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EXECUTIVE SUMMARY 

The Moving Ahead for Progress in the 21st Century (MAP-21) act, signed by President Obama in 
2012, indicated that explicit and objective performance targets should be set in the areas of 
congestion reduction, system reliability, and environmental sustainability, among others. The 
science of performance assessment is being driven forward by emerging data sources and declining 
storage costs. For public transit systems in particular, advances in the spatial and temporal 
representation of public transit supply, combined with emerging datasets that provide highly 
resolved information about the location and socio-economic nature of demand are opening up 
analytical possibilities for operations, planning, and optimization. These newer datasets allow for 
performance measures to be calculated at the level of individual stops in a transit network at any 
moment of the day. The key sources that reveal these precise understandings of public transit 
systems are route, schedule, and realtime position and trip updates from the general transit feed 
specification (GTFS) and GTFS-realtime formats. The former provides a static picture of expected 
service, while the latter provides precise information about vehicle positions and expected delays 
system-wide. 

The goal of this study is to demonstrate how these realtime data can be applied to provide insight 
into the distribution of public transit service across a region. A common approach to measuring 
transit performance is to perform a “gap analysis” that examines mismatches between supply and 
demand, with the goal of identifying locations where demand for transit is high and supply is low. 
Prior to this work, these measures were often created using expected or scheduled service which 
provides no information about the service actually delivered to patrons. For this study, we 
assembled both GTFS and GTFS realtime feeds for the metropolitan Boston area, gleaned from 
the Massachusetts Bay Transportation Authority (MBTA), to provide a more realistic picture of 
how transit performs in a region by incorporating real-time delay information into the analysis. 

For comparison, a traditional gap analysis was conducted using expected service information 
obtained through the static GTFS feed for bus trips during the morning peak period (7-9am). Using 
American Community Survey data, demand was operationalized using standardized race and 
income proportions that are summed and grouped into deciles at the level of census tract. A 
frequency-based measure of public transit supply was also deployed at the census tract level; 
supply was measured as the number of trips per hour reachable within 0.5 miles of a transit stop 
as measured by distance along the pedestrian network. Consistent with the literature, transit supply 
and demand were found to be correlated. However, the traditional gap analysis does not take into 
account actual service provision. A novel measure of supply was developed by incorporating bus 
stop level delay using GTFS-realtime data, aggregated by census tract, where supply is measured 
as the difference of the standardized supply score from the standardized delay score. The results 
of the gap analysis with delay incorporated show a much more even distribution of transit service 
across demand deciles exists and that there is in fact no significant difference across demand 
deciles. This shows that when service delivery is considered, the results of schedule-based gap 
analysis is reversed due to the diminished quality of service cased by actual delays. 
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1.0 INTRODUCTION 

The Moving Ahead for Progress in the 21st Century (MAP-21) act, signed by President Obama in 
2012, indicated that explicit and objective performance targets should be set in the areas of 
congestion reduction, system reliability, and environmental sustainability, among others. New data 
sources are now available to better understand the dynamic nature of public transit performance 
which can assist in understanding how to improve such systems. This project contributes to federal 
goals by leveraging these emerging data sources for improved performance evaluation, increasing 
the likelihood that transit supply and demand will be well-matched, and a more equitable 
transportation system will be achieved.  

Recent advances in the spatial and temporal representation of public transit supply combined with 
emerging datasets that provide highly-resolved information about the location and socio-economic 
nature of public transit demand are opening up analytical possibilities for public transit operations, 
planning, accessibility, and optimization (Catala, Downing, & Hayward, 2011; Porter, Kim, & 
Ghanbartehrani, 2014). Whereas prior datasets only allowed for coarse spatial and temporal 
analysis on the scale of a census tract or transportation analysis zone (TAZ) over a period of several 
hours, these newer datasets allow for accessibility and other performance characteristics to be 
calculated at the level of individual stops or routes in a transit network at a particular instant on a 
particular day. Overall performance measures can still be derived through appropriate aggregations 
of the disaggregate measures (Karner, 2016).  

The key resource facilitating these precise understandings of public transit systems come from 
individual transit operators making data available in the general transit feed specification (GTFS). 
The GTFS was created to standardize the reporting and updating of public transit route and 
schedule information and forms the basis for transit directions found on Google Transit (Catala et 
al., 2011). Most transit providers maintain a static GTFS feed that provides a precise accounting 
of expected operational transit service. Some operators combine this with a real-time GTFS feed 
that provides detailed data on the movements of individual transit vehicles. Combining both of 
these datasets where possible offers a powerful way to understand how actual public transit service 
compares to planned or expected service, revealing how delay or service reliability changes 
through time, space and along a transit route. This project will leverage these new data tools in an 
evaluation of public transportation service equity – it will add a metric of delay to understand how 
delay varies across a route and how that affects different demographic groups differently 

This report will begin with an overview of the existing research, and how this project advances 
this area. It will then describe the data and methods used to develop our metrics of transit supply, 
delay, and transit need. We finish with results and a discussion of our analysis.  

1.1 BACKGROUND AND LITERATURE REVIEW 

Transportation systems create the opportunity to access important destinations beyond our 
immediate surroundings. In large metropolitan areas where uses are dispersed widely in space, a 
lack of transportation can mean a lack of opportunities for communities and individuals 
(Blumenberg & Waller, 2003; Ihlanfeldt & Sjoquist, 1998; Sanchez & Brenman, 2008). Therefore, 
there is important concern for the distribution of transportation investments and services. Even 
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though automobiles offer better mobility performance in most areas of the United States and are 
thus important for many households (Taylor & Paul, 1995) public transportation services offer 
households more affordable mobility options compared to car ownership, as well as provide 
essential services for the substantial numbers of people who cannot drive (Public Policy Institute 
of California, 2004). Achieving adequate and equitable public transit services thus has been an 
ongoing challenge in the US for decades (Bullard et al., 2004; Pucher, 1982; Rosenbloom & 
Altshuler, 1977). The quality of public transportation services vary greatly by geography and 
demographics and level of service disparities can drive legal challenges to transit agencies; bus 
scheduling and vehicle overcrowding were central to the Los Angeles Bus Riders’ Union 
successful complaint against the Los Angeles Metropolitan Transportation Authority (Mann, 
2004). Thus, significant attention is being paid to measuring and analyzing such disparities across 
a range of dimensions.  

The work presented here sits at the intersection of three large bodies of research. The first includes 
a vast array of performance measures for public transit systems, specifically accessibility and 
mobility measures and measures of transit supply at different scales in time, space, and along 
routes and at bus stops. The second focuses on understanding and measuring disparities in 
transportation service and the access it creates. The third is working to add real-time information 
to understand delay and reliability to transit performance measures and understand how delay and 
reliability affect other aspects of system performance and demand for transit.  

The first body of literature incorporates a wide range of methods and measures to understand the 
nature of transit performance, accessibility and mobility and how these data can be visualized, 
used as ingredients to the public transit planning process and to improve and optimize transit 
systems investments and services. A few representative examples from a larger set of literature 
include: Benenson et al. (2010), Bhat et al. (2005), Lei and Church (2010), Lei and Goulias (2012), 
Martin et al. (2008), Mavoa et al. (2012), Mesbah et al. (2012), Rood (1999), Mamun and Lownes 
(2011a), Tribby and Zandbergen (2012), and Wu and Hine (2003). Some of this literature includes 
static measure of transit availability (e.g. Rood (1999)), while others add time-of-day measures 
incorporating actual service schedules, congestion and other dynamic issues (e.g. Martin et al. 
(2008) and Bhat et al. (2005), among others.). This work is important in establishing a baseline 
understanding of different transit supply measures which can then inform further measures of 
disparities.  

Research looking at disparities in transit service is quite expansive, and reflects a range of methods, 
time and spatial scales and levels of detail of service provision. A few representative examples 
from a larger set of literature include: Blair et al. (2013), Bocarejo et al. (2012), Currie (2010), 
Farber et al. (2014), Farber et al. (2016), Ferguson et al. (2012), Foth et al. (2013), Fransen et al. 
(2015), Golub and Martens (2014), Grengs (2010, 2013, 2015), Grengs and Levine (2010), Kaplan 
et al. (2014), Karner (2016), Kawabata (2009), Kawabata and Shen (2007), Mamun and Lownes 
(2011b), Minocha et al. (2012), Murray and Davis (2001), Thomopoulos and Grant-Muller (2013), 
and Wells and Thill (2012). Many of these include accessibility measures reflecting travel time 
from an origin to other parts of the network (e.g. Farber et al. (2014), Karner (2016) or Grengs 
(2010)), while some measure a gap between transit need in an origin and the supply or performance 
at that origin (e.g. Currie (2010), Mamun and Lownes (2011b)).  
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Finally, recent work has added a variability measure to traditional understandings of transit 
performance, recognizing that reliability and delay can be a strong detriment to potential ridership 
even when added service is adequate. With the emergence of systematized transit schedule 
information through GTFS and its incorporation into GIS, researchers are better able to assess 
disparities in service by time of day and in space (A. Karner, 2016), while the additional real-time 
vehicle location data allows better resolution of delay along a route and at stops (Chen, Yu, Zhang, 
& Guo, 2009). Much of this work deals with understanding how delay and reliability affect transit 
operations, while others seek to measure how delays affects the overall benefit of transit 
investments. A few representative examples from a larger set of literature on these issues include: 
Barabino et al (2015), Chakrabarti (2015), Chang (2010), Chen et al. (2009), Fonzone et al. (2015), 
Nagatani (2012), Peña and Moreno (2014), Saberi et al. (2013), and Tirachini (2013, 2014).  

This project will incorporate detailed measures of delay into a measure of transit supply within an 
equity analysis framework, comparing supply and demand and effectively combining these three 
areas of research. Our work will identify areas in a city or region where actual public transit service 
is performing poorly relative to expected service (through a measure of real-time delay) and will 
provide a method for other cities to conduct similar analyses. We will also determine whether there 
is systematic variation in space in terms of this delay effect conditioned upon demographic 
characteristics across the city or region. The results can provide information about where and why 
public transit services differ from expectation and will provide public transit planners with 
valuable information about the equity of any departures from expectation and will also highlight 
areas of the system that require improvement and attention.  

2.0 DATA AND METHODS 

Understanding mismatches between the location of public transit demand and the location and the 
timing of public transit supply has long been a concern of the literature. This study explores the 
mismatches in supply and demand for the Massachusetts Bay Transit Authority (MBTA), the 
public operator in the greater Boston, Massachusetts area. The transit network consists of 
commuter rail, subway, bus (local and express) and boats (ferries and commuter boats). MBTA 
serves over 4.8 million people and covers a service area over 3200 square miles. Typical weekday 
unlinked ridership is around 1.3 million trips - resulting in nearly 390 million trips annually. 
MBTA maintains 9 subway routes, 174 bus routes, 14 commuter rail routes and 3 ferry routes 
(Massachusetts Bay Transportation Authority, 2014). Moreover, MBTA provides consistent real-
time data in GTFS format for all equipped modes as well as alert data. Each MBTA bus is equipped 
with GPS. Through a partnership with NextBus, MBTA makes available bus arrival predictions at 
each bus stop. GTFS-realtime provides alerts, vehicle location and arrival prediction data. 
However for the data be meaningful, it must be extrapolated using static-GTFS which includes 
schedule and trip planning data. MBTA and IBI (2014) provides more information on MBTA’s 
GTFS-realtime API. These data sources, their preparation, and the analyses undertaken, are 
described below.  

To operationalize public transit supply and demand, we gathered data from the American 
Community Survey (ACS) five-year estimates along with public transit route and schedule 
information gleaned from GTFS and GTFS-realtime feed maintained by MBTA. Software was 
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written to integrate GTFS-realtime and static feeds within a database and to visualize differences 
between them.  

2.1 GTFS DATABASE DEVELOPMENT 

Two open source tools, GTFS Database (GTFSDB) and GTFS-realtime to Database (GTFSrDB), 
available on GitHub were adapted to collect and store static and real-time GTFS data for MBTA 
into an SQLite database. GTFSDB1 and GTFSrDB2 contain Python code that loads GTFS data 
into a SQLite relational database. GTFSrDB supports all three types of GTFS-realtime feeds: Trip 
Updates, Service Alerts, and Vehicle Positions. Trip Updates represents fluctuations in the time 
table by providing predicted arrival information for stops along the route. Service Alerts provides 
updates whenever there is a disruption on the network that need to be communicated to public. 
Lastly, Vehicle Positions provides vehicle locations every 30 seconds. The static GTFS database 
is May 27, 2015 – September 4, 2015. GTFS-realtime database was collected from July 1 to August 
13, 2015. 

2.2 TRANSIT SUPPLY 

Our measure of public transit supply is fundamentally frequency-based and will ultimately be 
calculated at the level of a census tract so that it can be compared with demographics. Geographic 
areas should score more highly on our measure if they have more transit vehicles running within 
specific time periods. For this initial analysis, we assessed service during the morning peak period 
(7-9am). To quantify transit supply and generate a measure of trips per hour during this period, we 
used the “BetterBusBuffers” (BBB) tool created and maintained by ESRI and implemented within 
ArcMap.3 In brief, the tool employs the static GTFS feed to count the number of arrivals/departures 
reachable within pedestrian service areas constructed around transit stops and stations. The output 
from a BBB run includes detailed arrival rates (trips per hour) for each service area during a 
defined time period.  

Service areas represent a dramatic improvement over standard Euclidian buffers. Whereas 
Euclidian buffers simply deploy a circle around a point of interest (e.g. a transit stop) to quantify 
locations accessible to it, service areas represent locations reachable from a given point along the 
actual pedestrian network. In other words, service areas take into account network distances 
whereas Euclidian buffers do not. It is very common for service areas to overlap, especially in 
dense urban areas where transit stops are located in close proximity. BBB calculates separate 
frequency measures for all intersected and flattened service areas, to avoid double counting. The 
intersection creates many service area fragments that maintain their association with particular 
stops. The BBB frequency value for any fragment includes all unique trips visiting stops associated 
with that service area within the time period of interest. If a single trip visits multiple stops 
associated with that same service area, it is only counted once. Thus, the tool ensures that trips are 
not double-counted. However, since each stop or station is associated with multiple different 

                                                 

1 For more information see https://github.com/OpenTransitTools/gtfsdb  
2 For more information see https://github.com/mattwigway/gtfsrdb  
3 More information on the tool and its use can be found here: 
http://www.transit.melindamorang.com/overview_BetterBusBuffers.html . 
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service areas, a single trip contributes to multiple service area counts. Using service areas also 
allows individual bus stops to contribute to apparent service in multiple tracts as opposed to just 
the tract in which it is physically located.  

In order to execute the BBB tool, we had to create a reasonable pedestrian network for use in 
ArcMap with which to create service areas. The network should include a representation of streets 
and other physical infrastructure (e.g., sidewalks, pedestrian-only paths) used by pedestrians to 
access the transit network. One low-cost possibility is to use OpenStreetMap (OSM) data for the 
area of interest. 4  While quite advanced in Europe, using these data for the United States is 
somewhat problematic. Most of the US data were imported from the US Census Bureau’s 
Topologically Integrated Geographic Encoding and Referencing (TIGER) format and have to be 
manually cleaned by members of the public engaged in the OpenStreetMap community.5 In many 
parts of the US, this cleaning simply has not occurred, or has occurred only sporadically. Despite 
these limitations, OSM is the best source of free data and can be used as long as these limitations 
are kept in mind and the data are checked for obvious flaws. 

OSM data for specific geographic areas, as opposed to the entire world, are routinely exported and 
stored in various formats in several locations on the web. OSM data at the state level are available.6 
We imported OSM data for entire state of Massachusetts, as MBTA service extends beyond the 
borders of the city of Boston. All street links within 0.5 miles of a transit junction were 
subsequently selected to form the basis for the pedestrian network. We then prepared a subset of 
the data containing streets accessible to pedestrians by creating a new feature class containing only 
elements that pedestrians can use.7 Standard ArcMap Network Analyst tools can then be used to 
create a suitable network. We ran the BBB tool to generate trips per hour estimates within 0.5 
miles of all bus stops. These were subsequently aggregated to the census tract level by first 
converting all service areas to points and taking the mean over all service areas within a tract. 

2.2.1 Calculating bus-stop-level delay 

A key goal of this study was to quantify the value added associated with moving to real-time as 
opposed to static measures of public transit supply. Using the collected GTFS-realtime data, we 
estimated a measure of delay at the bus stop level using the trip update feed that was subsequently 
aggregated to the census tract to match the frequency based supply measure described above. For 
the purposes of this study we focused solely on bus stop-level delay estimates.8 The focus on bus 

                                                 

4 Alternative, and comparatively more costly, options include StreetMap Premium sold by ESRI. See: 
http://www.esri.com/data/streetmap . 
5 The OpenStreetMap wiki describes the numerous problems with direct TIGER imports. See: 
http://wiki.openstreetmap.org/wiki/TIGER_fixup . 
6 http://download.geofabrik.de/north-america.html  
7 Tags in the attribute table of the feature class indicate the functional class to which a particular street or road belongs 
(residential, highway, etc.). Features whose tags indicated functional classes not traversable by pedestrians were 
eliminated. Other polyline features represented utility rights-of-way, streams, and rivers. These were eliminated as 
well.  
8 Heavy rail delays will be addressed in future work. Additionally, MBTA operates several other modes including 
ferry, streetcar, and commuter rail, but the level of service characteristics of these modes make them less relevant to 
transit dependent populations. 
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is necessitated by the manner in which trip updates are returned in the GTFS-realtime feed. During 
the period over which data were collected, each bus trip update was associated with at most one 
stop time update whereas each heavy rail trip update included all stops remaining in the trip. For 
bus, the stop time update provided was for the next stop along that trip’s route. For the heavy rail 
trip updates, each trip update query returns a stop time update for each stop that remains for that 
particular trip.9 In either case, because API queries were made every 30 seconds, it is possible for 
the next stop or station to receive multiple updates related to expected delay as the transit vehicle 
moves between these terminal locations. Converting these different temporal measures of delay 
into a single representative value for each stop and station is a challenge.  

The approach we took to calculate delay at the bus stop level recognizes that for a single trip,10 
multiple updates can be provided for a single stop as a vehicle approaches, encounters delay, makes 
up time, and ultimately arrives. Arguably what matters most for the transit user is whether the bus 
arrives in a particular location on schedule. For this reason we chose to use the most accurate 
estimate of delay residing in the database, which we defined as the expected delay for the trip 
update provided when the bus is as close to the next stop as possible. In other words, it is the final 
trip update provided before the bus passes that stop and begins announcing delay for the 
subsequent stops. The process of delay estimation is illustrated in Figure 1. As a bus departs stop 
333 its expected delay in arriving at stop 334 is zero. It encounters some unexpected congestion 
along the way, increasing its delay estimate to 240 seconds. Subsequently, it is able to make up 
some time and manages to reduce its delay to 60 seconds. In the final trip update announced before 
arriving at stop 334 (highlighted in red), the arrival delay is 60 seconds.11 Although a higher delay 
had been announced earlier in the trip, the final delay announcement will be closest to reality and 
that is what is used here. Note that the resolution of delay in this GTFS-realtime feed was whole 
minutes. These correspond to expected arrivals and departures from the static feed, which occur 
only on whole minutes and zero seconds.  

                                                 

9 As of early 2016, this approach (providing a stop time update for every remaining stop) is now MBTA’s standard 
practice for all modes. The GTFS-realtime standard generally builds in more flexibility in data reporting than does the 
static GTFS standard so that what is reported can change over time. This structure is helpful for GTFS-realtime 
consumers engaged in application development (since app users positioned at later stops can be provided with an 
immediate update that does not require intermediate calculations), but is less useful for the present study. In general, 
the more recent data structure dramatically increases storage requirements. 
10 In GTFS parlance a trip refers to the journey of a single transit vehicle from its origin stop or station to its terminal 
stop or station. 
11 Arrival delays are only precise to the minute. Although on its face this seems like a limitation, the GTFS static 
schedule embodies minute-level precision as well.  
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Figure 1. Illustration of variation in announced delay as a transit vehicle (bus) moves between two 
stops. Trip updates were retrieved every 30 seconds over the analysis period. The arrival delay 
highlighted in red would be the delay associated with this particular date-trip-stop combination. 

To generate this delay from the GTFS-realtime database, we needed to query the database to return 
only the last announced delay for each unique combination of trip start date, trip, and stop. To 
accomplish this task, we took advantage of the fact that subsequent trip updates were numbered 
sequentially with a unique identifier, meaning that higher values of the identifier occur later in 
time. For every unique date-trip-stop combination, we extracted the trip update identifier and then 
joined that back to the stop time updates to extract the arrival delay announced at the last stop. 
From an initial population of 49.4 million stop time updates, we extracted 8.11 million unique 
combinations as described above. Again, the total population of stop time updates exceeds what is 
needed from an analysis perspective because multiple stop time updates can be announced for an 
individual stop as a transit vehicle traverses a route and encounters changing conditions. The 
approach we used here to estimate delay is more theoretically satisfying than taking a straight 
mean of all possible delays, because vehicles experiencing delay will be more likely to announce 
subsequent updates for a single stop. If we used every announced delay, we would effectively be 
weighting those stops that experience delay more heavily in our calculations. Additionally, initial 
delays can be recovered over the course of a trip.  

The result of these queries is that we extract an estimate of stop-level delay for a single trip across 
multiple days. These delays can sensibly be combined to generate measures of central tendency. 
We estimated means, medians, ranges, standard deviations, and coefficients of variation to 
characterize the variability and reliability of transit service at the stop level. We also performed 
quality control on the delay data to ensure that any missing stops were sensible. According to the 
corresponding static GTFS feed, there are 7,874 bus stops in the MBTA network. Of these, 7,517 
received at least one stop time update from the real-time feed over the period of data collection, 
377 received no update, and 20 received an update but did not have a corresponding entry in the 
static feed. The 20 stops receiving an update were likely temporary stops entered into the real-time 
feed, which can take precedence over the static feed. The 377 stops which did not receive an update 
could represent historical stops no longer in use but which are still included in the feed.  
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2.3 TRANSIT DEMAND 

Consistent with practice in the literature, we defined transit demand based on the demographic 
characteristics of census tracts. Data were gleaned from the American Community Survey (ACS) 
2010-2014 five-year estimates. 12  Although there are obvious limitations with this approach, 
namely that the particular demographics chosen are arbitrary and different results may be obtained 
if different demographics are employed, employing this new data source for demonstration 
purposes is appropriate. We chose race and income as the primary demographics of interest. 
Specifically, we calculated the proportion of tract residents that are people of color (i.e. total 
population minus the non-Hispanic white alone population), and the proportion of households in 
a tract with incomes below 80% of the area median income. The reference geography for the 
income category was the Boston-Cambridge-Newton, MA metropolitan statistical area. According 
to the 2010-2014 ACS estimates, the median income in the MSA was $74,670; 80% of that value 
is $59,736.  

Although household income is clearly an important determinant of transit demand to the extent 
that it determines automobile holdings and required trip distances and frequencies (Pucher & 
Renne, 2003), race is a less obvious predictor of demand per se. Much prior research has 
demonstrated an independent effect of race on travel behavior even when controlling for more 
obvious predictors (Giuliano, 2005; Kockelman, 1997; Liu, 2000; Mauch & Taylor, 1997). This 
residual effect might be due to the combination of segregated metropolitan areas that tend to place 
people of color into particular places in regions and the likelihood that these places will be well-
served by transit. There are at least two additional reasons to include race as an analytical category. 
First, there is a long tradition in the analysis of public services distribution of that highlights 
disparate treatment of people of color (blacks in particular) (Lineberry, 1977; Wilson, 1990). 
Additionally, federal civil rights law prohibits discrimination on the basis of race, color, or national 
origin in the provision of transit service (Alex Karner & Golub, 2015). Understanding how the 
distribution of transit service varies across a region with respect to race and income simultaneously 
should provide insight regarding demand and equity.  

  

                                                 

12 The US Census Bureau offers major demographic data pre-joined with census geographic information for multiple 
ACS, Decennial Census, and County Business Patterns years. Data are available here: 
https://www.census.gov/geo/maps-data/data/tiger-data.html  
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3.0 RESULTS 

3.1 BUS DELAY ESTIMATES 

Figure 2 summarizes the 8.11 million estimates of stop-level delay as gleaned from MBTA’s real-
time feed over the entire study period. The data summarized here are for illustration purposes only; 
they differ from those used in our final delay calculations because they include multiple estimates 
for individual stops, depending on the exact dates that were included in the data collection. The 
mode of the delay is clearly zero, with a long tail extending in the direction of increasing delay as 
well as a smaller proportion of arrivals that are ahead of schedule. Although early arrivals can also 
be a problem for transit passengers, if the bus departs before the indicated departure time, for 
subsequent analyses we bottom-coded all of the delay values that were less than zero to zero under 
the assumption that the vehicle would hold at the stop until the scheduled departure time.  

 

Figure 2. Distribution of measured stop-level delay for buses in the MBTA system over the entire 
study period. 

It is sensible to summarize all of the delay information about a particular stop at the level of 
individual stops to identify measures of central tendency and variation. Collapsing the full set of 
stop-level estimates for bus delay results in a single estimate for each stop, even if multiple routes 
serve particular stops. These results are shown in Figure 3 for a number of measures of central 
tendency and dispersion. Here, the mean delay (panel A) is no longer constrained to a resolution 
of minutes, since we are taking an average over a large number of observations. In general, taking 
this average reduces the maximum observation substantially, but moves the overall mean to the 
right. The average stop in the system experienced a mean delay of 227 seconds, or about four 
minutes, over the entire time period of the observations. Results for median arrival delay, standard 
deviation, and coefficient of variation are also shown. The coefficient of variation in particular, 
shows a right skew, indicating a small group of stops with relatively high values. This result could 
indicate a problem with service reliability in these locations.  
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Figure 3. Distribution of measured stop-level delay for buses in the MBTA system aggregated to the 
stop level. Each bus stop receives a single estimate for (a) mean delay, (b) median delay, (c) standard 
deviation of delay, and (d) coefficient of variation of arrival delay based on its performance over the 
entire study period.  

3.2 GAP ANALYSIS 

A public transit gap analysis typically seeks to identify locations where the demand for transit is 
high, as operationalized using demographic characteristics, and the supply is low. Identifying 
whether these gaps exist at the regional level can help to focus the attention of a transit agency on 
gap closure efforts. However, as noted above, these studies often find that places with apparently 
high presumed demand are also well-served by transit. The measures used are often relative, so 
that high-demand locations have the best transit service in the region on the metric used to 
operationalize service. But the results tell us very little about whether that service is adequately 
serving the needs of transit dependent populations. Further, almost all existing gap analysis studies 
rely on expected or scheduled service, rather than that actually delivered. The innovation embodied 
in this study is to use real-time delay information to adjust expected service and provide a more 
realistic picture of how transit actually functions in a region.  

Figure 4 illustrates the results of the gap analysis using expected service (mean trips per hour, 
calculated by taking the mean frequency results calculated for 3/4 mile service areas around bus 
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stops at the census tract level). Again, demand is operationalized for the purposes of this study 
using standardized race and income proportions that are summed and grouped into deciles for those 
tracts that receive some level of transit service. The results confirm expectations. In general, transit 
supply and demand increase together, as judged by the increasing median values of transit service. 
These results reflect the historic (although shifting) concentration of people of color and low-
income people in central city areas across the United States. The measures employed here are 
simply transit supply measures, they do not account for the nature of accessibility provided by 
these trips. It is possible that service frequency is high, but required destinations are not reachable. 
Additionally, demand was calculated here based on proportions of low-income people and people 
of color in a census tract. As such, the demand deciles do not account for the absolute counts of 
these populations within tracts. It may be the case that proportions are high in areas with 
concentrated transit service, but counts are low. These situations would be better captured with 
population-weighed metrics. 

 

Figure 4. Gap analysis examining the relationship between mean trips per hour in census tracts with 
transit service and the corresponding transit demand decile. This analysis does not account for delay 
and focuses only on expected or scheduled service. The deciles measure transit need by combining 
unweighted, standardized income and racial demographics into a single score. The results are 
presented as a boxplot. The solid horizontal bar in the box represents the median value for a 
particular demand decile. The top and bottom of the box represent the 75th and 25th percentile values 
of transit supply, respectively. The vertical lines emanating from the boxes capture values that fall 
within 1.5 times of the interquartile range (i.e. the range between the 25th and 75th percentile values). 
Outliers beyond this range are plotted as points. 

We also performed a one-way analysis of variance (ANOVA) and pairwise t-tests to determine 
whether the apparent differences displayed in Figure 4 are statistically significant. The omnibus 
test revealed statistically significant different mean values of transit supply between transit demand 
deciles (F9,574 = 8.00, p < 0.001). Table 1 shows the pairwise t-test results. Each cell is testing the 
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null hypothesis that the group means are equal. The results indicate that deciles seven through 10 
differ from many (and in the case of decile 10, all) of the lower demand deciles. In general, supply 
means across the lower demand deciles are not significantly different from each other.  

Table 1. Results of pairwise t-tests (p-values shown) comparing mean values of transit supply across 
transit demand deciles. 

transit demand decile        
 1 2 3 4 5 6 7 8 9 

2 NS         
3 NS NS        
4 NS NS NS       
5 NS NS NS NS      
6 NS NS NS NS NS     
7 <0.05 <0.01 <0.01 <0.01 NS NS    
8 NS <0.05 <0.05 <0.05 NS NS NS   
9 <0.05 <0.001 <0.001 0.00072 <0.05 NS NS NS  
10 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 

Note: NS = Not significant. 

Now that the standard findings from the gap analysis literature have been confirmed, the study’s 
main hypothesis can be tested: do the findings from the gap analysis change when delay is taken 
into account? Given the history of disparities in service provision by demographics in the US and 
elsewhere, we would expect that, when delay is taken into account, conditions would appear worse 
for transit dependent populations than they would seem based on the expected schedule. Figure 5 
provides a visual summary of the delay metric calculated for bus service for this study by mapping 
the results over the MBTA bus service area. Each plotted point is a single bus stop whose delay 
information has been aggregated over the entire period of study. The stops were subsequently 
grouped into quintiles. Again, for each trip servicing that stop, only the delay announcement made 
when the bus was nearest to the stop was considered in the calculation so that stops experiencing 
heavy delays would not receive additional updates. Additionally, the plotted location of the bus 
stop does not correspond to its physical location. Because many bus stops are physically 
proximate, it was necessary to jitter or shift the points so that stops which would otherwise overlap 
others could be visualized appropriately.  

No clear spatial patterns emerge from the mapping exercise. It appears as though most of the stops 
that experience low delay are located in more peripheral locations of the service area. But there 
are also low delay stops scattered within high-service locations in Boston and Cambridge. 
Similarly, there are stops reporting high delays located in the more distant locations of Waltham 
and Quincy. Although the map represents each bus stop in the exact same manner, they actually 
differ in important ways in that some are much more heavily used than others. It may be the case 
that stops seeing heavier use, potentially served by multiple routes, are more likely to experience 
high delays. 
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Figure 5. Mean arrival delay by stop over entire dataset. Stops are grouped into quintiles of delay. 
Note that the location of stops on the map has been scattered to improve visibility; their position does 
not correspond precisely to their physical location. 

 

To partially guard against this possibility, we incorporated delay information into the gap analysis 
by aggregating expected delay at the stop level up to the census tract level by taking the mean over 
all stops. This approach should result in a representative delay value for a tract by averaging over 
many stops with differing service profiles and frequencies. At the tract level, mean delay and mean 
trips per hour were subsequently standardized so that they could be compared. The “supply” score 
for the gap analysis considering delay was calculated by subtracting the standardized delay score 
from the supply score. High delay values would receive high standardized scores and low delay 
values would receive the opposite. The effect of delay, then, would be to diminish the apparent 
performance of particular stop locations if positive, and enhance their performance if negative. 
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The results for the gap analysis considering delay are summarized in Figure 6. To the best of our 
knowledge, these results and this figure are the first in the literature to consider actual delay or 
actual service delivery in the conceptualization of gaps in transit service. In contrast to Figure 4 
and much of the existing literature on transit gap analysis, these results show a much more even 
distribution of transit service across deciles. The omnibus ANOVA test reveals no significant 
difference between group means (F9,490 = 1.55, p = 0.127). The lowest demand decile receives the 
highest median standardized supply score (0.225) once delay is taken into consideration. Ranked 
in order, deciles receiving the highest to lowest levels of service are 1, 3, 10, 6, 8, 9, 5, 7, 4, and 2. 
Although the results are based on a single month in a particular US region, they clearly demonstrate 
that consideration of actual service delivery can reverse the findings generated by a typical public 
transit gap analysis. Although aggregate service may be concentrated in locations that have 
apparently high transit demands, these locations are also likely to experience relatively high delays, 
diminishing the quality of service provided and calling into question the utility of relying strictly 
on schedule-based measures to quantify transit supply.  

 

Figure 6. Gap analysis examining the relationship between standardized trips per hour minus 
standardized delay in census tracts with transit service and the corresponding transit demand decile. 
This analysis accounts for expected delay. The deciles measure transit need by combining 
unweighted, standardized income and racial demographics into a single score. The results are 
presented as a boxplot. The solid horizontal bar in the box represents the median value for a 
particular demand decile. The top and bottom of the box represent the 75th and 25th percentile values 
of transit supply, respectively. The vertical lines emanating from the boxes capture values that fall 
within 1.5 times of the interquartile range (i.e. the range between the 25th and 75th percentile values). 
Outliers beyond this range are plotted as points. 
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4.0 CONCLUSIONS 

Most public transit planning exercises are conducted using ad hoc processes based on idealized 
datasets that do not well-represent actual transit service. This study shows that when delay is 
considered in the transit supply measurement of a gap analysis, the established trend of more 
supply being provided in areas of high demand vanishes. For transit agencies, this indicates that 
more frequent service does not necessarily improve the supply of transit to those who need it most. 
Agencies must also consider schedule adherence and delay.  

Though this study was limited in scope it has shed critical insights to the importance of delay and 
quality of service provisions. Future work may incorporate other independent variables including 
income, race/ethnicity, educational attainment, vehicle ownership, congestion levels. In addition, 
temporal considerations can be included to explore time-of-day and seasonal affects in transit 
provision. 

The methods developed may be applied to any agency maintaining GTFS-realtime. Future studies 
may provide information about where and why public transit services differ from expectation and 
provide public transit planners with valuable information about the equity of any departures from 
expectation and highlight areas of the system that require improvement and attention. In addition, 
if any operational changes are implemented, the methodology can be used to evaluate their 
performance and impacts.  
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