
 
 

 
 

Project ID: NTC2015-SU-R-06 
 

ADVANCED VOLATILITY MODELS FOR IMPROVING 
TRAVEL TIME PREDICTION 

 
Final Report 

 
 

By 
 

 
Ali Haghani 

Department of Civil and Environmental Engineering 
University of Maryland 

College Park, MD 20742 
phone: (301) 405-1963 
Fax: (301) 405-2585 

E-mail: haghani@umd.edu 
 

 
Yanru Zhang 

University of Maryland 
 
 

for  
 

National Transportation Center at Maryland (NTC@Maryland) 
1124 Glenn Martin Hall 
University of Maryland 

College Park, MD 20742 
 
 

February, 2015

mailto:haghani@umd.edu




i 
 

ACKNOWLEDGEMENTS 
 
This project was funded by the National Transportation Center @ Maryland (NTC@Maryland), 
one of the five National Centers that were selected in this nationwide competition, by the Office 
of the Assistant Secretary for Research and Technology (OST-R), U.S. Department of 
Transportation (US DOT). 
 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors, who are solely responsible for the facts 
and the accuracy of the material and information presented herein. This document is disseminated 
under the sponsorship of the U.S. Department of Transportation University Transportation Centers 
Program in the interest of information exchange. The U.S. Government assumes no liability for 
the contents or use thereof. The contents do not necessarily reflect the official views of the U.S. 
Government. This report does not constitute a standard, specification, or regulation. 





iii 
 

TABLE OF CONTENTS 

EXCUTIVE SUMMARY ............................................................................................................. 1 
1.0 INTRODUCTION............................................................................................................. 2 

1.1 PROBLEM STATEMENT ................................................................................................. 2 
1.2 RESEARCH OBJECTIVES ............................................................................................... 3 
1.3 RESEARCH CONTRIBUTIONS ...................................................................................... 3 
1.4 REPORT OUTLINE ........................................................................................................... 4 

2.0 LITERATURE REVIEW ................................................................................................ 5 
2.1 PARAMETRIC APPROACHES ........................................................................................ 5 

2.1.1 Naïve Methods ............................................................................................................ 5 
2.1.2 Autoregressive Linear Processes ................................................................................ 6 
2.1.3 State Space Models ..................................................................................................... 6 

2.2 NON-PARAMETRIC APPROACHES .............................................................................. 6 
2.2.1 Non-parametric Regression ........................................................................................ 6 
2.2.2 Neural Network ........................................................................................................... 7 
2.2.3 Other Artificial Intelligence Methods ......................................................................... 8 

2.3 HYBRID APPROACHES .................................................................................................. 8 
2.3.1 Classification Based Approach ................................................................................... 8 
2.3.2 Classification Based Approach ................................................................................... 8 
2.3.3 Decomposition Technique .......................................................................................... 9 
2.3.4 Ensemble Trees ........................................................................................................... 9 
2.3.5 Other Combination Approaches ............................................................................... 10 

2.4 PREDICTION INTERVAL BASED APPROACHES ..................................................... 10 
2.4.1 Ensemble Methods .................................................................................................... 10 
2.4.2 Statistical Volatility Based Approach ....................................................................... 11 

2.5 SUMMARY ...................................................................................................................... 12 
3.0 STATISTICAL VOLATILITY MODELS FOR RELIABLE TRAVEL TIME 
PREDICTION ............................................................................................................................. 13 

3.1 MEAN PREDICTION MODELS..................................................................................... 14 
3.1.1 Theoretical Background of ARIMA Models ............................................................ 14 
3.1.2 ARIMA Model Optimization .................................................................................... 16 
3.1.3 Model Evaluation Criterions ..................................................................................... 16 

3.2 VOLATILITY MODELS ................................................................................................. 17 
3.2.1 GARCH-type Models ............................................................................................... 17 
3.2.2 Component GARCH Models .................................................................................... 18 
3.2.3 Stochastic Volatility Model ...................................................................................... 20 
3.2.4 Prediction Interval Estimation .................................................................................. 22 

3.3 APPLICATION OF COMPONENT GARCH MODELS IN TRAVEL TIME 
PREDICTION ................................................................................................................... 23 

3.3.1 Modeling Conditional Mean ..................................................................................... 23 
3.3.2 Testing the ARCH Effect .......................................................................................... 25 
3.3.3 Estimating the Volatility Model................................................................................ 25 
3.3.4 Construct the Mean and Prediction Intervals ............................................................ 26 
3.3.5 Results and Discussion ............................................................................................. 28 



iv 
 

3.3.6 Summary ................................................................................................................... 32 
3.4 APPLICATION OF STOCHASTIC VOLATILITY MODEL ........................................ 33 

3.4.1 Model Fitting ............................................................................................................ 37 
3.4.2 Results and Analysis ................................................................................................. 38 
3.4.3 Summary ................................................................................................................... 42 

4.0 CONCLUSION AND RECOMMENDATIONS .......................................................... 45 
4.1 SUMMARY ...................................................................................................................... 45 
4.2 CONCLUSION ................................................................................................................. 46 
4.3 FUTURE RECOMMENDATION.................................................................................... 47 

5.0 REFERENCES ................................................................................................................ 48 
 

 
  



v 
 

LIST OF TABLES 
 
 
Table 1: Estimated MPIL and PICP values for GARCH, C-GARCH and MC-GARCH models. 29 
Table 2: Selected segments for this study. .................................................................................... 35 
 
 

LIST OF FIGURES 
 
Figure 1: Concept of prediction interval (Shrestha and Solomatine 2006). ................................. 14 
Figure 2: Box Plot of Absolute Deviation from Predicted Mean. ................................................ 24 
Figure 3: Multiplicative component GARCH forecasting results: decomposition of the volatility 

into its various components (32-33). .................................................................................... 27 
Figure 4: Predicted mean and PI for multiplicative component GARCH model. ........................ 28 
Figure 5: Comparing performance of GARCH, C-GARCH and MC-GARCH models during peak 

hours. ..................................................................................................................................... 30 
Figure 6: Comparing performance of GARCH, C-GARCH and MC-GARCH during non-peak 

hours. ..................................................................................................................................... 31 
Figure 7: Comparison of prediction intervals constructed by GARCH, C-GARCH and MC-

GARCH models. ................................................................................................................... 32 
Figure 8: Bluetooth sensor location of the study. ......................................................................... 34 
Figure 9: A scatter plot of travel times on four paths. .................................................................. 36 
Figure 10: Prediction results for peak hour travel time at four segments. .................................... 39 
Figure 11: Comparison of performance measures for six dataset by using ARIMA-GARCH and 

ARIMA-SV model with (a) 5 minute time interval (b) 15 minute time interval. ................. 42 
 





 

1 
 

EXCUTIVE SUMMARY 

Travel time effectively measures freeway traffic conditions. Easy access to this information 
provides the potential to alleviate traffic congestion and to increase the reliability in road 
networks. Accurate travel time information through Advanced Traveler Information Systems 
(ATIS) can provide guidance for travelers’ decisions on departure time, route, and mode choice, 
and reduce travelers’ stress and anxiety. In addition, travel time information can be used to 
present the current or future traffic state in a network and provide assistance for transportation 
agencies in proactively developing Advanced Traffic Management System (ATMS) strategies. 
Despite its importance, it is still a challenging task to model and estimate travel time, as traffic 
often has irregular fluctuations. These fluctuations result from the interactions among different 
vehicle-driver combinations and exogenous factors such as traffic incidents, weather, demand, 
and roadway conditions. Travel time is especially sensitive to the exogenous factors when 
operating at or near the roadway’s capacity, where congestion occurs. Small changes in traffic 
demand or the occurrence of an incident can greatly affect the travel time. As it is impossible to 
take into consideration every impact of these unpredictable exogenous factors in the modeling 
process, travel time prediction problem is often associated with uncertainty. This research uses 
innovative data mining approaches such as advanced statistical and machine learning algorithms 
to study uncertainty associated with travel time prediction.  
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1.0 INTRODUCTION 

Travel time is widely acknowledged as an effective measure of highway traffic conditions, which 
can be easily understood by both travelers and transportation agencies (Yeon et al. 2008). Access 
to accurate travel time information has the potential to alleviate traffic congestion, to minimize its 
negative environmental and societal side effects, and to increase road network reliability (Choe et 
al. 2002). Advanced Traveler Information System (ATIS) provides travelers with accurate and 
timely traffic information via dynamic message signs, radio, and internet. The pre-trip travel time 
information gives guidance for travelers’ decisions for departure time, route, and mode choice, 
and reduces travelers’ stress and anxiety. In addition, travel time information can also be used to 
present the current or future traffic state in a network and to provide assistance for transportation 
agencies in proactively developing Advanced Traffic Management System (ATMS) strategies. For 
example, travel time is one of the performance measures in the Freeway Performance 
Measurement System (PeMS) developed by the California Department of Transportation (Choe et 
al. 2002). The Split Cycle Offset Optimization Technique system and the Sydney Coordinated 
Adaptive Traffic system are two successful traffic operation systems that use travel time 
information as their module input (Yang et al. 2010). Therefore, travel time information is a critical 
input and output for intelligent transportation system. 

1.1 PROBLEM STATEMENT 

The success of ATIS and ATMS relies not only on the availability and accuracy of historical and 
real time traffic information, but also on future traffic information. A wide range of methodologies 
in travel time forecasting has been proposed to model traffic characteristics and to produce short 
term forecasts. Most of these methods are based on the historical travel time data concurrently 
collected from various detection systems, such as vehicles with GPS or Bluetooth devices, 
electronic toll system, and video detection. Especially with the recent technology advances in 
vehicle tracking, direct and accurate travel time information can be easily obtained. The 
technology improvements make the development of an online travel time prediction algorithm 
more meaningful.  

Despite the proliferation of traffic prediction methodologies in the existing literature, modeling 
and estimating travel time is still a challenging task (Yildirimoglu and Geroliminis 2013). Travel 
time experiences strong fluctuations across different periods and traffic conditions. These 
fluctuations result from the interactions among different vehicle-driver combinations, and 
exogenous factors such as traffic incidents, weather, demand, and roadway conditions. Travel time 
is especially sensitive to the exogenous factors when operating at or near the roadway’s capacity, 
where congestion occurs. Small changes in traffic demand or the occurrence of an incident can 
greatly affect the travel time. As the impact of these unpredictable exogenous factors is impossible 
to be considered fully in the modeling process, travel time prediction problem is often associated 
with uncertainty.  

Addressing uncertainties associated with travel time, and therefore, travel time reliability has 
become a topic of interest in recent years. FHWA defines travel time reliability as “the consistency 
or dependability in travel times, as measured from day-to-day and/or across different times of the 
day” (Ahmed and Cook 1979), and proposes several travel time reliability measures: 90th or 95th 
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percentile travel time, buffer index, and planning time index. For prediction purpose, another 
efficient measure is prediction intervals (PIs) (Levin and Tsao 1980), based on which one can 
assess the reliability of the travel time forecasting results. Prediction interval is an estimated 
interval, which covers the expected travel time value with a predetermined probability (Davis et 
al. 1990). In other words, PIs give a likely range of the predicting results to represent the 
uncertainties associated with travel time. Availability of PIs allows the travelers and traffic 
managers to quantify the level of uncertainty associated with predicted travel time and thus to 
make multiple strategies on route and departure time choice to deal with the worst and best 
conditions. Wide PIs indicate a higher uncertainty of the future traffic conditions and travelers 
should expect extreme delays, while narrow PIs mean the traffic condition are relatively stable 
(Hamed et al. 1995). 

In brief, due to the dynamic and stochastic nature of traffic, travel time prediction is one of the 
most challenging tasks in ATIS and ATMS. In order to provide meaningful traffic information to 
travelers and traffic managers, it is critical to develop an accurate and reliable traffic prediction 
algorithm that not only reduces the absolute value of prediction error but also takes into 
consideration the uncertainty associated with travel time prediction.  

1.2 RESEARCH OBJECTIVES 

The primary goal of this research is to identify uncertainties associated with travel time prediction. 
Both accuracy and reliability issues are addressed in terms of freeway travel time prediction. 
Prediction accuracy emphasizes the difference between the predicted and the actual value, or in 
other words, prediction error. Most existing travel time prediction methods in the literature focus 
on improving travel time prediction accuracy without considering the uncertainty issue. On the 
other hand, reliability puts more emphasis on uncertainty associated with prediction. Instead of 
providing a point value (an average of travel time during a certain time interval), a prediction 
interval is proposed to represent how likely it will capture the observed value. To achieve both 
objectives, this research introduces and implements a data driven approach to predict travel time 
and to assess uncertainty associated with predictions.  

A statistical volatility model is promising in terms of modeling uncertainty, as it not only provides 
the opportunity to develop a more accurate mean model but also produce an effective and efficient 
prediction interval. This research proposes and compares different types of statistical volatility-
based travel time prediction models. The preliminary study results indicate that a statistical 
volatility model can be a promising approach to account for uncertainties associated with 
prediction.  

1.3 RESEARCH CONTRIBUTIONS  

This section lists the main contributions to the state-of-the-art research offered in this report. 

We have developed two innovative component volatility-based travel time prediction models to 
better characterize long-term and short-term volatility and cyclical patterns in travel time data. 
Because of the daily, weekly or even monthly recurrent traffic congestion, travel time data often 
show strong cyclical patterns. In the traffic prediction field, existing volatility models do not 
consider the possible cyclical patterns in the residual series, often referred to as a seasonal 
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component. Conventional generalized autoregressive conditional heteroskedasticity (GARCH) 
models are often criticized as unsatisfactorily modeling data series that show pronounced seasonal 
patterns (Engle and Sokalska 2012). The decomposition technologies provide the potential to deal 
with trend and seasonal components in the data. Driven by the successful application of statistical 
volatility models in transportation analyses, the component GARCH models are proposed. The 
component GARCH models are similar to the structure of the GARCH model but include trend 
and seasonal elements. The component GARCH models allow for a more versatile structure with 
the potential to provide more accurate traffic volatility forecasting along freeway corridors.   

We have introduced advanced solution technologies, namely Bayesian inference using the Markov 
Chain Monte Carlo (MCMC) based on ancillarity-sufficiency interweaving strategy (ASIS) 
proposed by Kastner and S. Frühwirth-Schnatter (2013), for stochastic volatility (SV) model in 
travel time volatility forecasting. The proposed method greatly improves the efficiency and 
robustness of the SV model. We have compared the proposed SV model with the GARCH model 
by using freeway travel time data and have demonstrated the advanced SV model as a competitive 
alternative in modeling the volatility nature in traffic.  

1.4 REPORT OUTLINE  

The rest of this report is organized as follows. The next chapter reviews previous works in freeway 
travel time prediction. The existing literature is categorized as parametric, non-parametric, hybrid 
and prediction interval based approaches. Chapter 3 describes statistical volatility models in travel 
time reliability prediction. The model structure and the concept of prediction interval are 
introduced. The statistical volatility models are composed of two parts: mean and prediction 
interval. The mean prediction models and the volatility models (to construct prediction intervals) 
are discussed in Chapter 3.1 and in Chapter 3.2. Chapter 3.3 performs a case study using volatility 
models in travel time prediction. Chapter 4 concludes the report and also provides further 
recommendations for future research in this topic.  
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2.0 LITERATURE REVIEW 

Short-term traffic prediction as a critical component in a real-time ITS environment has seen an 
explosion of interest since the 1980s. A large number of forecasting algorithms have been proposed 
in the literature. Because of the complexity of the traffic prediction problem, existing traffic 
prediction approaches are different from one another in different aspects. Vlahogianni et al. (2004) 
suggested that the process of developing short-term traffic prediction can be divided into three 
essential clusters (scope, conceptual output and modeling) that involves two important issues 
(design and modeling parameters). The designing process mainly focuses on the objective of 
forecasting that includes what types of application, where to implement, and the desired output of 
the model. The modeling parameters procedure is the way to achieve the goal determined during 
the design process. This study belongs to the modeling parameters procedure.  

Since this study primarily focuses on freeway travel time prediction, we will emphasize the 
literature on different modeling techniques in this area. There are several review or comparative 
studies in existing short-term traffic prediction methods (Vlahogianni et al. 2004; Arem et al. 
1997; Ishak and Al-Deek 2002; Van Lint and Van Hinsbergen 2012) and interested readers can 
refer to these studies for further references. Vlahogianni et al. (2004) classified traffic prediction 
models as consisting of three modeling approaches: parametric, non-parametric and hybrid 
methods. The parametric approach usually assumes a specific form for the dependent and 
independent variables. The modeling process involves model identification, parameter estimation, 
model diagnostic checking and prediction. The parametric models often have more assumptions 
than non-parametric methods. If these assumptions are satisfied by the data, the parametric 
approach can produce accurate estimation. Otherwise, the parametric approach can be misleading. 
The non-parametric models are data driven approaches that usually do not assume a specific 
structure of the data. These algorithms heavily depend on the quality of the available data. Another 
traffic forecasting approach is the hybrid method that combines different models or the same type 
of models with different initial values or parameters to obtain better prediction performances. In 
addition, as uncertainties are often involved in traffic prediction, prediction interval-based 
approaches consider the future traffic parameter (such as volume, speed or travel time) as a 
distribution instead of a point value. Mostly existing prediction-interval based approaches belong 
to the hybrid method. Because of its importance, we discuss this approach as a separate category. 
The following sections will summarize the major research findings of existing literature based on 
the taxonomy proposed by Vlahogianni et al. (2004).  

2.1 PARAMETRIC APPROACHES 

2.1.1 Naïve Methods 

The naïve method can be interpreted as a simple and easy implementation method without many 
model assumptions. Historical average and smoothing (Farokhi Sadabadi et al. 2010) techniques 
received extensive attention in practical applications (Smith and Demetsky 1997; Williams 1998). 
The historical average model simply averages historical traffic data on either a certain time of the 
day, day of the week or other time periods based on the assumption that traffic shows similar 
patterns throughout the day, week or year, e.g. traffic patterns day to day often show remarkable 
similarities and these patterns are useful for prediction. The historical average method has already 
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been applied to the urban traffic control systems (UTCS) (Stephanedes et al. 1981) and other 
various traveler information systems (Jeffery et al. 1987; Kaysi et al. 1993). However, as traffic 
conditions are highly dynamic, the naïve method is often a poor predictor.  

2.1.2 Autoregressive Linear Processes 

In the early 1990s, transportation researchers developed an alternative approach—autoregressive 
linear process such as the autoregressive integrated moving average (ARIMA) type models in 
predicting traffic. The ARIMA-type models were first introduced by Ahmed and Cook (Ahmed 
and Cook 1979) and Levin and Tsao (1980) in freeway traffic flow and occupancy prediction. 
Their studies indicated that the ARIMA-type models provide better forecasting accuracy compared 
with historical average and smoothing techniques. Applications of the ARIMA model in traffic 
parameters forecasting was also discussed in later studies (Davis et al. 1990; Hamed et al. 1995; 
Kamarianakis and Prastacos, 2005; Williams et al. 1998; Cetin and Gomert 2006). As traffic 
parameters show spatial-temporal correlations, both Kamarianakis and Prastacos (2005) and Min 
and Wynter (2011) adopted a multivariate spatial-temporal autoregressive moving average model 
to predict traffic flow. Because of its well defined theoretical foundation and effectiveness in 
prediction (2009), the ARIMA-type models gradually become standard methods to compare with 
newly developed forecasting models. However, the ARIMA-type models are sensitive to extreme 
values. This makes the ARIMA-type model less efficient when modeling data with large 
variations.  

2.1.3 State Space Models 

State space models belong to the multivariate forecasting category, which can be applied to 
multiple inputs – multiple outputs systems. It is worth noting that the ‘state space model’ and the 
more widely known ‘Kalman filter model’ refer to the same model structure. The term ‘state space’ 
refers to the model, the term ‘Kalman filter’ refers to the process of estimating and updating model 
parameters. Stathopoulos and Karlaftis (2003) applied a multivariate state space model to predict 
flow at an urban signalized arterial. Ghosh et al. (2009) applied a structural time series model to 
forecast traffic flow in a congested urban transportation network. The structural time series model 
is a special form of the state-space model that represents the observed time series as a sum of 
different components. Their study results indicate that the proposed model is computationally more 
efficient and can trace the evolution of each individual component separately. The Kalman filtering 
algorithm allows the parameters of the model to be updated with new data available. Therefore it 
enables dynamic traffic prediction (Whittaker et al. 1997; Okutani and Stephanedes 1984; Chien 
and Kuchipudi 2003; Nanthawichit et al. 2003; van Lint 2008; Wang et al. 2008; Yang et al. 2004) 

2.2 NON-PARAMETRIC APPROACHES 

2.2.1 Non-parametric Regression 

Nonparametric regression is a form of regression analysis that does not predetermine a specific 
form for the predictor. It relies on data to describe the relationship between dependent and 
independent variables and is based on the principle of pattern recognition and chaotic systems 
(Smith et al. 2002). Smith and Demetsky (1996) demonstrated the advantages of the nonparametric 
regression approach when compared with the neural network. Another study by Smith et al. (2002) 
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suggested that the heuristic forecast generation method improves the performance of the 
nonparametric regression but does not necessarily perform better than the seasonal ARIMA model. 
Clark (2003) proposed a nonparametric regression technique described as a k nearest neighbor (k-
NN) model to predict traffic state variables. Davis and Nihan (1991) applied the k-NN model in 
predicting freeway traffic. They suggested that the k-NN method is comparable to the linear time-
series approach. Robinson and Polak (2005) proposed the use of the k-NN technique to model 
urban link travel time. They discussed in details the selection of a distance metric, local estimation 
measure and value of k. Myung et al. (2011) applied the k-NN to predict travel time with data 
from a vehicle detector system and an automatic toll collection system. Zou et al. (2009) utilized 
both k-NN and a multi-topology neural network model in predicting freeway travel time. Their 
proposed model provides reliable travel time predictions in uncongested, congested, and transition 
traffic conditions. 

2.2.2 Neural Network 

Van lint et al. (2002) applied a state space neural network that is capable of dealing with the spatio-
temporal relationships of traffic. Yin et al. (2002) developed a fuzzy-neural model (FNM) to 
predict traffic flow in an urban network. Their model applied a gate network (GN) that divides 
input data into several clusters using a fuzzy approach, and then applied the expert network (EN) 
to specify the input-output relationship. Ishak et al. (2003, 2004) compared three different neural 
networks: simple recurrent networks (Jordan–Elman), partial recurrent networks (PRNs), and 
time-lagged feed forward networks (TLFN), with different input parameters for traffic prediction. 
Jiang and Adeli (2005) proposed the dynamic time-delay wavelet neural network model in freeway 
traffic flow forecasting. The proposed model considers both the time of the day and the day of the 
week when predicting traffic flow. Liu et al. (2005) applied the state-space neural network model 
to predict travel time when there is missing data. Their proposed method is insensitive to missing 
data and can provide accurate forecasting. Quek et al. (20026) applied a specific class of fuzzy 
neural network models in short term traffic flow prediction. The proposed model known as a 
pseudo outer-product fuzzy neural network using the truth-value-restriction method (POPFNN-
TVR) was shown to outperform the conventional feed forward neural network using back 
propagation (BP) learning. 

Zheng et al. (2006) suggested that a certain model has superior performance for a particular time 
period and combining single neural network predictors may improve forecasting accuracy. They 
developed a Bayesian combined neural network model that combines the back propagation and 
the radial basis function neural networks in traffic flow forecasting. The credit of each individual 
model is estimated based on the theory of conditional probability and Bayes’ rule and largely 
depends on the accumulative prediction performance of previous time step. Zeng & Zhang (2013) 
applied four different neural network models and proposed one model in freeway travel time 
forecasting. These models include multilayer feed forward neural network, time-delay neural 
network, state-space neural network, and nonlinear autoregressive with exogenous inputs. In their 
study, they analyzed the effect of different input variables and the temporal-spatial inputs on model 
performance. Their study results indicate that the temporal-spatial inputs can greatly improve the 
model performance; the state-space neural network and the time delayed state-space neural 
network outperform the other models.  
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2.2.3 Other Artificial Intelligence Methods 

Sun et al. (2006) considered spatial and temporal correlations of traffic flow among adjacent road 
links and developed a Bayesian network approach to forecast traffic flow. In their paper, the joint 
probability distribution between the upstream and downstream locations is described as a Gaussian 
mixture model (GMM) with parameters estimated via the competitive expectation maximization 
(CEM) algorithm. Hong (2011) proposed a traffic flow forecasting model that combines the 
seasonal support vector regression model with chaotic simulated annealing algorithm(SSVRCSA). 
In his paper, the chaotic simulated annealing algorithm is proposed to determine the value of three 
parameters in a SVR model; seasonal adjustment factors are then applied to deal with the cyclic 
trend.  

2.3 HYBRID APPROACHES 

2.3.1 Classification Based Approach 

The classification-based hybrid approach classifies traffic data into different groups first and then 
assigns different models according to the characteristics of data in different groups. Danech-Pajouh 
and Aron (1991) proposed an ATHENA model that groups data according to their similarities and 
then assigns a different linear model to each cluster. Antoniou et al. (2013) developed a dynamic 
data-driven framework for traffic state estimation and prediction. Their model first clusters 
existing observations into several groups, and then predicts the future traffic state by modeling the 
evolution of traffic history states as a Markov process. By estimating a flexible model for each 
cluster, future traffic speed can be obtained. Van Der Voort et al. (1996) combined Kohonen maps 
with ARIMA time series. The study results were promising compared with the ATHENA model. 
Later, Chen et al. (2001) used a self-organizing map (SOM) to initially classify traffic data into 
different groups and then applied the ARIMA and the multi-layer perception (MLP) model as two 
prediction methods. Their study results suggested that the SOM/ARIMA hybrid approach is more 
sensitive to missing data than the SOM/MLP hybrid approach.  

2.3.2 Classification Based Approach 

The Kalman filtering method is a promising method to train and update model parameters and has 
been applied to different kinds of forecasting models to enable continuous parameter updating. Yu 
et al. (2010) applied the support vector machine (SVM) method to predict baseline travel time and 
used the Kalman filtering technique to adjust the prediction results with updated information. 
Stathopoulos and Dimitriou (2008) proposed a forecasting approach that utilizes a fuzzy rule based 
system (FRBS) that nonlinearly combines traffic flow forecasting results from an online adaptive 
Kalman filter (KF) and an artificial neural network (ANN) model. Their study results indicate that 
the combined approach improves the forecasting accuracy compared with each individual model. 
Liu et al. (2006) proposed the extended Kalman filter (EKF) method to train the parameters of the 
state-space neural networks (SSNN). The proposed algorithm was tested in an urban network and 
the study results indicate that the proposed method is 20 times faster than the SSNNLM model 
with a slightly worse forecasting accuracy.  
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2.3.3 Decomposition Technique 

Decomposition techniques decompose a complicated data set into small elements. In terms of 
prediction, decomposition techniques can be utilized to reduce noisy information in traffic data to 
improve their prediction performance (2010); they could also be used as the basis for combining 
different models (2012). Some popular decomposition techniques include: Fourier methods, 
discrete wavelet transform (DWT) and empirical mode decomposition (EMD).  

Hamad et al. (2009) suggested that more accurate prediction of speed data can be obtained through 
decomposing the time series into its basic components. They utilized the empirical model 
decomposition to filter out unimportant elements and applied a multilayer, feed forward neural 
network with BP to predict freeway travel speed. Later, Chen and Wu (2012) applied empirical 
model decomposition and gray theory (1989) in predicting bus travel time. Wei and Chen (2012) 
forecasted metro passenger flow through empirical model decomposition and neural networks. 
They applied the EMD method to decompose traffic flow as several intrinsic mode function (IMF) 
components and selected the important information as input for back-propagation neural networks 
(BPNN). Their study results indicate that treating the important and non-important IMF as 
different inputs of the BPNN would improve the forecasting accuracy. Jiang and Adeli (2004) 
proposed a hybrid wavelet packet-ACF method to analyze traffic flow time series and concluded 
that the discrete wavelet packet transform method de-noises the signal even more effectively than 
the conventional wavelet transform. Xie et al. (2007) applied a discrete wavelet decomposition 
method to remove noise in original traffic data and utilized the Kalman filter prediction model to 
the modified data to predict future traffic. Their study results indicate that removing noise in the 
original traffic data has the potential to improve the performance of a Kalman filter model in traffic 
volume forecasting. Daniel et al. (2010) applied a wavelet based method to remove noise in the 
original traffic data and applied self-organizing neural networks as the prediction method. Wang 
and Shi (2012) developed a hybrid traffic speed forecasting model based on support vector 
machine (SVM) regression theory. In their study, they constructed a new kernel function using a 
wavelet function to capture the non-stationary characteristics of the data and then used the Phase 
Space Reconstruction theory to identify the input space dimension. They assumed that the 
collected data are often accompanied with measurement errors; therefore they applied wavelet de-
noising method to remove the noise in the traffic speed data.  

2.3.4 Ensemble Trees 

Leshem and Ritov (2007) proposed a traffic flow prediction algorithm by combining Random 
Forests algorithm into an Adaboost algorithm as a weak learner. The proposed algorithm is proved 
to be able to deal with missing data and is effective in predicting multiclass classification problems. 
Hamner (2010) applied a random forest method in travel time prediction and their method is able 
to provide accurate travel time prediction. Wang (2011) applied an ensemble bagging decision tree 
(ensemble BDT) to predict weather impact on airport capacity and demonstrated the superior 
performance of ensemble BDT compared with single SVM classifier. Ahmed and Abdel-Aty 
(2013) utilized a stochastic gradient boosting method in identifying hazardous conditions based on 
traffic data collected from different sensors. Their study results suggested that the proposed 
stochastic gradient boosting method has considerable advantages over classical statistical 
approaches. Similarly, Chung (2013) applied boosted regression trees to study crash occurrence. 
Both studies utilized the boosting method to study classification problems. 
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2.3.5 Other Combination Approaches 

Zheng et al. (2006) proposed a freeway traffic flow prediction method that combined a back 
propagation neural network and a radial basis function neural network based on Bayesian model 
combination approach. The output of the proposed model is a weighted combination of the output 
of the two neural networks and the weight is estimated based on conditional probability and Bayes’ 
rule. Hinsbergen et al. (2009a, 2009b) trained feed-forward neural networks and state-space neural 
networks using Bayesian inference theory. A simple average over all group members was used to 
combine neural networks into a group. Their study results indicate that the proposed framework 
provides a more accurate forecasting of both the mean and the prediction intervals. Zhang and Liu 
(2011) predicted travel time index by utilizing six baseline individual predictors as basic 
combination components and combined them through four combined predictors including equal 
weights (EW), optimal weights (OW), minimum error (ME) and minimum variance (MV) 
methods. Here, travel time index is the ratio of average travel time and free flow travel time. 
Vlahogianni et al. (2007) proposed a modular neural network prediction model that considers both 
spatial and temporal correlations of traffic data. In their proposed model, the spatial representation 
of traffic information collected from individual location is addressed through a system’s 
modularity. Each module consists of a time delayed feed-forward neural network (TDNN) that 
represents the time evolution of traffic for a corresponding location. The temporal optimization of 
the input windows in each TDNN is through genetic algorithms (GAs).  

2.4 PREDICTION INTERVAL BASED APPROACHES 

Although a wide range of approaches has been applied to the traffic prediction field and has shown 
promising predicting abilities, some of them have limited abilities to capture the uncertainty and 
variability of traffic, as they only provide a point estimate to represent future traffic conditions. 
Traffic condition is a complex phenomenon, as it is often affected by the interactions among 
different vehicles and exogenous factors such as incident, weather, demand, and roadway 
conditions. Small changes in current traffic conditions may greatly affect future travel time. For 
example, an incident during peak hour may result in extreme delays in the near future. Due to the 
highly dynamic nature of traffic, predicting travel time is often associated with uncertainty, 
especially during non-recurrent congestion when incident or bad weather occurs. A point estimate 
provides limited information regarding the uncertainty and unreliability of travel time. On the other 
hand, prediction intervals (PIs) have the potential to provide more reliable forecasting results by 
providing a confidence band to indicate how reliable the forecasting results are. There are few 
studies using prediction intervals to model uncertainties associated with travel time prediction. 

2.4.1 Ensemble Methods 

Khosravi et al. (2011a, 2011b) developed different neural network based approaches to provide 
PIs to capture uncertainties in travel time. As there is always a mismatch between the predicted 
and actual values, PIs provide a range that can capture the uncertainty. Van Lint (2006) proposed 
an ensemble of state-space neural network (SSNN) models to predict prediction intervals and mean 
travel time. The constructed prediction interval captures the uncertainty associated with travel time 
prediction. Zeng and Zhang (2013) employed an ensemble method (using multiple instances of the 
same neural network model with different initial conditions) to derive a prediction band, but the 
method can be computationally intense. Fei et al. (2011) proposed a Bayesian inference-based 
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dynamic linear model that considers freeway travel time as the sum of the median of historical 
travel times, time varying random variations in travel time, and a model evolution error. Their 
proposed model prediction result is a travel time distribution that can generate a mean and a 
prediction interval representing uncertainty associated with travel time prediction. Van Hinsbergen 
(2009) proposed an approach that combines neural networks in a group using Bayesian inference 
theory to predict travel time with prediction intervals. Li and Rose (2011) developed a model that 
models average travel time and travel time variability separately to incorporate uncertainty in 
travel time prediction. All these studies indicate that travel prediction is a complex problem often 
associated with uncertainty. Prediction interval based approaches provide the potential to capture 
the dynamic changes of traffic.  

2.4.2 Statistical Volatility Based Approach 

Besides the ensemble approaches, another popular method that was able to capture the uncertainty 
and variations of data is the statistical volatility approach (Engle 1982). This approach relaxes the 
constant variance assumption and models time changing variance as a function of its past values. 
As a result, the statistical volatility modeling approach can capture the dynamic changes of travel 
time variations and can provide more accurate PIs. The first volatility model, the ARCH model, 
was proposed by Engle in 1982 for financial analysis purposes (1982). Later, different variations 
of the ARCH model were formulated and the GARCH (1986) model is one of the most widely 
used models. Driven by its successful applications in financial and other areas (2011), 
transportation professionals began to apply the family of GARCH models to predict traffic 
volatilities. Kamarianakis et al. (2005) suggested that traffic conditions are much more volatile 
during heavy traffic or congestion periods than at other times and effective modeling of variance 
can produce more accurate confidence intervals. They tested the performance of the ARIMA-
GARCH model by using traffic flow data in an urban network and demonstrated that traffic flow 
data displayed time dependent volatilities. They also suggested that further studies should consider 
the asymmetric effects of positive and negative shocks.  

Zhang et al. (2013) considered the asymmetric effects of positive and negative shocks and studied 
two asymmetric GARCH models: EGARCH and GJR-GARCH in travel time forecasting. Their 
study result indicated that the GJR-GARCH model performs better. Tsekeris and Stathopoulos 
(2006) incorporated fractionally integrated components in both the conditional mean and the 
conditional variance equations and proposed the ARFIMA-FIAPARCH model. They found that 
the proposed model improves the accuracy of predicted volatility. Similarly, Karlaftis and 
Vlahogianni (2009) suggested over-differentiation leads to over-inflated MA terms and applied 
the ARFIMA-FIGARCH model for traffic flow prediction. Tsekeris and Stathopoulos (2009) 
predicted urban traffic variability through a stochastic volatility modeling approach. Their study 
results demonstrated that the stochastic volatility model outperforms the GARCH model as a latent 
stochastic process and can better represent the speed variability dynamics than a stochastic process 
with a predetermined structure concerning the decaying impact of shocks. Yang et al. (2010) 
applied seasonal ARIMA, ANN and historical mean methods as the mean equation and the 
GARCH model to predict urban vehicle travel time. Their study results indicate that the proper 
selection of the mean equation can lead to excellent results. Xia et al. (2013) considered the 
relationship between flow and speed and proposed a VAR–MGARCH model to predict traffic 
flow and speed for urban roads. Guo (2010) proposed an online algorithm of the autoregressive 
moving average (ARMA)-GARCH model trough Kalman filters in predicting traffic speed.  
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2.5 SUMMARY 

In summary, traffic prediction algorithms can be categorized into parametric, non-parametric and 
hybrid approaches. The parametric approaches usually have a clear model structure and well 
established theoretical foundations. Compared with nonparametric approaches, they are easier to 
interpret. Some of them, for example, the historical average, have been implemented in existing 
traffic control devices for providing traffic information. However, this type of method sets a series 
of strict model assumptions. Misusing the model with the wrong data (data that does not meet 
certain model assumptions) will lead to inaccurate prediction. As traffic in different locations 
shows different characteristics, it is necessary to understand both the model and the data to select 
the appropriate model.  

The non-parametric approach usually has fewer modeling assumptions compared with the 
parametric approach. Some popular methods include non-parametric regression, neural networks, 
SVM and other artificial intelligent methods. The structure of this type of model is usually 
developed based on the data. Especially, the neural network methods are analogous to a ‘black-
box’. The users give some simple inputs to the model and get decent predictions, but they usually 
are unaware of the structure of the model. During the past few decades, the non-parametric 
methods attracted significant attention in the traffic prediction field because of their ability in 
modeling complex data.  

The hybrid methods consider traffic as a complex phenomenon that cannot be represented by a 
single model. By taking advantage of different models, it is aimed at improving model prediction 
performance. However, because it involves several different models, the hybrid methods are often 
complex.  

Besides prediction accuracy, it is also critical to develop a reliable prediction model that considers 
uncertainty associated with travel time prediction. Therefore, the prediction interval based 
approach is proposed to take into consideration this uncertainty. There are generally two categories: 
ensemble and statistical volatility methods. The ensemble method constructs the prediction 
interval through developing different base models while the statistical volatility method models 
the evolution of the changing behavior of the variance part of traffic data.  

Although a large number of traffic prediction algorithms are proposed in the literature, prediction 
accuracy and reliability are still two challenging issues. In terms of prediction accuracy, most 
existing models can be highly accurate during non-peak hours as variations of travel time are not 
significant from day to day. However, prediction accuracy deteriorates during peak hour. 
Improving travel time prediction, especially during congested periods, is critical. To address this 
issue, it is important to develop an advanced prediction method that is able to model the complex 
relation of traffic data. As mentioned in the previous section, the ensemble methods have shown 
promising prediction results. This research studies and proposes a novel ensemble method for 
predicting travel time. At the same time, reliability is also an essential issue in travel time 
prediction. Since there is always a mismatch between the predicted and the actual value, there is a 
need to measure or predict this “mismatch” or uncertainty. Prediction interval based approaches 
are able to model this uncertainty. However, it is a relatively new concept and there is limited 
literature in this field. This research will further explore more advanced prediction interval based 
approaches to better model this uncertainty.  
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3.0 STATISTICAL VOLATILITY MODELS FOR RELIABLE 
TRAVEL TIME PREDICTION 

The observed travel time can be decomposed into a conditional mean (ut) and a residual (rt) 
component. The traditional time series based travel time prediction methods study correlations 
between travel time at different time lags or at different locations, assuming constant variance of 
the data (rt is constant across different time intervals). Therefore, they only model the time 
variation of the data for the first order moment and predict the mean part ut. However, uncertainty 
often exists in the data, especially for travel time, which can be dramatically affected by some 
unexpected external factors, such as bottlenecks, traffic incidents, work zones, weather and special 
events. The point prediction results become less reliable because of the presence of these 
unexpected factors. As travelers are used to the daily congestion due to regular traffic demand, it 
is the unexpected delays that generate the most dissatisfaction. Modeling the uncertainties, referred 
to as the conditional standard deviation (or residual rt), would improve forecasting reliability.  

Equation (1) is the basic structure of a travel time prediction model. 

𝒙𝒙𝒕𝒕 = 𝒖𝒖𝒕𝒕 + 𝒓𝒓𝒕𝒕                                                              (1) 

where 𝑥𝑥𝑡𝑡 is the observed travel time at time 𝑡𝑡, 𝑢𝑢𝑡𝑡 represents the estimated conditional mean, and 𝑟𝑟𝑡𝑡 
is the residual part. 

Traditional prediction methods only focus on the estimated conditional mean (ut) 
component and treat the residual (𝑟𝑟𝑡𝑡) part as having a constant variance. However, in real 
situations, the variations in traffic and travel times can be different during different time periods. 
Therefore, prediction interval based approaches are proposed to model this uncertainty (the 
residual part 𝑟𝑟𝑡𝑡). By providing a prediction interval, we have an idea of how likely this estimated 
range would capture future travel time. In other words, a prediction interval is an estimated range 
that captures the future observation, with a prescribed probability, given the current available 
observations. As illustrated in Figure 1, a prediction interval is comprised of an upper and lower 
prediction limit that indicates the accuracy of the model output with respect to the observed 
value. The traffic is a complex and uncertain system. Due to the uncertainty related with the data 
and the estimated model, there is often a mismatch between the model output and observed 
value. Models that only provide a point value (the predicted value) have limited abilities to 
capture the uncertainty and variability of travel time especially during congested situations. PIs 
provide a range to indicate how likely the travel time is during the next time interval. Therefore, 
PIs have the potential to capture the fluctuations and the stochastic traffic phenomena. Usually, a 
wider prediction interval is associated with larger variation in travel time.  
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Figure 1: Concept of prediction interval (Shrestha and Solomatine 2006). 

 
The statistical volatility-based travel time prediction models include two parts: predicted mean 
value (the red triangle in Figure 1) and prediction interval (the green vertical lines). This section 
will first study efficient mean prediction models for short-term travel time prediction purposes. 
The second part studies the application of statistical volatility model in predicting the variance part 
of the travel time data, and the construction of travel time prediction intervals to account for 
uncertainties associated with prediction.  

 

3.1 MEAN PREDICTION MODELS 

The first step of the modeling stage was to estimate the mean of the data.  In the literature of traffic 
parameters forecasting, different mean equation models have been tested. For example, 
Kamarianakis et al. (2005) applied the ARIMA model as the mean equation of the volatility model. 
Karlaftis and Vlahogianni (2009) proposed using the ARFIMA model to capture the long memory 
in the conditional mean. Yang et al. (2010) adopted three different mean equations for volatility 
models: SARIMA, ANN, and historical average methods. Among these existing methods that have 
been proposed in the literature, the ARIMA-type model becomes one of the most widely used 
methods due to its ease of implementation and its well-known ability in traffic parameters 
modeling and forecasting (Karlaftis and Vlahogianni 2009). Therefore, for the purpose of studying 
the performance of different volatility models, this section applies the ARIMA model as the mean 
equation. However, it is worth noting that a proper mean equation model should not be restricted 
to the ARMA-type model.  Properly choosing a mean equation regarding the structure of the data 
can lead to better model performance (Yang et al. 2010).  

3.1.1 Theoretical Background of ARIMA Models 

This section introduces the ARIMA model to capture the mean of this variation. ARIMA models, 
as one of the most general classes of time series models, predict the current value based on its past 
values. The 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝,𝑑𝑑, 𝑞𝑞)  model is comprised of three parts: autoregressive 𝐴𝐴𝐴𝐴 (𝑝𝑝) , 
integrated  𝐼𝐼 (𝑑𝑑) , and moving average 𝑀𝑀𝑀𝑀 (𝑞𝑞). If we define B  as the backshift operator with 
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Bkxt = xt−k, The corresponding part of the ARIMA model for a given time series {x1, x2 … xn} 
consists of the following parts: 

The autoregressive part of order p is denoted as 𝐴𝐴𝐴𝐴 (𝑝𝑝) and is formulated as: 

xt = ϕ1xt−1 + ϕ2xt−2 + ⋯+ ϕpxt−p + zt (1) 
where ϕ1 …ϕpare parameters, zt is a white noise process with zero mean and variance σz2. The 
equation can be rewritten in the following form by using the backshift operator:  

�1 − ϕ1B − ϕ2B2 − ⋯− ϕpBp�xt = zt (2) 
Or more concisely as: 

ϕ(B)xt = zt (3) 
where ϕ(B) = 1 − ϕ1B − ϕ2B2 − ⋯− ϕpBp. 

As many time series are non-stationary, it is necessary to transform the original data to a stationary 
series. There are several different ways to transfer the data to stationary, such as difference the 
data, remove the trend of the data (if the data contain a trend), taking the logarithm or square root 
of the series for data with non-constant variance. In travel time prediction, differencing the original 
data is most often used technique to achieve stationary. Here differencing means taking the 
difference of two observations that are d periods apart. The integrated part with order 𝑑𝑑, denoted 
as 𝐼𝐼 (𝑑𝑑), means the dth difference of the original data: 

(1 − B)dxt (4) 
The moving average part with order q, denoted as 𝑀𝑀𝑀𝑀(𝑞𝑞), is the process that the current value of 
xt is a linear combination of a white noise series:  

xt = zt + θ1zt−1 + θ2zt−2 + ⋯+ θqzt−q (5) 
where θ1 …θq are parameters, zt … zt−q are white noise processes with zero mean and variance 
σz2. Equation (5) can be rewritten in a more concise form by using the backshift operator:  

xt = (1 + θ1B + θ2B2 + ⋯+ θqBq)zt (6) 
xt = θ(B)zt (7) 

where θ(B) = �1 + θ1B + θ2B2 + ⋯+ θqBq�. 

The 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝, 𝑑𝑑, 𝑞𝑞)  model is a generalized version of the autoregressive integrated moving 
average process with 𝑝𝑝 as the number of autoregressive terms, 𝑑𝑑 as the number of differences, and 
𝑞𝑞 as the number of lagged forecast errors: 

�1 − ϕ1B − ϕ2B2 − ⋯− ϕpBp�(1 − B)dxt
= (1 + θ1B + θ2B2 + ⋯+ θqBq)zt 

 
(8) 

This can be written in a concise form as: 
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ϕ(B)(1− B)dxt = θ(B)zt (9) 
{zt}~WN(0,σ2) 

Readers who are interested in theoretical foundations of the ARIMA model could refer to the book 
“Time series analysis and its applications: with R examples" (Shumway and Stoffer 2006) for 
details.  

3.1.2 ARIMA Model Optimization 

Order selection and parameter estimation are two major steps for the ARIMA model forecasting. 
Selecting a proper order of the ARIMA model is important for producing accurate forecasting 
results. From a prediction point of view, it is not a wise choice to select 𝑝𝑝 and 𝑞𝑞 arbitrarily large. 
Large 𝑝𝑝  or 𝑞𝑞  values potentially lead to over-fitting issues. To avoid over-fitting problems, a 
penalty factor is introduced to discourage a model with too many parameters. Some widely used 
criteria for model selection are the Akaike’s information criterion (AIC), the corrected Akaike 
information criterion, (AICc) and the Bayesian information criterion (BIC). The preferred model 
is the one with the minimum value of one for these criteria. This study selects the order of an 
appropriate ARIMA model based on the Akaike’s information criterion (AIC). The best model 
should be the one that has the smallest value of AIC:  

 
AIC =  −2 log(L)  +  2m (10) 

 
where 𝐿𝐿 is the likelihood of the data for the specific model and m is the number of parameters 
selected for this model.  

This research utilizes the method proposed by Hyndman and Khandakar (2007) to select the orders 
of the appropriate ARIMA model automatically.  

After determining the best orders of the ARIMA model, the parameters of the model are estimated 
through the maximum likelihood method. Detailed information on theoretical background and 
steps in fitting an ARIMA model can be found in (Tsay 2010).  

3.1.3 Model Evaluation Criterions  

There are several well established methods to evaluate model performance of the mean equation 
model. This research applies two measures of effectiveness to test the mean part: the root mean 
squared error (RMSE) and the mean absolute percentage error (MAPE). The RMSE is a frequently 
used measure of the difference between values predicted by a model and the actual observation. It 
is measured in the same unit as the original data. The MAPE is another commonly used measure 
of effectiveness. Different from the RMSE measures, the MAPE is expressed in percentage terms. 
Therefore, it provides us a general sense of the error even without knowledge of what constitutes 
a “big” error for the data set.  

The equations for the RMSE and MAPE are as follows: 



 

17 
 

RMSE = (�
(t(i) − a(i))2

n

n

i=1

)1/2 
(11) 

MAPE =
1
n
��

t(i) − a(i)
t(i)

�
n

i=1

 
(12) 

where t(i) is the actual value, a(i) is the forecast value, and n is the total number of time periods. 

3.2 VOLATILITY MODELS  

As mentioned in Equation (1), the structure of the proposed method is the sum of the mean and 
the variance. Most traditional models only concentrate on the mean part and assume that the 
variance part simply satisfies the white noise properties. Volatility models relax the assumption 
and characterize the changing variance of the data through time. Volatility models aim at 
specifying how the conditional variance 𝑟𝑟𝑡𝑡  evolves over time. Different ways to address the 
variance part 𝑟𝑟𝑡𝑡  lead to different kinds of volatility models. In general, there are two different 
categories: the GARCH-type model and the stochastic volatility model.  

3.2.1 GARCH-type Models 

The GARCH-type models aim at capturing the changes of the variance part rt. The first volatility 
model was proposed by Engle (1982), termed as the Autoregressive Conditional 
Heteroskedasticity (ARCH) model. This model was originally used to capture the uncertainty of 
financial data. This type of uncertainty refers to the variances and covariance that change over 
time. In his research, the discrete time stochastic process rt is expressed as Bollerslev et al. (1992): 

rt = σtϵt (13) 
σt2 = Var(rt|Ft−1) = Var(xt|Ft−1) (14) 

Here ϵt is an independent and identically distributed (i.i.d) process with zero mean and standard 
deviation one and Ft−1 denotes information available throught − 1. The above equation forms 
the foundation of the volatility model. Its various extensions are all based on this equation. 
Different ways of modeling σt lead to a wide variety of volatility models. Engle suggested in his 
paper that σt2 can be a linear function of past squared values of the rt process: 

σt2 = α0 + �αirt−i2
m

i=1

 
(15) 

Note thatα0 is the intercept term with α0 > 0, αi represents the unknown coefficient of rt−i2  that 
satisfy αi ≥ 0 to ensure the conditional variance as positive, and m denotes the number of lags 
selected for the model. This structure clearly captures the cluster of volatilities. The current 
magnitude of rt is based on past values of rt−i2 . Therefore, a sudden large change in the data 
would more likely lead to another large change. In other words, the probability of obtaining a 
large variance is greater than that of obtaining a small variance if the past value of the variance is 
large. This structure also works in traffic forecasting. For example, congestions would create 
unexpected delays, which lead to dramatic increase in travel time. This phenomenon would 
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usually last for considerable time periods. Although the ARCH process has been proven useful in 
modeling the uncertainty in data, it often requires a relatively long lag. In order to allow both a 
longer memory and a more flexible lag structure, a generalized version of the ARCH model – 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) –was proposed by 
Bollerslev (1986), which included the past value of σt2 in the model structure: 

σt2 = α0 + �αirt−i2
m

i=1

+ �βjσt−j2
s

j=1

 
(16) 

in which a0 > 0, ai ≥ 0, i = 1, … , m,, βi ≥ 0, i = 1, … , s, ∑ (αi + βi) < 1max (m,s)
i=1 . The appealing 

feature of the GARCH model is that it takes into account that σt2 not only depends on past values 
of the Variance part rt−1, but also on its own past values σt−j2 . The GARCH model can be 
interpreted as an ARMA process. Applications of the GARCH model in many different fields 
demonstrate its ability in modeling uncertainty in data. Lots of variations of the volatility model 
inherit this unique structure. One successful type of variant is termed as component GARCH 
model.  
 
3.2.2 Component GARCH Models 

Component GARCH models aim at capturing the trend and seasonal (cyclical) components in data. 
In the traffic prediction field, no research has yet been conducted to study the seasonality and trend 
in data through the component GARCH model. One innovation of this research is introducing the 
component GARCH model in travel time reliability prediction. Two different component GARCH 
models are proposed in this research: the component GARCH (C-GARCH) and the multiplicative 
component GARCH (MC-GARCH) models.  

As trend and seasonal components are often observed in data, it was argued that the conventional 
GARCH model is unable to provide adequate performance (Andersen and Bollerslev 1997) if trend 
or seasonal components exist. Several variations of the GARCH model were developed to take 
into account the trend and seasonal volatility patterns. We term these models as component models 
that decompose the data as trend, seasonal, and random elements. The trend component represents 
long term changes in the level of the data series while the seasonal factor is the periodic 
fluctuations within the data series. Two different structures can be considered as basic component 
models:  

The additive model, where  

xt = st + tt + et (17) 
The multiplicative model, where 

xt = st × tt × et (18) 
where st represents the seasonal effect, tt represents the trend, and et represents the errors. 
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The additive model is applied to data series where the magnitude of the seasonal fluctuation does 
not change regardless of the level of the data series. The multiplicative model applies to situations 
in which the seasonal variation increases/decreases with the level of the series.  

Based on the additive model structure, the component GARCH (C-GARCH) model proposed by 
Engle and Lee (1993) decomposes the conditional variance into a long term and a transitory 
component. The equation of the component GARCH model is as follows. 

σt2 = qt + �αi(rt−i2 − qt−i)
m

i=1

+ �βj(σt−j2 − qt−j)
s

j=1

 
(19) 

qt = α0 + ρqt−1 + φ(rt−12 − σt−12 ) (20) 
where αi, βj, ρ, φ are unknown parameters, as is α0.  

In this model, the intercept term qt is regarded as a time-varying process, which represents the 
long term component of the conditional variance. The difference of the conditional variance and 
the long term component σt−j2 − qt−j  is the transitory component that models the short-term 
volatilities.  

The multiplicative component GARCH model (Engle and Sokalska 2012) assumes the variations 
increase with the level of data and decomposes the variance part into three multiplicative 
components: daily component dt , deterministic diurnal pattern si , and stochastic intraday 
component qt,i. 

xt,i = ut,i + rt,i (21) 
rt,i = �dtsiqt,iεt,i (22) 

where the travel time at time index i in day t consists of the conditional mean ut,i and variance rt,i 
equations. εt,i is the i.i.d (0,1) standardized innovation which can follow a normal, a student-t 
distribution, etc. The daily part dt models the variance of the data across different days. It can be 
derived from a multifactor risk model, a daily GARCH model or a multiple indicators model 
(Engle and Sokalska 2012). The deterministic diurnal component for each time index is estimated 
as:  

s�i =
1
T
�

rt,i2

dt

T

1

 
(23) 

where T is the total number of days, t denotes the day, i denotes the regular spaced time intervals.  

As indicated in the above equation, the diurnal component at time index i is the average of variance 
at time index i scaled by its corresponding variance for each day. Therefore, the diurnal component 
represents the regular intraday variations. After estimating the daily and deterministic intraday 
components, the rest component in the variance part is regarded as stochastic, and can be regarded 
as a GARCH (p,q) process. The normalized residual is: 

zt,i = rt,i �dtsi⁄ = �qt,iεt,i (24) 
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where the stochastic intraday component qt,i is assumed to follow the GARCH process: 

qt,i = α0 + �αjzt,i−j2

p

j=1

+ �βjqt,i−j

q

j=1

 
(25) 

From the perspective of travel time prediction, travel time exhibits both regular cyclical patterns 
(seasonal component) and stochastic patterns. Daily cyclical patterns distinguish travel time as 
peak hour and non-peak hour traffic. Stochastic patterns are the results of unexpected influential 
events, like bad weather conditions and traffic incidents. Capturing the time-varying features of 
traffic behavior is critical for travel time forecasting. In addition, decomposing data into cyclical 
and stochastic patterns provides a better understanding of the underlying structure of the data. The 
component GARCH model, a generalization of the traditional GARCH model, considers the 
seasonal and trend components in the variance part through decomposition.  

3.2.3 Stochastic Volatility Model 

Most of the existing studies focus on the GARCH-type model. There are limited studies applying 
a stochastic volatility type model in traffic prediction. Part of the reason is that the estimating 
process for the stochastic volatility model is much more complex compared with the GARCH-type 
model since a new parameter estimation method is introduced to improve the estimating 
performance of the stochastic volatility model.  

The conditional volatility of the GARCH model in Equation (13) is a deterministic function of 
past quantities. Provided that all relevant information is available, the model could be specified at 
the present time period. The stochastic volatility model is a competitive alternative to the GARCH-
type model by modeling volatilities non-deterministically, which treats the volatility as a random 
process and evolves stochastically over time. Since traffic involves interactions among different 
factors such as demand, incident, and weather, this often makes future traffic conditions uncertain. 
Modeling the conditional variance as an unobserved stochastic process allows for a more flexible 
applications of the SV model and can account for the uncertainty inherent in traffic phenomena 
(Tsekeris and Stathopoulos 2009).  

Based on the canonical model (Kim  et al. 1998) of the stochastic volatility class, the volatility 
part rt can be expressed as follows: 

rt = exp (ht/2)εt (26) 
ht = µ + ϕ(ht−1 − µ) + σvt (27) 

h1~N(µ,
σ2

1 − ϕ2) 
(28) 

where rt represents volatility of travel time during time interval t. εt is a Gaussian white noise 
sequence with mean 0 and variance 1, and vt is also a Gaussian white noise sequence with mean 
0  and variance 1  which is independent of εt . The unobserved process ht  is interpreted as a 
stochastic volatility process with parameters µ, ϕ and σ to be estimated. To setup the model, a 
prior distribution for parameters µ , ϕ  and σ  should be specified. According to Kastner and 
Frühwirth-Schnatter (2013), the level µ follows a normal distribution with mean mµ and variance 
Mµ, or µ~N�mµ, Mµ�. To guarantee the persistence parameter ϕ ∈ (−1,1), (ϕ + 1)/2  follows 
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Beta distribution with (ϕ + 1)/2  ~B(a0, b0) , where a0  and b0  are positive parameters; the 
volatility of log variance σ2~Bσ ∙ χ12 = gamma(1/2,1/2Bσ), where Bσ is a single positive value 
that stands for the scaling of the transformed parameter σ2, χ12 denotes a chi-squared distribution 
with one degree of freedom. The posterior distributions of the desired variables are estimated 
through Bayesian inference via the Markov Chain Monte Carlo (MCMC) method.  

It should be noticed that by taking logarithms of the squared rt in Equation (26) , the SV model is 
transformed into a linear equation: 

log (rt2) =  ht + log (εt2) 
 

εt~N(0,1) 

(29) 

If log (εt2) is approximated by a mixture of a normal distribution with mrt  and srt
2  being the mean 

and the variance of the rtth mixture component respectively (Kastner and Frühwirth-Schnatter 
2013), the above equation reduces to the form of a conditionally Gaussian state space model: 

r�t = mrt + ht + ϵ (30) 
where r�t =  log (rt2) , and ϵ~N(0, srt

2 ) . This linearization makes efficient MCMC sampling 
possible. 

Model reparameterization could potentially improve simulation efficiency in the volatility model. 
Denoting Equation (26) to (28) as the centered parameterization models, another version of the SV 
model is non-centered (NC) parameterization, where parameter µ is shifted from the state Equation 
(27) to the observation Equation (26) by setting h�t = (ht − µ)/σ . The non-centered (NC) 
parameterization form is given as: 

rt~N(0, exp (µ + σh�t)) (31) 
h�t = ϕh�t−1 + vt (32) 

where h�t = (ht − µ)/σ, vt is a Gaussian white noise sequence with mean 0 and variance 
1.  
The choice of centered parameterization(C) or non-centered parameterization (NC) would 
dramatically affect the sampling efficiency. Both parameterizations have their advantages and 
disadvantages, which heavily depends on the true parameter values of the data generating process. 
There exists no ‘ultimate’ parameterization. Based on the ancillarity-sufficiency interweaving 
strategy (ASIS) introduced by Yu and Meng (2011), Kastner and Fruhwirth-Schnatter (2013) 
proposed a strategy by interweaving C and NC to overcome this deficiency. Their study results 
show that interweaving C and NC leads to a robustly efficient sampler that always outperform 
either parameterization (C or NC) with respect to parameter costs in terms of design and 
computation. Their intuitive and efficient algorithm can be briefly summarized into six steps: 

Choose appropriate starting values and repeat the following steps: 
(1) Draw h from parameterization C. 
(2) Draw µ, ϕ, σ from parameterization C. 
(3) Move to non-centered parameterization NC by the simple deterministic  
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transformation h�t = ht−µ
σ

 . 
(4) Redraw µ, ϕ, σ from parameterization NC. 
(5) Move back to C by calculating ht = µ + σh�t for all t. 
(6) Draw the indicators from parameterization C. 

The detailed sampling steps in the ASIS involve extensive Bayesian approach with MCMC. In the 
following, a brief summary of the key ideas on how to estimate the parameters of the SV model is 
introduced. Readers are referred to Gelman et al. (2003) for further details. The following briefly 
explains the concept of Bayesian approach with MCMC.  

Consider a problem that given a set of data, the posterior distribution of P(θ|x) is desired in 
Bayesian analysis in order to estimate parameter θ. Bayesian analysis seeks to estimate parameter 
θ by combining the prior knowledge about the parameters with the data. Denote P(θ) as the 
specified prior distribution of θ . The posterior distribution P(θ|x)  is calculated through the 
conditional probability: 

P(θ|x) =
P(θ, x)

P(x)
=

P(x|θ)P(θ)
P(x)

 
(33) 

where P(x|θ) denotes the likelihood function of the data for a given model, P(x) denotes the 
marginal distribution of x. According to Bayes’s rule:  

P(θ|x) ∝  P(x|θ)P(θ) (34) 
The goal is to estimate θ through the posterior distribution P(θ|x). The Markov Chain Monte 
Carlo (MCMC) approach draws a sample from the posterior distribution and then calculates the 
estimator of θ. The Markov process is a stochastic process {xt } that the value of xh  does not 
depend on the value of xs if the value of xt is given and s <  t < h. {xt } is a Markov process if 
its conditional distribution function satisfies the following criterion: 

P(xh|xs, s ≤  t) = P(xh|xt), h > t. (35) 
The basic idea of MCMC method is to simulate a Markov chain that has the desired probability 
distribution which is P(θ|x). The ASIS algorithm estimates the model parameters in steps two and 
four through Bayesian inference using MCMC.  

3.2.4 Prediction Interval Estimation  

Prediction intervals for the volatility model are estimated based on the idea of prediction intervals 
for regression models. To construct a prediction interval with 100(1 − α)%  confidence, we 
assume that the error follows Gaussian distribution with zero mean and variance σt2. The prediction 
interval can be calculated as: 

(ut − zα/2σt,  ut + zα/2σt) (36) 
where ut is the predicted mean, zα/2 denotes the standard score corresponding to the cumulative 
probability level of α/2, and σt is the prediction variance from a volatility model.  

As the concept of uncertainty or reliability is a relatively new area in traffic forecasting, there are 
few studies that provide criterions for PI assessment. One study by Khosravi et al. (2011) 
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suggested that two important aspects of PIs assessment should be considered: coverage probability 
and length. Coverage probability measures the percentage of the targets that lie within the 
predicted PIs.  It measures how effective the constructed prediction intervals are. The mathematical 
representation of PI coverage probability (PICP) is as follows: 

PICP =
1
n
� ci

n

i=1

 
(37) 

where ci = 1 if yi ∈ [L(xi), U(xi)]; otherwise, ci = 0. L(xi) and U(xi) represent upper and lower 
bounds of the prediction interval of xi, n is the total number of constructed PIs.   

On the other hand, another criterion called mean PI length (MPIL) measures the average length of 
the PIs. It measures how efficient the constructed prediction intervals are.  Assume we have two 
models that provide PIs with the same coverage probability; the one that gives a narrower 
prediction band is more efficient.  The following equation gives the definition of the MPIL: 

MPIL =
1
n
�(U(xi) − L(xi))
n

i=1

 
(38) 

Therefore, both criteria should be considered when evaluating the volatility models. 

3.3 APPLICATION OF COMPONENT GARCH MODELS IN TRAVEL 
TIME PREDICTION 

The performance of the GARCH, the C-GARCH, and the MC-GARCH models are investigated 
here by using data collected from Automatic Vehicle Identification (AVI) stations located along 
U.S. Highway 290 (or U.S. 290) in Houston, Texas. The entire study corridor is about five miles 
long and covers the Northwest Freeway in the westbound direction between I-610 and the junction 
of Farm to Market Road 1960 (FM1960). The IDs of the selected AVI stations are 29, 30, 31, 32, 
33, and 34. The travel time between each pair of consecutive detectors were collected and 
aggregated into five-minute time intervals. Individual segment travel time at free-flow conditions 
is less than four minutes. The total period of the sample was the entire year of 2008 with missing 
data replaced by annual medians of the missing intervals. Since travel time patterns during 
weekdays and weekend are quite different (congestions are more likely to occur during weekdays), 
weekend data were excluded from the sample. As a result, 262 weekdays of travel time data that 
contain 75,456 five-minute observations are selected for this study.  

3.3.1 Modeling Conditional Mean  

Traffic data often shows periodic patterns. Travel time increases and varies significantly during 
peak hours compared with travel time during non-peak hours.  It is difficult to precisely predict 
traffic when congestion occurs. Point prediction methods are often unable to capture traffic 
variation in congested situations, therefore providing less reliable or accurate prediction. As the 
performance of the point prediction methods often decreases when congestion occurs, it is 
expected that the residual series (after removing the predicted mean by ARIMA model) show 
higher variations during peak hours. 
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Figure 2 provides a boxplot of absolute deviation from the predicted mean for each 20-minute time 
interval (outliers have been removed from this plot). Each box statistically represents interval-to-
interval and day-to-day variations of the residual series. The green line indicates the mean of the 
residual and the lower and upper boundary of each box is the 25th and 75th percentiles of the data 
for corresponding time intervals. As observed from this plot, statistics of each interval are different 
from each other. Both the mean and the percentiles of the data are different at different time 
intervals. This indicates that the residual series vary over time, and the constant variance 
assumption of the traditional time series models is violated. This further proves that a volatility 
model, which relaxes the constant variance assumption, is necessary. In addition, there is a 
pronounced increased variation at the beginning of 15:00 hour; subsequently, the variation 
decreases at 19:00 hour.  Comparatively, variations during other time periods (non-peak hours) are 
less significant.  

 

 
Figure 2: Box Plot of Absolute Deviation from Predicted Mean. 

 
The other four studied segments also depicted similar diurnal patterns. It is clear that seasonal 
components exist in the residual time series. In addition, the mean of the absolute deviations during 
non-peak hours are close to zero, which means that the ARIMA model provides adequate 
prediction during non-peak hours. On the other hand, the prediction performance of the ARIMA 
model decreases during peak hours, as both the mean and the 75 percent statistics increase.  
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3.3.2 Testing the ARCH Effect 

The basic assumption of the GARCH-type model is that square values of the residuals are 
correlated. Therefore, before applying different GARCH-type models to the data, there is a need 
to test if the data meet this assumption. Two tests are available: Ljung–Box statistics and Lagrange 
multiplier test (Tsay 2010). This study chose the Ljung-Box statistics to test if the first lags of the 
squared residuals are uncorrelated. The Lijung-Box test is as follows: 

 
H0: ρ1 = ρ2 = ⋯ρm = 0 

 Q(m) = N(N + 2)∑ ρh
2

N−h
m
h=1  (39) 

 
where N is the number of data points under study, ρh is the sample autocorrelation at lag h, and m 
is the number of lags being tested. 

The critical region for rejecting the null hypothesis at significance level α is: 

 
Q > χ1−α,m

2  
 

In terms of p values, the null hypothesis will be rejected if the p value is less than α. In our study, 
the Lijung-Box test is applied to the residual data of all five segments. P values of the test for all 
studied segments are significantly less than 0.01. Therefore, the null hypothesis is rejected at the 
significance level of 0.01. That is to say, correlations exist between squared values of residuals. 
The GARCH-type models are necessary.  

3.3.3 Estimating the Volatility Model  

Similar to the ARIMA type model, estimating the volatility model also involves order selection 
and parameter estimation.  Several studies indicate that GARCH family model with order of (1, 1) 
was found adequate in representing the volatility dynamics.  Therefore, GARCH, C-GARCH and 
MC-GARCH with order of (1, 1) were adopted for ease of implementation and comparison by 
using the R package ‘rugarch’ (Ghalanos 2013).  

Since the multiplicative component GARCH model decomposes the data into a daily component, 
a deterministic diurnal pattern and a stochastic intraday component, the first step is to model the 
daily component. This study terms the average volatility for each day as the daily component. The 
daily component is estimated through the standard GARCH (1, 1) process. There are 262 daily 
data in total; the first 242 data points are used as the training data. After removing the daily 
component, the deterministic diurnal part is estimated as the annual average of the residual data at 
each time interval. The normalized residuals (22) are then used to produce the stochastic intraday 
component. The volatility components estimated by the MC-GARCH model are displayed in five 
panels as shown in Figure 3. The top panel shows the observed values of the residual data series. 
The second panel gives the estimated conditional variance, being the product of the following three 
components: deterministic intraday (panel three), daily (panel four), and stochastic intraday (panel 
five) components. As indicated in this figure, the MC-GARCH model is able to model the trend, 
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seasonal, and stochastic components of the data. This feature provides better understanding of the 
basic structure of the data and is easy to interpret. For example, the intraday [Deterministic] 
components indicate the regular cyclical patterns of travel time volatility, the intraday [Stochastic] 
components specify daily variations due to demand variation, incident or other abnormal traffic 
phenomenon. 

3.3.4 Construct the Mean and Prediction Intervals 

The final output of the proposed volatility models includes two measures: the predicted mean and 
the predicted PIs. The predicted mean part generally tells the expected value of travel time in the 
future, whereas the PIs tell how likely the observed value will lie within a certain range. In other 
words, wider PIs often indicate unreliable travel time and prediction. Thus, based on the combined 
information of predicted mean and PIs, travelers and operators would have a better sense of future 
traffic conditions. In this study, the ARIMA model provides mean values, and the prediction 
intervals are constructed according to Equation (36). Figure 4 plots some sample prediction results 
of the MC-GARCH model. The blue dot stands for observed travel-time data obtained at 
corresponding time intervals, and the red triangle stands for the predicted mean. The green lines 
represent the PIs constructed by the MC-GARCH model. It is obvious in this figure that there is 
always a mismatch between the predicted mean and the observed value. This partly results from 
the dynamic nature of traffic: travel time varies from time to time. Prediction intervals, on the other 
hand, are able to adequately capture this variation by covering most of the observed values. 
Therefore, this model provides an effective and efficient way to measure uncertainty associated 
with future travel time.   
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Figure 3: Multiplicative component GARCH forecasting results: decomposition of the 

volatility into its various components (32-33). 
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Figure 4: Predicted mean and PI for multiplicative component GARCH model. 

 

3.3.5 Results and Discussion 

PIs with different confidence levels are constructed through the GARCH, the C-GARCH and the 
MC-GARCH models for the five studied segments. The effectiveness and efficiency of the 
constructed PIs is evaluated based on the criteria of coverage probability and PI length. For each 
of the five studied segments, thirty days of five-minute travel-time data with 8,640 observations 
are used as the training data set and ten days travel time data with 2880 observations are used as 
the comparison (testing) dataset. We estimate individual models for each of the five segments. PIs 
are constructed with 95 percent, 90 percent, and 85 percent confidence levels, respectively.  

Table 1 provides average MPIL and PICP values of the three models with different confidence 
levels during peak hours, nonpeak hours, and all day. During peak hours, the prediction interval 
coverage rates of the MC-GARCH are the highest compared to the C-GARCH and the GARCH 
model. For the 95 percent confidence level, the coverage rate of the MC-GARCH model (90.86 
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percent) is 2.86 percent higher than the second highest model (GARCH 88.00 percent). For the 90 
percent confidence level, the coverage rate of the MC-GARCH model (87.35 percent) is 4.33 
percent higher than the second highest model (GARCH 83.02 percent). For the 85 percent 
confidence level, the coverage rate of the MC-GARCH model (83.96 percent) is 5.18 percent 
higher than the second highest model (GARCH 78.78 percent). As the confidence level decreases, 
the advantage of the MC-GARCH model becomes obvious, proving that the MC-GARCH model 
is able to capture the volatility of traffic data during peak hours. In terms of mean prediction 
interval length, the C-GARCH is the smallest. However, on average, the C-GARCH model only 
reduced the length by 0.75 compared with the GARCH model.  

During nonpeak hours, the MC-GARCH model also provides the highest coverage. But the 
advantage of MC-GARCH model is not obvious compared with the GARCH and the C-GARCH 
models in terms of either MPIL or PICP during non-peak hours. This is expected as travel time is 
relatively stable with small variations and the trend and seasonal patterns are not obvious during 
this period. Therefore, performance of these three models should be similar during non-peak hours.  

Investigating the all-day performance of these three models indicates that the MC-GARCH model 
provides the highest PICP value, whereas both the C-GARCH and the GARCH models give lower 
MPIL values compared with the MC-GARCH model. 

Table 1: Estimated MPIL and PICP values for GARCH, C-GARCH and MC-GARCH 
models. 

Confidence 
Model 

Peak Hours Nonpeak Hours All Day 

Level MPIL PICP MPIL PICP MPIL PICP 

95% 

GARCH 115.98 88.00% 44.53 95.72% 56.69 94.41% 

C-GARCH 115.1 87.80% 45.13 95.10% 57.04 93.86% 

MC-
GARCH 139.74 90.86% 45.09 95.87% 61.2 95.01% 

90% 

GARCH 97.04 83.02% 37.26 92.30% 47.43 90.72% 

C-GARCH 96.31 82.57% 37.77 91.42% 47.73 89.92% 

MC-
GARCH 116.93 87.35% 37.73 93.08% 51.21 92.10% 

85% 

GARCH 85.21 78.61% 32.72 89.07% 41.65 87.29% 

C-GARCH 84.56 78.78% 33.16 87.79% 41.91 86.26% 

MC-
GARCH 102.67 83.96% 33.13 90.47% 44.96 89.36% 

 
In general, based on the estimation results, we can conclude that the MC-GARCH model tends to 
cover more targets compared with the C-GARCH and the GARCH model, especially during peak 
hours.  The C-GARCH and GARCH models give a lower prediction band compared with MC-
GARCH with the compromise of lower coverage rate. Since coverage rate of the C-GARCH and 
the GARCH model are much lower than corresponding confidence level during peak hours (for 
example, PIs of both the GARCH and the C-GARCH model cover around 78 percent of the targets 
for 85 percent confidence level), the MC-GARCH model generates more effective PIs, although a 
little bit wider than others.  
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To check the consistency of each model’s performance, Figure 5 and Figure 6 compare PICP 
values of the GARCH, the C-GARCH, and the MC-GARCH models at different confidence levels 
for individual segments. As shown in these figures, the orange, blue and green columns represent 
the GARCH, the C-GARCH and the MC-GARCH models; columns with different patterns 
represent different confidence levels. During peak hours (Figure 5), the MC-GARCH model 
generates PIs with the highest coverage for all segments. The advantage of the MC-GARCH model 
is significant with the highest difference of 6.94 percent compared with PIs (at the 85 percent 
confidence level) provided by the C-GARCH model for segment 33-34. On the other hand, the 
PICP values of the GARCH and the C-GARCH models are similar. The largest difference of PICP 
values between the GARCH and the C-GARCH is 1.63 percent. During non-peak hours (Figure 
6), all three models provide high coverage rate at corresponding confidence levels.  Differences 
among individual models during non-peak hours are not as significant as during peak hours. 
Comparing all three models’ performance between peak and non-peak hours suggests that peak 
hour coverage is relatively low, as traffic variations increase during peak hours.  In addition, PI 
lengths during peak hours are also longer than PI lengths during non-peak hours.  This is because 
the uncertainties during peak hours are more evident compared with non-peak hours. 

 

 
Figure 5: Comparing performance of GARCH, C-GARCH and MC-GARCH models 

during peak hours. 
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Figure 6: Comparing performance of GARCH, C-GARCH and MC-GARCH during non-

peak hours. 
 

Figure 7 provides an intuitive comparison of one-day peak hour PIs at the 95 percent confidence 
level constructed by the MC-GARCH, the C-GARCH and the GARCH models. The green dash 
lines stand for PIs of the MC-GARCH model, the yellow dash lines stand for PIs of the C-GARCH 
model, and the pink dash lines stand for PIs of the GARCH model. As shown in this figure, the 
PIs constructed by the C-GARCH and the GARCH almost overlap. It has also been depicted in 
Table 1 that there is no significant difference between MPIL and PICP values of the C-GARCH 
and the GARCH models. It seems the effect of the long-term component in the C-GARCH model 
is limited in this case. On the other hand, PIs of the MC-GARCH model are different from both 
the C-GARCH and the GARCH models. The MC-GARCH model tends to cover more targets by 
increasing the width of the prediction intervals at certain time intervals (Points identified by blue 
arrows). Overall, the C-GARCH and the GARCH models create PIs similar to each other. 
Compared with the C-GARCH and the GARCH models, the MC-GARCH model tends to cover 
more targets by increasing the length of its PIs during certain time intervals.  
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Figure 7: Comparison of prediction intervals constructed by GARCH, C-GARCH and 

MC-GARCH models. 
3.3.6 Summary 

As uncertainty associated with travel time prediction becomes an important topic for implementing 
an intelligent transportation system, statistical volatility models provide a promising way to 
generate more accurate PIs that account for variability in travel time prediction. The traditional 
GARCH model is argued to be inadequate when modeling data that show pronounced seasonal 
patterns. This study developed the C-GARCH and the MC-GARCH models in travel time 
prediction. To empirically evaluate performances of the proposed models, this study tested the 
GARCH, the C-GARCH and the MC-GARCH models by using freeway travel time data collected 
from Automatic Vehicle Identification (AVI) stations located along U.S. Highway 290 (or U.S. 
290) in Houston, Texas. The forecasting results of the proposed models are attractive, especially 
during peak hours. The findings of this study include: 

The proposed MC-GARCH model outperforms the GARCH and the C-GARCH models during 
peak hour prediction. A case study of the five selected segments highlighted the strength of the 
MC-GARCH model in providing more effective PIs in terms of coverage rate. The idea of 
decomposing travel time volatility is promising when data show cyclic patterns. By decomposing 
travel time volatility into daily, diurnal and stochastic components, the MC-GARCH model is able 
to capture uniqueness of each component and captures the seasonal effect of data. 

The C-GARCH model treats travel time as a long term and transitory components. It works best if 
there is a trend. Based on the case study, the performance of PIs constructed by the C-GARCH 
model and the GARCH model are similar to each other. The effect of the long term volatility 
component in the C-GARCH model is not significant in this case.  
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During non-peak hours, there is no obvious advantage of all three models in terms of MPIL and 
PICP. This is partly due to the fact that travel time during nonpeak hours is relatively stable, with 
small variations around the mean. The trend and seasonal patterns are not obvious during this 
period. 

Component GARCH models decompose travel time data into long term, short term and cyclical 
components. If there are cyclical components in the data, the MC-GARCH model has the potential 
to better capture uncertainties associated with travel time. In addition, the MC-GARCH model 
decomposes traffic volatility into several different components that can be easily interpreted and 
estimated. In this study, the daily component and the normalized residuals are modeled as a simple 
GARCH model. Besides the GARCH model, the daily component can also be estimated through 
multifactor risk model as suggested by Engle and Sokalska (2012). It is also worth trying different 
variations of GARCH models to estimate the normalized residuals. In addition, this study treats 
the intraday component as an average term. Further study could also explore different ways in 
defining the intraday component.  

3.4 APPLICATION OF STOCHASTIC VOLATILITY MODEL 

The stochastic volatility based method is investigated here by using travel time data collected with 
Bluetooth sensors along an 18-mile long corridor in Connecticut. The Bluetooth sensors (Figure 
8) were temporarily installed by the University of Maryland team at Interstate 95 (I-95) to collect 
travel time information between October 19, 2012 and October 28, 2012. Bluetooth technique 
enables digital devices interconnect with each other using short-range wireless communications. 
Many mobile phones, car radios or other personal devices come equipped with Bluetooth wireless 
capability to communicate with other Bluetooth-enabled devices anywhere from 1 m to about 100 
m (300 ft). In the context of travel time collection, the Bluetooth detector captures the electronic 
identifier, or tag, called Machine Access Control (MAC) address, in each Bluetooth enabled device 
and places a timestamp when the vehicle enters the detection range of the sensor. As the same 
vehicle passes subsequent detectors, the detected MAC can be matched allowing the calculation 
of travel time between these two locations. The Bluetooth detectors require at least two detectors 
to obtain travel time information. The Bluetooth detector has the advantage of providing more 
accurate traffic data with relatively low-cost installation (2010). 
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Figure 8: Bluetooth sensor location of the study. 
 

Raw data from Bluetooth sensors are MAC IDs of the detected Bluetooth devices along with their 
detection time stored in a removable memory card. Sample travel time for a particular freeway 
stretch is obtained by matching the MAC ID between two Bluetooth sensors located at the endpoint 
of the freeway stretch. Figure 8 depicts the location of the selected Bluetooth sensors named as 
“T, N, S, L, F, G, H, I, A”. This study selects six segments as indicated in Table 2. Each path is 
comprised of a head and a rear sensor. Individual vehicle travel time for each path is the time it 
takes for the same vehicle to be detected by both the head and rear sensors. Raw data are filtered 
through a four-step offline filtering algorithm proposed by Haghani et al. (2010) to extract every 
five-minute ground truth travel time. Because traffic patterns during weekdays are significantly 
different from weekends, this study only focused on weekday travel time patterns. We separate 
travel time data for each pair of detectors under study as training dataset and testing dataset: the 
training dataset is every five minutes travel time from October 22, 2012 to October 25, 2012 with 
1152 observations; the testing dataset is data obtained on October 26, 2012 with 288 observations.  

Figure plots one week (excludes weekend) aggregated travel time over every five-minute time 
interval on four segments. The scatter plots (path one, two, five, six) illustrate considerable 
variations in travel time at each time interval over different days, especially during peak hours. 
Rush-hour traffic normally occurs between 3 pm and 8 pm on segments one and two, and between 
6 am and 10 am on segments five and six. Travel time variations during non-peak and peak hours 
show different patterns. Variations of travel time during non-peak hours are much smaller than 
that during peak hours. The considerable variations of travel time across different times of the day 
can be attributed to several factors: demand variations over different times and days, variations of 
driver behavior under different kind of weather conditions, and incidents that disrupt normal 
traffic. These exogenous factors are often unpredictable, which makes travel time prediction a 
complex problem. Therefore, it is critical to treat traffic phenomena as a stochastic process.  
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Table 2: Selected segments for this study. 

Path 
ID 

Head 
Sensor 

Rear 
Sensor 

Distance (mile) 
Starting at Ending at 

Standard Measured 

1 T N 2.7 2.69 Fairfield Ave/Exit 14 
CT-33/CT-136/Exit 

17 

2 N S 5.8 5.94 
CT-33/CT-136/Exit 

17 
Bronson Rd/Exit 20 

3 A I 1.5 1.51 Broad St/Exit 32 Surf Ave/Exit 30 
4 I H 2.4 2.36 Surf Ave/Exit 30 CT-25/CT-8/Exit 27 

5 H G 1.9 1.97 CT-25/CT-8/Exit 27 
Fairfield Ave/State 

St/Exit 25 
6 F L 1.7 1.82 US-1/Exit 23 Bronson Rd/Exit 20 
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Figure 9: A scatter plot of travel times on four paths.  
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Figure 9 (Cont’d): A scatter plot of travel times on four paths.  

 
3.4.1 Model Fitting  

Both the GARCH and the SV models are tested to fit the second part of Equation 1. As the process 
to estimate the GARCH model has been already described in our previous study (2013), the 
following will focus on the estimation of the SV model.  

To perform Bayesian inference in the SV model, there is a need to specify parameters of the prior 
distribution of  𝜇𝜇 , 𝜙𝜙  and 𝜎𝜎 . As it already mentioned that  𝜇𝜇  follows Gaussian distribution, 𝜙𝜙 
follows Beta distribution and 𝜎𝜎2 follows 𝐵𝐵𝜎𝜎 ∙ 𝜒𝜒12. , we need to specify five parameters: mean 𝑚𝑚𝜇𝜇 
and standard deviation 𝑀𝑀𝜇𝜇 of the normal distribution for 𝜇𝜇; 𝑎𝑎0 and 𝑏𝑏0 of the beta distribution for 
(𝜙𝜙 + 1)/2; and 𝐵𝐵𝜎𝜎 for the scaling of the transformed parameter 𝜎𝜎2.After specifying parameters of 
the prior distributions, the SV model is ready to be estimated by applying the MCMC method. The 
estimation is performed by using 5000 MCMC draws after a burn-in of 100 for each data set (burn-
in means throwing away some iteration at the beginning of an MCMC run). The Bayesian inference 
using MCMC based on ancillarity-sufficiency interweaving strategy (ASIS) is implemented 
through the statistical software R package developed by Gregor & Sylvia (2013). To obtain the 
estimated prediction intervals, we sample 5000 random variables from a normal distribution with 
mean zero and variance one to obtain 𝜀𝜀𝑡𝑡 in Equation 4. According to Equation 4, 5000 samplings 
of 𝑟𝑟𝑡𝑡 could be obtained. PIs with confidence level of (1 − 𝛼𝛼)100% can be derived by taking 𝛼𝛼/2 
and (1 − 𝛼𝛼/2) percentile of 𝑟𝑟𝑡𝑡. 

Figure shows travel time prediction results of the ARIMA-SV model for four segments during 
peak hours. Both predicted mean and PIs with a confidence level of 95% have been provided. The 
ARIMA predicted value is marked as a red triangle lying at the center of each prediction interval 
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(green vertical line segment). This plot indicates that there is always a mismatch between the 
observed and the predicted value, which is denoted as the prediction error. On the other hand, PIs 
constructed by the ARIMA-SV model cover most of the observed values. As indicated in this 
figure, most of the blue dots (the observed values) lie within the green vertical line segments (the 
PIs). Depending on the level of uncertainty in the data, the length of the PI for each time interval 
varies. Wider PI indicates higher uncertainty about the predicted travel time, while narrower PI 
indicates lower uncertainty. Providing PIs to travelers assist them to schedule their trips with more 
confidence. 

3.4.2 Results and Analysis 

To assess the effectiveness of the ARIMA-GARCH and the ARIMA-SV model, we compare these 
models for the six studied segments at two different time intervals: five and fifteen minute 
aggregation time intervals. Performance measures in terms of MAPE, RMSE, PICP and MPIL are 
summarized. Table 3 provides performance measure of the mean equation for the six studied 
segments. Since both models use the same ARIMA model to predict the mean value of travel time 
for each segment, each segment has only one MAPE and one RMSE value at each aggregation 
level. The tabulated results show that ARIMA model provides adequate prediction of future travel 
time in turns of MAPE, as it ranges from 3.45% to 4.47% at five minute time intervals, and ranges 
from 1.97% to 6.68% at fifteen minute time intervals. On the other hand, the RMSE value ranges 
from 3.79 up to 22.94 indicating that the absolute error is proportional to the variation of the data. 
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Figure 10: Prediction results for peak hour travel time at four segments. 
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Figure 10 (Cont’d): Prediction results for peak hour travel time at four segments. 
 
In Table 3, RMSE values for path six (8.41 at five minute time interval and 11.93 at fifteen minute 
time interval) are the smallest among these four segments, while RMSE values for path two (22.94 
at five minute time interval and 34.42 at fifteen minute time interval) are among the largest. The 
ARIMA estimations for path three and four are the best in terms of both MAPE and RMSE values. 
This is because travel times on these two segments remain at a certain level with slight variations 
during the studied time period, which proves that ARIMA model performs better when the data 
are relatively stable. In contrast, the forecasting accuracy of ARIMA model will decreases as the 
variation of the data increases.  

Table 3: Performance measures of the mean equation. 

Path ID 
Time 

Interval  
1 2 3 4 5 6 

Average 
Value 

MAPE 
5 min 4.47% 4.10% 3.45% 3.77% 4.72% 4.54% 4.18% 

15 min 6.68% 4.55% 1.97% 2.75% 4.79% 4.11% 4.14% 

RMSE 
5 min 19.67 22.94 3.79 6.82 11.82 8.41 12.24 

15 min 41.34 34.42 2.14 5.01 18.45 11.93 18.88 

 
PICP and MPIL measure the prediction accuracy of the variance part. PICP measures the coverage 
probabilities of the prediction intervals. In our study, the prediction intervals for both ARIMA-
GARCH and ARIMA-SV models are set with 95% confidence. Figure 11 compares PICP and 
MPIL values of both models at two different aggregation levels: five minute and fifteen minute. 
ARIMA-SV model provides higher coverage in most cases. At both five minute and fifteen minute 
aggregation levels, only in one out of five cases, the PICP value of the ARIMA-SV model is less 
than that of the ARIMA-GARCH model. The PICP value of the ARIMA-SV model ranges from 
93.75% to 98.96% at five minute aggregation time interval, and ranges from 95.83% to 97.92% at 
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fifteen minute aggregation time interval. The ARIMA-SV model is capable to construct accurate 
PIs with predefined confidence level (95% in our study). Compared with the ARIMA-GARCH 
model, the ARIMA-SV model, in most cases, outperforms the ARIMA-GARCH model in terms 
of PCIP measure. 

Regarding the MPIL value, which measures the width of the prediction interval, both models give 
similar performance. Comparing the MPIL values of both models for different segments indicates 
MPIL for segments 3 and 4 have the smallest value. This result demonstrates that the width of the 
prediction interval depends on the variation of traffic. As travel time for path three and four are 
relatively stable with minor variations, the MPIL for both models is low. Taking five minute 
aggregation time interval for example, the MPIL values for path three are 14.62 (ARIMA-
GARCH) and 9.85 (ARIMA-SV) respectively, and 29.75 (ARIMA-GARCH) and 30.76 (ARIMA-
SV) for path four. The MPIL value for segment two is the highest with 87.55 for the ARIMA-SV 
model. This is because the travel time varies the most on this path. It can be concluded that length 
of the constructed PI is sensitive to the variation of travel time on the studied segments, with higher 
variation leading to wider prediction interval, and vice versa. Since the width of prediction 
intervals provided by the ARIMA-SV and the ARIMA-GARCH models are similar and the 
ARIMA-SV model provides relatively higher coverage, the ARIMA-SV model outperforms the 
ARIMA-GARCH model in general. 
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Figure 11: Comparison of performance measures for six dataset by using ARIMA-GARCH 

and ARIMA-SV model with (a) 5 minute time interval (b) 15 minute time interval. 
 
3.4.3 Summary 

This study introduced an advanced stochastic volatility model to construct a prediction interval for 
each prediction point to capture this uncertainty. The proposed method was tested by using travel 
time data collected from Bluetooth sensors located along a freeway corridor in Connecticut. The 
proposed ARIMA-SV model was compared with the more widely used ARIMA-GARCH model. 
Different from the GARCH type models that assume deterministic nature of traffic volatility, the 
SV model considers this volatility as a non-deterministic process by specifying the variance 
follows some latent stochastic process. An advanced Monte Carlo Markov Chain estimation 
method for stochastic volatility model was applied to travel time reliability forecasting. The 
empirical experiment showed that the ARIMA-SV model outperforms the ARIMA-GARCH 

(b) 

(a) 
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model in terms of coverage probability and the length of PIs, as both models construct PIs that 
cover most of the observed value and the ARIMA-SV model tends to provide narrower PIs. In 
addition, by comparing the constructed PIs across different segments and at different types of 
aggregation time interval, it is revealed that the length of the constructed PI is sensitive to the 
variation of travel time. Higher variation leads to wider prediction interval, and lower variation is 
associated with narrower prediction interval. The width of the prediction interval indicates the 
variations of the prediction results and therefore provides a measure for the reliability of predicted 
travel time.  

In summary, the proposed ARIMA-SV method shows its advantage in constructing more accurate 
prediction intervals.  It accurately and effectively covers most of the observed values of travel time 
compared with the ARIMA-GARCH model. From a practical point of view, the proposed ARIMA-
SV model provides not only a mean but also an upper and lower bound of future travel time, 
therefore capturing the uncertainty associated with prediction. As the mean value is unable to 
provide information regarding the variability of future traffic, the prediction interval can provide 
an upper and lower bounds that capture future travel time with predetermined confidence level. 
Therefore, the proposed model can be used in real time to provide more reliable and informative 
future traffic information for travelers. The ARIMA-SV model can be regarded as a promising 
algorithm to disseminate traffic information to travelers through traveler information systems to 
provide guidance for pre-trip planning as well as en-route navigation. Further research includes 
studying trend and seasonal patterns in the residuals series and to comprehensively evaluate 
different volatility model applications in travel time prediction field 
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4.0 CONCLUSION AND RECOMMENDATIONS 

4.1 SUMMARY 

Travel time prediction is a critical topic in the development of ITS systems. Especially 
with the rapid development of the Advanced Traveler Information Systems and Advanced 
Traffic Management Systems, more accurate and reliable travel time information is needed to 
enable the success of these systems’ development. Apart from its importance, travel time 
estimation and prediction are complex and challenging tasks. Resulting from the interactions 
among different vehicle-driver combinations, and exogenous factors such as weather, demand, 
and roadway conditions, travel time often experiences strong fluctuations across different periods 
and traffic conditions. These rapid fluctuations are often complex and difficult to predict. Fully 
understanding these fluctuations and developing accurate travel time prediction algorithms is 
critical.  

Inspired by the need of travel time predictions, a wide range of methodologies have been 
proposed in the literature. As discussed in Chapter 2, existing travel time prediction algorithms 
can be divided into four major categories: parametric, non-parametric, hybrid and prediction 
interval based approaches. The parametric methods usually have a well-established theoretical 
foundation but with lots of strict model assumptions. Comparatively, the non-parametric 
methods require less model assumptions but some of them may be difficult to interpret. The 
hybrid methods take advantage of different prediction models but some models may be too 
complex when making predictions. The travel time interval based algorithms belongs to the 
category of hybrid methods and it provides not only the mean but also a prediction bound to 
capture both prediction accuracy and reliability of the model. As it is a relatively new area in 
travel time prediction, there are limited studies in the literature.  

In this research, both prediction accuracy and reliability issues have been addressed in 
freeway travel time prediction. Although most existing travel time prediction models are able to 
provide accurate predictions during non-peak hours, peak hour travel time prediction is still a 
challenging topic. Investigating travel time patterns during both non-peak and peak hours and 
developing a more accurate travel time prediction algorithm is critical. On the other hand, 
because of the difficulties in predicting travel time, especially during peak hours, another issue 
that needs to be considered is the reliability issues of the model. The model should consider 
situations when traffic is highly volatile when a point prediction becomes ‘less accurate’. In this 
case, the prediction interval based approach provides a prediction bound to indicate how likely it 
will capture the observed travel time value and therefore is able to indicate how reliable the 
prediction is.  

To capture the uncertainty and variations of travel time data, this study proposed two 
different statistical volatility models: component GARCH and stochastic volatility models. In 
general, the statistical volatility model predicts future traffic volatility based on its previous 
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volatility values. In a transportation system, travelers respond differently to unexpected changes 
in travel time. The presence of this volatility in traffic may lead to changes in driving behavior in 
order to compensate for the resulting changes in expected arrival time. These changes lead to 
increased traffic volatility with a decreasing rate over time in order to restore the past stability of 
the system. The volatility models capture this changed traffic patterns over time and make 
further prediction.  

The component GARCH models consider situations when seasonal (cyclical) patterns or 
trends exist in data. For some road segments, when commuters account for a large percentage of 
the total traffic volume, travel time of these types of segments may show strong cyclical patterns. 
In this case, the seasonal component should be considered when modeling the data. Through 
decomposition, the component GARCH models potentially improve the prediction accuracy. 
Another type of the volatility model, the stochastic volatility model considers the conditional 
variance of travel time data as an unobserved stochastic process therefore allows for a more 
flexible application and can account for uncertainties inherent in traffic phenomena. 
 

4.2 CONCLUSION 

The following list provides the conclusions/findings of this research: 
• Due to the complex nature of travel time prediction problem, the traditional point based 

prediction approach is unable to perfectly account for uncertainties in traffic. There is 
often a mismatch between the predicted mean and the observed value. A prediction 
interval based approach as an alternative way to represent uncertainties associated with 
travel time prediction has the potential to provide more reliable prediction information.   

• Volatility-based travel time prediction models relax the constant variation assumption. 
This kind of method treats the current volatility as a function of its past values and can be 
used to construct more accurate PIs to capture travel time uncertainty.  

• The component GARCH models are able to capture the seasonal patterns in travel time 
volatility. When seasonal (cyclical) patterns exist, the component GARCH model could 
be a better choice compared with the traditional GARCH models.  

• The stochastic volatility models consider part of the change in travel time volatility are 
due to random shocks, while the GARCH type model treat the volatility as time changing 
but not stochastic process. Through using advanced Monte Carlo Markov Chain 
estimation method to fit the stochastic volatility model, the model is able to provide more 
accurate PIs.  
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4.3 FUTURE RECOMMENDATION 

Although this research provided contributions to the existing literature in the area of 
freeway travel time prediction, there are some other research avenues that can be pursued. Future 
directions of the research are provided below:  

• In this research, we only utilize travel time information. But with the advanced 
technology development, more and more data are available to use, such as incident, 
weather, work zone and so on. Since these events may have significant influence on 
travel time, utilizing this information could help improve prediction accuracy. For 
example, traffic congestion is more likely to occur due to inclement weather conditions as 
the freeway capacity drops while demand does not drop. In this case, if we can include 
weather conditions as explanatory variables, then the model would potentially capture the 
weather impact on travel time. When using weather information to predict travel time, the 
weather forecast information will be used, therefore, how to utilize the weather forecast 
information and considering its reliability could be another research topic. To sum up, 
future research should use the information of external impact factors when predicting 
travel time.  

• Uncertainties associated with travel time prediction is relatively a new area in travel time 
prediction, few literature focuses on travel time uncertainty prediction. As indicated in 
the literature review section, there are generally two types of PIs based approach: 
ensemble methods and statistical volatility based approach. This research mainly focuses 
on using statistical volatility methods to model the uncertainty associated with travel time 
prediction. Two different types of volatility models have been proposed. The study 
results show that the PIs based approach shows its promising abilities in indicating the 
uncertainty associated with prediction. While in the future, we can also use the ensemble 
based algorithms to construct PIs when predicting travel time. It is also beneficial to have 
a comparison of the PIs constructed by volatility based and ensemble based method and 
discuss the advantages and disadvantages of each model in addressing uncertainty 
associated with travel time prediction.   
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