex. As a remark, at each vertex, the transfer state is recorded (the 

number of transfer times), so when back tracing the path to origin vertex,it is possible to 

obtain different paths from one same vertex with same label cost but with different transfer 

states. Finally, the k-shortest path set can be generated for each time-dependent OD pair. 

 

For simplicity, it is assumed that all transit vehicle capacity is 35 and the walking, waiting and 

transfer arc capacity is 9999. Also, the time-dependent demand of each OD pair is assumed to be 1, 

which means that one passenger will arrive every 5 mins for each OD pair. The observed passenger 

trip time is assumed and generated as a random value between the minimal and the maximal path 

costs of 3-shorest paths. the focused state is the uncertainties of passenger flow count on transfer 

links from stop 4000644 to stop 4000863 and from stop 4000745 to stop 4000509 based on the 3-

hour transit demand. Then, the four models are solved by CPLEX in GAMS as a linear programming 

problem by a workstation with Intel(R) Xeon(R) CPU E2680 v2 @ 2.8GHz processors. For each 

model, there are 10,837 equations and 4,452 variables, and the computation time is around 19 

seconds. The results are shown in Figure 6.15. 
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Figure 6.15: Uncertainties of passenger flow count at transfer links 

 

6.6 SUMMARY 

USDOT (2015) listed optimizing traffic flow on congested freeways and arterial streets as one of 

fundamental urban mobility challenges for Smart City and pointed out that outdated traffic signal 

timing causes more than 10 percent of all traffic delay on major routes in urban areas. In the subway 

system of Beijing, 96 stations implement the passenger flow control policy to relieve the system 

congestion during peak hours in 2018. As explained before, the basic question is how well the system 

can be observed, and thenit is possible to provide the best control to reach the goals, whatever it is 

in supply side to optimally control signal timing, lane use, speed limit, vehicle rescheduling or in the 

demand side to influence travelers’ departure time choice, route choice and trip generation. Note that 

most previous studies mainly focused on most likely system state estimation rather than system 

observability quantification. Hence, this study has aimed to develop a modeling framework capable 

of incorporating multi-source sensor data to address various system state uncertainty quantification 

in the whole transportation system. The contributions of the effort are: 

 

(i) The information space is generated by a system of linear equations and inequality 

constraints based on the multi-source sensor data and physical transportation system 

representation in a unified framework.  

(ii) Different projection functions are proposed to map the unique information space with the 

focused different system states (e.g., passenger density on the station platform, in the 

vehicle, or in the transfer corridor in urban rail transit system) for further system 

observability quantifications;  

(iii) The proposed space-time network flow models are finally solved as a simplified linear 

programming model by using Dantzig-Wolfe decomposition and Frank-Wolfe algorithm, 

which improves the computational efficiency in theory.  

(iv) The observation errors are also considered by a least square model to correct the directly 

observed measurements, such as, trip time of grouped passengers from transit smart card, 

aggregated passenger count from video systems, path choice information from cell phone 

trajectory data. 
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The developments presented in this section provide insights on the relationship among multi-source 

information, information space, state estimation, and system observability quantification by taking 

the urban transit systems as the analysis object. The information space and information errors are 

highly respected for state estimation, and projection- functions-based approaches are presented to 

quantify the uncertainty of different states under same information space. The proposed models can 

explain that the value of information highly relies on its aimed specific estimated states and sensor 

location rather than its volume. It provides the analysis base for how to better use available 

information for different state estimates and how to design the sensor network for future estimate 

improvement. 

 

 It should be remarked that, the observability quantification based on different states is just the first 

step for better observing and controlling the system. The following questions are currently under the 

considerations for future research: (1) what is the balance among the system observability, the 

minimally needed information, and the required accuracy of future controls? (2) What is the balance 

of the sensor data cost, value of information and its computational efficiency in proposed models and 

algorithms? (3) How to integrate the heterogeneous sensor network design with the real-time system 

control? (4) How to visualize the real-time uncertainty of different system states in a straightforward 

way for the public. 
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7.0 SUMMARY AND FUTURE WORK 

7.1 SUMMARY 

This study has explored new and creative ways to use sensor data to 1) enhance freight-related path 

choice, both pre-trip and en-route, and 2) improve the performance of urban networks more generally 

from a freight perspective. While a significant body of literature exists on both path choice and traffic 

assignment, this study presents new and creative ways to address these topics predicated on real-time 

data and a freight-first mentality. These new methods can lead to better freight-focused routing 

decisions and network operating conditions whose performance for freight is improved and can be 

assessed statistically.  

Sensor data, from vehicles and facilities, is revolutionizing how urban transportation systems 

operate. Pre-trip route choices can be informed by network status, en-route path choices can be 

predicated on evolving conditions, prices can influence path choice decisions, and more robust 

network operating conditions can be obtained. Careful placement of sensing equipment can enhance 

system observability in and controllability.  

Two specific research objectives were targeted. The first was creation of new data-driven, truck-

oriented path choice algorithms. The second was a data-informed, freight-focused traffic assignment 

model. Both these efforts have produced results that can enhance freight flows and at the same time 

mitigate congestion. The efforts built on previous research efforts in which the authors were involved 

plus findings from projects in which they have collaborated.  

The path choice problem has been addressed using algorithms that deal with multiple objectives. 

This is important because trucks are rarely just concerned with one aspect of the trip-making task. 

One algorithm finds the k-shortest paths based on cost and risk, as illustrations of two objectives that 

often surface as being important. Another identifies routes on a probabilistic basis, with each route 

having a likelihood of being selected for use. The third explicitly finds the non-dominated multi-

objective set of paths for any origin-destination (OD) pair. This third algorithm makes it possible for 

decision makers to look explicitly at the options available and select the path that seems to achieve 

the best compromise among the objectives.  

The traffic assignment model uses pricing strategies to encourage the choice of “desired” paths. The 

network prices specifically facilitate truck flows. The prices focus on improving the quality of the 

truck trips; encouraging trucks to use facilities (freeways, arterials, etc.) that have high-quality 

performance. The pricing strategies are thus, multi-class vectors, with different prices by vehicle 

class. Moreover, with an interest in improving network performance robustness, the pricing strategies 

endeavor to reduce volume-to-capacity v/c ratios on the arcs. This improves network resilience; that 

is, the network’s ability to deal with unforeseen (and unpreventable) conditions caused by incidents, 

bad weather, unanticipated maintenance work, special events, etc. This resilience is critical to freight. 

It reduces the likelihood that door-to-door travel times will change dramatically if the network 

conditions that unfold are not exactly consistent with those used in making path choices.  

The literature review shows that while much has been done on both routing and traffic assignment, 

the approaches suggested here are new and unique. But, much of that work focuses on path choice 

in the abstract, simply assuming there is an origin, a destination, a network, and paths to be identified. 
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The notion that the path choice problem should emphasize trucks, especially, or path choice factors 

that are of special concern to trucks is uncommon. One exception is the HazMat literature, that 

explicitly focuses on path choice for trucks. Admittedly, the commodity is special, and it has unique 

concerns, but the findings are generalizable to trucks more generally. This is especially true in two 

senses. First, there are only some links (arcs) in the network that are available for use. Many urban 

areas designate a truck network that can (must) be used except for local pick-ups and deliveries. 

Second, multiple objectives are considered. In the case of HazMat, the post common ones are cost 

and risk. But, there can be others, such as exposure to accidents or challenging geometric conditions.  

 

The section presents three ways to develop truck-focused paths. The first follows the paradigm 

created by Dial et al. (xxx) that emphasizes the distribution of flows among paths based on their 

relative “impedances” or costs. That is, paths with better (lower) costs would see a higher percentage 

of the flows and those with worse (higher) costs would see less. A drawback is that the procedure 

does not examine the objectives individually, it combines them through a generalized cost function 

and uses that function to compute the “cost” of each route. Also, the method is “weak” in that it does 

not identify paths explicitly. Rather, it ascertains the percentage of each OD flow that will use 

specific arcs. These values are commonly called arc utilizations and are employed heavily in traffic 

assignment procedures. In a truck context, the main nuance is that the generalized cost functions are 

different for the flow classes. Autos are focused on cost (based on travel time and distance) and to 

some degree tolls. But, the trucks are far more focused on tolls; and, to some degree risks. So, in 

identifying paths by class, it is important that these different generalized cost functions be employed. 

 

The second methodology identifies the K-shortest paths for each OD pair. As might be obvious, these 

paths range from the “shortest” (lowest cost) to the “longest” (highest cost). In the sense that a (linear) 

generalized cost function is employed to identify the paths, all K of the paths reflect the weights 

employed by that function. The non-dominated paths that reflect tradeoffs among those objectives 

are not identified. In fact, as Figure 3.2 shows, the relative combination of the objectives can vary 

widely from one of the K shortest paths to another. This means the decision maker needs to be 

comfortable with seeing the ratios between the objectives vary considerably as the paths progress 

from k = 1 to k = K.  

 

The second methodology explicitly identifies the non-dominated set of paths for each OD pair. If 

there are two objectives, then the result is akin to Figure 1.3, as is shown by Figure 3.3, where a set 

of four non-dominated paths were found for a specific OD pair. An advantage to this methodology 

is that it identifies the set of paths that has the “optimal” tradeoffs among the objectives. That is, if 

switching from path A to path B allows one objective’s value to be made better at the expense of 

making another objective’s value “worse”, the least damage to the second objective is done by 

selecting path B. Also, unlike the first path choice algorithm, the paths are identified explicitly. The 

two significant drawbacks are 1) the algorithm, unlike Dial’s (1971), provides no guidance about the 

probabilities that the paths should be chosen. Or, alternately put, the percentage of flow that should 

use any path. Also, if flow is moved from one path to another, then a shift must be made to a path 

that proportionally involves a different weighted combination of the objectives, because it lies on the 

non-dominated surface, and those paths, inherently, span the space between and among the solutions 

that optimize the objectives one at a time. 

 

It is not that one of these path choice options is “best” or “correct”. They have strengths and 

weaknesses. Any one of them provides path choices for the traffic assignment problem that are useful 



 

97 

 

and valuable. Also, they can all be sensitive to multiple objectives, either through a generalized cost 

function, or through an explicit identification of the non-dominated multi-objective path options. 

Which one is best to use depends on how the traffic assignment problem is approached. In this study, 

the third one has been carried forward because it provides a set of paths that lie on the non-dominated 

surface. 

 

In traffic assignment, much work has also been done. It may be the most-explored topic in all 

transportation research literature. But, the number of papers that explicitly focus on putting freight 

(trucks) first is very limited. And, the number that focus on multi-commodity assignment is also 

limited. Moreover, the number that incorporate capacity constraints into the scope of the problem is 

also limited. Those are among the important aspects of the problem considered here. So, this work 

is a contribution to the state-of-the-art in that regard. 

 

Also limited at the number of traffic assignment studies that have focused on network resilience; 

specifically, managing the v/c ratios among the arcs in the network. This idea is very uncommon. 

But, it is critical, the study team suggests, in the context of freight(truck) routing. It is not so much 

that the v/c ratios need to be kept low for the truck assignments to be either feasible or optimal. But, 

rather, that keeping the v/c ratios low helps ensure that the network can deal with unforeseen 

situations that arise, from accidents, incidents, weather, or other situations. Hence, a min max 

objective is incorporated that endeavors to keep the v/c ratios for the arcs below target values.   

 

Also unusual is the use of a gap function to measure the achievement of the user optimal solution. 

Beckmann’s formulation is used far more often, with an emphasis on satisfying the KTT conditions 

that their objective function creates. Instead, in this study a gap concept is used where the travel times 

on the path are compared with a target path time that is desirable. The target might be the travel time 

(or cost) associated with the user equilibrium solution. Or, it could be some other travel time that is 

a policy objective from the perspective of the network operator. An advantage to adopting this 

perspective is that the user optimal objective function value obtained in any solution can be compared 

against the value of 0 that would be obtained were the user optimal solution achieved. The Beckmann 

objective function cannot be used for this purpose. 

 

This study effort simply suggests that multiple objectives are typically important. And, it uses cost, 

risk, and tolls to motivate that thought. In fact, the tolls are a control mechanism that network 

managers can use to encourage specific tendencies in the selection of truck routes. The idea is 

somewhat counter-intuitive since the “objective” is to keep the trucks off local streets and encourage 

them to use high0type facilities. This is important, because the more common purpose in introducing 

tolls is to rationalize the use of capacity-challenged facilities, like bridges and tunnels, that have 

limited capacity but high demand. Those tolls tend to discourage traffic from using facilities that are 

“good” from the perspective of truck paths. Hence, this motivates the idea that two toll structures 

might be useful. One would focus on auto trips, and discourage highly peaked demands, and highly-

peaked flows, and the use of capacity-challenged facilities where other (lower class facility) options 

are available. In contrast, the pricing structure for the trucks should encourage the use of high-type 

facilities (e.g., freeways) and discourage the use of low-type facilities (like local streets). It is 

important to see that this difference in perspective is important and to utilize this insight to design 

the network pricing structure. 
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All the path choice methods can be made sensitive to real-time information about the evolving 

network conditions. They can all make use of emerging trends in the network travel times (rates). 

And, they can be sensitive to the inclusion / exclusion of specific arcs because of use restrictions (no 

trucks), either permanent, temporary, or condition (time-of-day) dependent; and they can be sensitive 

to changes in the “impedances” for the arcs in the sense of varying tolls. The one unexpected insight 

is that the tolls pertaining to trucks might be different from and motivated by a different objective 

that those that pertain to autos. In fact, the two may have opposite trends. While the auto-focused 

tolls may be intended to discourage peaking and the use of capacity-challenged arcs, the truck tolls 

may want to discourage use of local streets and low-type facilities; and encourage trucks to use the 

high-quality facilities, which may, in fact, be the ones that are capacity-challenged. This means the 

trucks are (or should be) encouraged to use the “best” facilities so that they do not “rat run” through 

the network to avoid tolls on the best facilities available. Rather, the tolls should encourage the trucks 

to stay on the best arcs in the network so that they do not seek paths that use local streets. This is a 

pricing strategy that has significant, “freight-first” implications. 

 

This section has described a realization of the traffic assignment problem in which trucks are 

represented separate from autos. The problem is non-linear in that the travel times on the arcs are 

sensitive to the arc flows. And that, in turn, leads to one of the objectives being quadratic. The terms 

involve the multiplication of one choice variable times another. Fortunately, for small problems, 

there are generalized solvers that can deal with such situations. For large-scale problems, like the 

ones that are faced for most metropolitan areas, such a non-linear formulation is not practical to solve 

explicitly. But, for illustration purposes, a simplified network for the Albany, NY metropolitan area 

is used in the case study to show the type of results obtained.  

 

The most important nuance in the model is the fact that the path choices for the trucks are different 

from those for the non-trucks (autos). The generalized cost function is different and the network over 

which the trucks can travel is more restrictive. The trucks take into consideration the risk associated 

with traversing the arcs (as in exposure to accidents) and the tolls are given considerable weight. 

Also, the toll structure is different for trucks than it is for autos. The tolls for autos discourage use of 

capacity-challenged facilities like bridges, tolls, and heavily used freeway links, encouraging the 

vehicles to use other, comparable, but “lower quality” facilities, like the arterials, in their paths. For 

the trucks, however, the toll structure discourages the use of local streets and other “lower class” 

facilities so that neighborhoods are not exposed to unnecessary truck traffic. And, they are 

encouraged, through low tolls, to use the “high type” facilities, such as freeways, except for local 

pickups and deliveries. This bi-pronged pricing strategy helps to put “freight-first” in the context of 

the traffic assignment. And, it leads to solutions that the public is “more likely” to accept because it 

discourages trucks from using local streets and highways. 

 

The mathematical equations that are involved in the traffic assignment model are presented and 

described as well as the LINGO problem statement which implements them. A case study example 

is presented, with excerpts of the results, so that the reader can gain a sense of the results obtained. 

(The complete, machine readable workspaces exist and are available for anyone wishing to use 

them.) 
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7.2 FUTURE WORK 

Much future work can be carried out based on the analyses conducted so far. Some important 

examples of these efforts are as follows: 

 

Real-World Tests. As is often the case, the methodological advances presented here have been tested 

using a blend of empirical data and hypothetical situations. One natural extension for future work is 

to test these methods based on datasets that are more representative and reflective of real-world 

conditions. This pertains to all the methods presented, from the assessment of reliability for segments 

and routes to the selection of plans for truck routing and locations for distribution centers.  

 

Additional Sensitivity Analyses. As is often the situation, the case study analyses focus on some 

aspects of the problem and not others. In this instance, there are several aspects of the problem that 

were not explored. In the instance of Section 3, the impact of variations in the objective weights 

would be interesting to explore. Only a few combinations were tested. Also, the weight for the 

multinomial logit model in Dial’s (1971) algorithm could be adjusted parametrically to see what 

affect it has. In the case of the k-shortest path algorithm, the value of K could be varied, and the 

weight values changed, individually and in combination. In Section 4, the weights among the 

objectives could be altered, the arcs for which trucks are prohibited could be changed, and the 

impacts of tolling strategies could be explored more thoroughly. The latter is particularly interesting 

because of the observation that the tolling strategy for the trucks should, probably, be different than 

it is for autos. In Section 5, it would be very interesting to see if general trends can be discerned for 

the combinations of network parameter values that produce the paradox; and, if there are related 

values for the tolls that alleviate its occurrence.  
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