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EXECUTIVE SUMMARY 

The car following model developed by Gazis, Herman, and Rothery (known as the GHR model) 

can yield an analytical estimate of driver reaction time required for asymptotic stability as a 

function of density. Furthermore, equivalent steady-state macroscopic flow models have been 

derived for this car-following model. This study exploits this bridge between the macroscopic 

and microscopic version of the GHR model and hypothesizes that this reaction time and its 

change with the change of traffic state will demonstrate a correlation with observed crash rates 

that can be exploited in the USDOT’s Highway Safety Manual methodology, thereby providing 

improved estimation of road segment safety performance. One of the challenges to investigate 

this hypothesis is to identify the transition state and to determine the change in reaction time 

during this state. To tackle this issue, the format of the GHR model developed in this study is 

characterized by the discontinuous traffic flow model. It enables the modeling of two traffic 

states for the density region where the traffic stream may be either in an uncongested or 

congested state and may transition from one regime to the other. When the driver reaction time 

required for asymptotic stability is estimated for the two regimes, the discontinuous model also 

reveals the drop in driver reaction time during transition. The primary objective of this study is to 

investigate the relationship between freeway crash rates and this drop in driver reaction time 

during transition of traffic states.  

As the proposed method of model fitting is data-driven, two algorithms are applied to 

macroscopic traffic data to remove outliers such as inconsistent and mixed state observations and 

instrumental errors. The first algorithm is applied to the raw data which removes low speed 

associated with low-density observations, and those having a first difference of speed greater 

than 10 mph. The second one is a modified robust regression technique that removes outliers 

iteratively by judging their standard error. 

The key modification to the GHR macroscopic model proposed in this study is the introduction 

of a transition regime based on fitted density breakpoint values. Each transition regime 

observation is initially modeled as both uncongested and congested regime and the one that gives 

the lower error of flow rate is finally selected. A non-linear optimization tool in MATLAB is 

used to fit the model.  The fitted flow-density models yield the so-called inverse lambda shaped 

curve. Two additional constraints justified by the Highway Capacity Manual is incorporated to 

reasonably fit the observations. 

As the estimated required driver reaction times for asymptotic stability are plotted against 

different density values, two drops in reaction times are identified that are associated with the 

transition of traffic states. The larger one (kb1) is the difference in reaction time in the 

uncongested and congested state at the breakpoint density of the congested regime. The 

relatively smaller drop (kb2) is associated with the breakpoint density of the uncongested regime. 

The hypothesis is that a higher value of these drops will be associated with a higher expected 

frequency of target crashes. In this study, the rear-end crashes were selected as the target crash 

type as it mostly occurs during car-following situation. 
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The proposed macroscopic model was fitted to 21 roadside sensor data collected from three 

Interstates near the Triangle Area of North Carolina for the calendar year of 2013. The fitted 

transition states range from 33 pc/mi/ln to 48 pc/mi/ln. Site-specific breakpoints and capacity 

values and their deviation from the defaults specified in the Highway Capacity Manual also 

revealed the limitation of using national average values for fitting macroscopic traffic stream 

models. All the parameters having physical interpretation had reasonable values expect for jam 

density of the congested regime which spanned within an odd range from 229 to 4207 pc/mi/ln. 

Crash data were collected for a three-year period (2011-2013) from the archive maintained by 

North Carolina Department of Transportation. Crash rates were estimated for the road segment 

associated with each sensor and it varied from 17 to 173 crashes per 100 million vehicles-miles 

traveled. The percentages of rear-end crash rates diverse from 14% to 75%. The similarity 

between rear-end and peak-hour crash rates led to a correlation analysis which revealed that a 

moderately strong correlation exists between these two crash types. 

Regression analysis between crash rates and both drops in reaction time revealed that ∆tr2 does 

not have any significant correlation with either total, rear-end, or peak hour crash rates. The 

reason could be that the reaction time at uncongested regime is not that stable. ∆tr1 showed a 

positive correlation with rear-end crash rates with an adjusted R square of 0.34. The coefficient 

of ∆tr1 is significant at a level of 0.01.  

The positive correlation between crash rates and ∆tr1 obtained from this study opens the window 

of future research on the mechanism of rear-end crashes and the role of traffic stream 

characteristics behind it. However, the study suffered from several limitations. A small sample 

size of locations used in this study is one of them. In addition, the selection of thresholds for 

applying the outlier detection algorithms should be calibrated. Furthermore, the issue with 

unusual estimates of jam density, which is probably due to the lack of observations near jammed 

condition should be addressed in the future studies. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

Research on the factors associated with roadway crashes is not new in the field of transportation, 

as prominent tools like Haddon Matrix was developed as early as in 1971 (Haddon & Kelley, 

1971). Identifying these factors assists planners and engineers to predict the crash propensity of a 

road or a vehicular property, or a human behavior, and to develop appropriate countermeasures. 

However, the factors behind a crash can be so complicated and interconnected to each other that 

finding their genuine contribution to the crash can be very challenging. Nonetheless, continuous 

efforts of researchers and engineers from around the world have made it possible to develop 

different tools to determine the role of different factors behind roadway crashes. 

It is an intuitive and well-known fact that the time required by a driver to safely react to an event 

on the roadway can impact the potential of the event leading to an accident. However, the exact 

relationship between the required reaction time and the chance of crash occurrence is difficult to 

find since the reaction time is not easy to measure. Microscopic traffic flow theory has 

established the conditions for maintaining asymptotic stability in stimulus-response car-

following models as a function of the driver reaction time and the modeled follower-response 

sensitivity (May, 1990). Furthermore, equivalent steady-state macroscopic flow models have 

been derived for the well-known Gazis-Herman-Rothery’s (GHR) car-following model (Gazis, et 

al., 1961). Therefore, based on the GHR model the driver reaction time required for maintaining 

asymptotic stability at any traffic state (flow, speed, and density) can be analytically derived 

using a fitted GHR macroscopic model. The relationship between the number of crashes or crash 

rates at a road segment with this analytically derived reaction time may reveal the contribution of 

traffic characteristics to crash propensity, a topic that is yet to be investigated according to the 

authors’ knowledge.  

1.2 PROBLEM STATEMENTS, OBJECTIVES, AND SCOPE 

Since the establishment of traffic flow theory, several car-following models had been developed 

such as, GHR model (Skabardonis, et al., 2003), Gipps model (Gipps, 1981), Cellular 

Automation model (Nagel & Schreckenberg, 1992) etc. The GHR model, which is very popular 

in literature is selected in this study to model the car-following behavior of a traffic stream 

because of the existence of equivalent macroscopic and microscopic model forms. As the 

mathematical formulation of driver reaction time required for asymptotic stability using the 

parameters of GHR model has already been established, the primary challenge lies in identifying 

the transition state and determining the change in reaction time during this state. Traffic 

condition when the flow reaches the capacity of a road section is defined as the boundary 

between two states by past studies (Transportation Research Board, 2010). However, it does not 

give the site-specific density breakpoint value since the HCM model uses a fixed value of 45 



 

4 

 

pc/mi/ln, which is based on national average values. In addition, data-driven model fitting 

approaches require robust filtration of inconsistent, mixed state observations and instrumental 

errors. Therefore, research is warranted to formulate a model with steady-state observations that 

is capable of revealing the site-specific transition regime. 

The primary objective of this study is to investigate the relationship between crash rates and 

analytically derived drop in driver reaction time required for asymptotic stability of traffic 

stream. From the above discussion, it is apparent that prior to investigating the crash data, a 

macroscopic model is necessary that can imitate the transition state between uncongested and 

congested traffic condition with sufficient accuracy. 

The format of the GHR model developed in this study is characterized by the discontinuous 

traffic flow model or the inverse lambda shape flow-density model (Wong & Wong, 2002). The 

advantage of this method is that it enables the modeling of two traffic states for the density 

region where the traffic stream may be either in an uncongested or congested state and may 

transition from one regime to the other. When the driver reaction time required for asymptotic 

stability is estimated for the two regimes, the discontinuous model also reveals the drop in driver 

reaction between the two regimes. 

The drops in driver reaction time at the beginning and the end of the transitioning state are 

considered to be of particular interest in this study. Large magnitude of these drops indicates that 

the drivers have to adapt themselves quickly to this abrupt change in state. These drops in 

reaction time are mostly associated with queue growing from downstream bottleneck and rear-

end crashes are more likely to occur at this condition. Moreover, this phenomenon is more 

frequently observed during the peak hours. 

This study exploits this derivation and hypothesizes that this reaction time representing a traffic 

state can predict the potential of crashes that are more likely to occur at that traffic state. 

Moreover, it aims at particular crash types that can be associated with the car-following 

maneuver. It is assumed that the target crash types are likely to occur when traffic state transfers 

from the uncongested to the congested regime. As the mathematical formulation of the study is 

based on a car-following model, its scope is kept within the road segment types where the least 

number of lane changing behavior is expected. Thus, the scope of this study is narrowed down to 

estimating the reaction time associated with the transition of state at basic freeway segments (as 

defined in the HCM) and finding the potential of occurrence of the target crashes. 

1.3 ORGANIZATION OF THE REPORT 

This report is divided into five chapters. The current chapter presents the background 

information, motivation, problem statements, objectives, and scopes of the study. Chapter 2 

provides a detailed review of the past studies related to macroscopic model development and to 

the link between crashes and traffic stream characteristics. Chapter 3 describes the development 

of the proposed macroscopic model and the calculation of the changes in driver reaction time. 

Chapter 4 presents the application of the proposed model and investigation of the relationship 

between crash rates and the change in reaction time. Chapter 5 summarizes the main conclusions 

of the analysis as well as recommendations for future study. 
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2.0 LITERATURE REVIEW 

This chapter presents a review of past studies related to macroscopic traffic stream models and 

the relationship between freeway safety and traffic characteristics. It is divided into two major 

sections- each on one of the topics mentioned above. The section on macroscopic traffic stream 

models is further divided into two subsections. The relationship between freeway safety and 

traffic characteristics is subdivided based on different traffic parameters used to establish the 

relationship. 

2.1 LITERATURE ON MACROSCOPIC TRAFFIC STREAM MODELS 

The history of macroscopic traffic stream model goes back to 1934 when Greenshields first 

proposed his speed-density relationship based on an aerial photographic study (May, 1990). 

Greenshields concluded that the speed-density relationship is linear and depends on two 

parameters namely free-flow speed and jam density. Later in 1959, Greenberg proposed a non-

linear speed-density relationship using tunnel data in a hydrodynamic analogy (Greenberg, 

1959). From then on, numerous non-linear speed-density models have been developed. All these 

models can be divided into two categories. The first category has some sort of discontinuity and 

the second one is continuous over the entire regime of observation. 

 

 Discontinuous Model 

Edie (1961) developed a complementary theory for steady-state conditions by combining the 

models proposed by Greenberg (1959)and Underwood (1960). It was the first study to observe a 

sharp speed drop in a small density range in some observed speed–density phase plots and 

proposed a two-regime phase diagram to model it. The frequent appearance of this discontinuity 

in several cases was mentioned in this study, which evidenced that the discontinuity did not 

appear because of random factors or by circumstances upstream from a bottleneck. Based on 

these evidence, Edie used the Underwood model for the free flow regime and the Greenberg 

model for the congested regime. The Lincoln Tunnel data used by Greenberg (1959) and Gazis et 

al. (1961) was fitted in this study discontinuously to the proposed model and showed that the 

regression lines have better fits than the continuous model. The fitted flow-density plot is shown 

in Figure 2-1 (a) below. 
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(a)                                                                    (b) 

FIGURE 2-1: (a) Flow-density model proposed by Edie fitted to the Lincoln tunnel data (b) 

Inverted lambda shaped flow-density model proposed by Koshi et al. (1983) 

Based on the plot, the discontinuity is suggested between 70 to 100 veh/miles of density. Within 

this range, the two fitted models also overlapped on one another with the non-congested and 

congested models capturing the higher and lower flow observations respectively. This overlap 

was found of particular importance in later studies that proposed an inverted-lambda shaped 

flow-density plot. 

Drake & Schofer (1966)) conducted statistical analysis to compare the fit and model parameters 

obtained by seven popular macroscopic models. Among them, Edie’s model was the only 

discontinuous one, and it resulted the best estimates of fundamental parameters. Also, its 

standard error was lowest among all hypothesized models. Optimal density for multi-regime 

analysis was selected by a maximum likelihood approach in this study. 

Kerner (1998) proposed a three-phase traffic model that includes a free flow phase and two parts 

of congested phase namely: synchronized flow and wide moving jam. Synchronized flow occur 

when the location of the front of the queue remains same, and the phase lasts for a long time. 

Wide moving jams are characterized by moving front of the queue at a constant speed, and it 

lasts for a short period. Although this paper did not discuss the discontinuity between the free 

flow and the synchronized flow phase, it did point out the fact that the maximum flow at the 

synchronized flow phase is substantially lower than the capacity of a freeway section (max flow 

of the free flow phase). Thus, the resulting flow-density diagram represents a three-phase 

discontinuous diagram. 

The term “inverted Lambda shaped flow-density curve” was first used by Koshi et al. (1983) 

who analyzed traffic data from the Tokyo Expressway and acknowledged the presence of the 

discontinuity. Koshi reported that capacity drop phenomena is a common feature for congested 

flow condition and consequently, advocated the discontinuity in the fundamental diagram.  

More recently, Zhang & Kim (2005) proposed a modified car-following theory to model capacity 

drop and traffic hysteresis phenomena. The Pipe’s theory of car-following model (1966) was 

modified and four different models were proposed. By introducing a transition region of density 

in one of the models, a fundamental diagram that resembles the mirrored image of the reversed 
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lambda was obtained. The model was developed by incorporating the concept varying “gap-

time” which is defined as the time required for the follower to travel a gap-distance. 

 Continuous Model 

Although many studies evidenced the presence of discontinuity in the fundamental diagrams, 

several researchers yet advocated the existence of a continuous relationship among the 

parameters. The speed-flow relationship for base conditions described in the 2010 version of 

Highway Capacity Manual (Transportation Research Board, 2010) can be interpreted as a three-

regime continuous model. The free flow regime that spans from zero to a breakpoint density 

constitutes a straight-line relationship between flow and density. The transition regime represents 

a parabolic curve that spans from the breakpoint to a density of 45 pc/mi/ln. The congested 

regime (from 45 pc/mi/ln to jam density) represents a straight-line flow-density relationship. 

According to Chapter 10 and Chapter 25 of HCM, the flow-density curve for the oversaturated 

regime (3rd regime) assumes a simplified linear relationship. Others have argued against the 

existence of a discontinuity in the fundamental diagrams as a permanent character and advocated 

the continuous flow-density relationship (Li & Zhang, 2013; Cassidy, 1998). 

Cassidy (1998) showed that the flow-density scatter plot forms a reproducible continuous curve 

if there is no downstream queue and the data is near-stationary. The study has a remarkable 

contribution in demonstrating the adverse effect of non-stationary observations for developing a 

bivariate relationship which is described in a later section. Near-stationary observations filtered 

from loop detectors placed at different locations of two freeway sites showed that the 

discontinuity in flow-density curve evidenced by past studies mainly forms because of the 

presence of a downstream queue.  

Li and Zhang (2013), while modeling the time-space inhomogeneities with the kinematic wave 

theory of traffic flow demonstrated how the discontinuity in the fundamental diagram can 

theoretically violate the boundary conditions. Although the research stated that the discontinuity 

is frequently observed in the fundamental diagrams, it showed that a discontinuous fundamental 

diagram is non-differentiable at the discontinuous point and results in infinite characteristic wave 

speeds. 

2.2 LITERATURE ON FREEWAY SAFETY AND TRAFFIC 

CHARACTERISTICS  

The effect of detailed traffic characteristics on roadway safety is not that direct and has been a 

subject of important research since 1960’s (Gwynn, 1967; Turner, 1986; Frantzeskakis, 1987)  

More recent studies have shown that the safety of a road segment can be related to its degree of 

concentration of volume, level of service, and V/C ratio during peak hours (2010; Zhou & 

Sisiopiku, 1997; Persaud & Nguyen, 1998). Also, certain traffic characteristics that were found 

to be recurrently existed before crashes and thus, may have a causal relationship with crashes at 

any road segment were subjected to the investigation as well. Golob and Rucker (Golob & 

Recker, 2003) studied in detail the relationship between crash characteristics and real-time traffic 

flow variables, road lighting, and weather condition using nonparametric canonical correlation 

analysis. Lee et al. (2003) analyzed crash risks regarding traffic density, speed, and other 

geometric characteristics of roads. Several studies recognized the traffic state as a critical 
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variable and developed their models for a target crash type, while most of the studies did not 

draw any border based on traffic states or crash types. In this section, detailed of the studies that 

investigated the relationship between freeway safety and traffic characteristics are discussed. The 

discussion is divided based on the traffic parameters used by the studies. 

 

 Density Based Traffic States as Predictors 

Xu et al. (2012) evaluated the relationship between crash risks and traffic states defined by the 

occupancy of the freeway segment. It addressed several limitations of past studies on the same 

topic such as the arbitrary classification of traffic states, ignoring nearby traffic condition and 

effect of different confounding factors.  To resolve these issues, the study considered the traffic 

state observations from four detectors for each crash, two on each direction from the crash 

occurrence location. The effect of confounding factors was addressed by the inclusion of three 

parameters namely the time, season, and location of the crash occurrence. Also, only day-time 

crashes were considered assuming that driver error or lighting condition cause most of the 

nighttime crashes.  

To define different traffic states combining the traffic data obtained from four detectors for each 

recorded crash, the study exploited the technique of K-means clustering. This technique 

generates K groups by minimizing the intragroup distance and maximizing the intergroup 

distance. Next, a case-control strategy was used to relate the crashes with the traffic states 30 

minutes prior to each crash. Here, the traffic states 30 minutes before a crash is considered as the 

“case”. For each case, traffic characteristics data during the same clock time, season, and the 

location was randomly selected for four non-crash days. These observations are termed as 

“controls” (i.e. case: control =1:4). Such case-control studies are common in the epidemiological 

observational study. 

The final task of this study involves establishing a probabilistic model using logistic regression 

analysis. The probability of a traffic state being a “case” is expressed as- 

𝑃(𝑌 = 1) = 1/{1 + exp⁡[−(𝛼 +∑ 𝛽𝑖𝑥𝑖)]}⁡
𝑝

𝑖=1
 (1) 

Where,  

Y=1,0 if a traffic state is a case or a control respectively; 

𝛼 = Effect of matching variables (e.g. ,time, season, and location), 

 𝑥𝑖 = Value of explanatory variable i and 𝛽𝑖 being its coefficient. Although this general form is 

writted to consider a vector of 𝑖 = 1,2,3, … . 𝑝 variables, only the corresponding traffic state was 

used as the explanatory variable. 

Traffic data from PeMS (2003) collected for the specific sites exhibited three traffic regimes 

namely free flow, congested, and transition regime. Combining the traffic regimes of four 

sensors 30 minutes prior to a crash, five traffic states (k=5 was obtained by maximizing the 

Spearman correlation parameter) were defined. Two out of these five states are demonstrated in 

Figure 2-2 (a) (Traffic state-4) and Figure 2-2 (b) (Traffic state-5). Three other traffic states, 
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although not shown here, were made up of different combinations of upstream and downstream 

states. 

  
(a) (b)  

Figure 2-2: (a) Traffic state-4 consists of congested condition at downstream and free flow 

condition at upstream of a crash, (b) Traffic state-5 consists of free flow condition at both 

upstream and downstream of a crash (Courtesy: Xu et al. (2012)) 

 

The relative odd-ratio of a traffic state that can signal a crash occurrence estimated from the 

logistic regression model showed that traffic state-4 and traffic state-5 has the largest and 

smallest value. It indicates that the crash risk was highest when the upstream detectors had free 

flow condition and the downstream detectors had congested condition. The crash risk was lowest 

when free flow condition prevailed at both upstream and downstream detectors. The authors 

subjectively defended the outcome of the models by pointing to the fact that Traffic state-4 

indicates a positive speed difference between upstream and downstream detector before a crash. 

This fact was established in earlier studies (Lee, et al., 2003; Hossain & Muromachi, 2010). 

Also, another supposition backed by past studies is that a higher speed variance upstream of a 

crash location prior to the crash occurrence may increase the crash risk. This conjecture was 

validated in this study as the speed variance was found greatest in Traffic state-4. 

 Traffic Speed as a Predictor 

Zheng et al. (2010) investigated the impact of traffic oscillations during congested condition on 

freeway crash occurrences. Since this study was focused on crash risk during congested 

condition, the outcomes are different than other studies. This study used high-resolution loop 

detector data fused with crash data collected for four years during the PM peak hours. The 

selected road segment experienced recurrent congestion during the PM peak hours which was 

verified by observing the speed contour profile.  

The study applied a matched case-control strategy to relate crash risk with traffic characteristic 

of a certain period prior to each crash. By investigating the oblique curves of cumulative time 

mean speed, the study suggested that an optimum time duration of 10 minutes prior to a crash 

traffic data should be collected. In the proposed case-control analysis method, traffic 

characteristics (oscillation, average speed, count, and average occupancy) are considered as the 

cases and traffic characteristics at the same location weather condition on a non-crash day were 

selected as controls. A conditional logistic regression model is used to estimate the probability of 
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a traffic characteristic being to be the prior situation of a crash. The model evaluation technique 

was fine-tuned since a repetitive sampling process of the control samples was implemented. The 

results revealed that in 90% of the repetitions, traffic oscillation was found significant. Other 

parameters representing average traffic conditions were significant only for 5% to 45% of the 

repetitions. Thus, the study established traffic oscillation as the single most significant predictor 

of crash risks during congested condition in freeways. Despite proposing a sound methodology 

and having concrete findings, the study consider crash type in its model. 85% of the recorded 

crashes were rear-ended. The result could be different if other types of crashes were present 

significantly in the dataset. 

Song and Yeo (2012) used speed data collected from both upstream and downstream detectors of 

a crash location to develop relationships between crash rates and traffic speed related variables. 

The difference of upstream and downstream detector speed when a crash occurred was used to 

define four traffic states. A “back of queue (BQ)” condition was declared when the upstream 

detector had free flow, and the downstream detector had congested condition. The reverse 

situation was termed as a “Bottleneck (BN)”. Free flow (FF) and congested (CT) conditions were 

identified as well using an arbitrarily selected speed threshold of 50 mph. 

The statistical models developed for every four states expressed crash rates for target crash types 

(rear-end, sideswipe, and others) as a quadratic function of the speed parameter. This form of the 

equation was selected by observing the trend of crash rates against these variables. Two types of 

speed parameters were used separately: average speed and the difference in speed for the 

upstream and downstream detectors. These two variables were binned by 5 mph interval and 

crash rates for each bin were calculated using three years of crash data. 

The regression models showed that read-end and sideswipe crashes were strongly related to the 

speed difference while other crash types were better related to the average speed. Collision 

potential was found to be highest in case for congested condition and lowest for free flow 

condition. Despite generating logical and statistically significant results, the study divided traffic 

states merely by an arbitrarily selected speed threshold. Besides, the study did not mention 

anything about the validation of the proposed models.  

 Peak Hour Traffic Volume as a Predictor 

Chapter 18 and Appendix B of the Highway Safety Manual (HSM) (American Association of 

State Highway and Transportation Officials, 2010) discusses two methods of predicting crashes 

on freeway segments: Predictive method and Empirical Bayes (EB) method. The predictive 

method provides a regression model of the so-called Safety Performance Function or SPF (it 

represents the predicted average crash frequency for a year) as a function of the Annual Average 

Daily Traffic (AADT) and the length of a segment. Several Crash Modification Factors (CMF) 

have been developed by regression analysis to reflect different site characteristics and is applied 

with the SPF in a multiplicative form. Only one of the CMFs are related to traffic characteristics 

(high volume during peak hours) where all others are associated with the geometric 

characteristics of the site. According to HSM, the change in traffic volume can influence the 

crash frequency, type, or severity for both single and multi-vehicle crashes. The proportion of 

AADT occurring during the peak hours of an average day is used as a surrogate for the degree of 

traffic volume concentration.  
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The general format of estimating the predicted average crash frequency according to HSM is 

shown in Equation 2. 

𝑁𝑝,𝑓𝑠,𝑛,𝑦,𝑧 = 𝐶𝑓𝑠,𝑎𝑐,𝑦,𝑧 ∗ 𝑁𝑠𝑝𝑓,𝑓𝑠,𝑛,𝑦,𝑧 ∗∏𝐶𝑀𝐹𝑚,𝑓𝑠,𝑎𝑐,𝑦,𝑧

𝑚

𝑚=1

 (2) 

Where, 𝑁𝑝,𝑓𝑠,𝑛,𝑦,𝑧 =⁡predicted average crash frequency of a freeway segment with n lanes, crash 

type y, and severity z (crashes/yr); 

𝑁𝑠𝑝𝑓,𝑓𝑠,𝑛,𝑦,𝑧 =⁡predicted average crash frequency of a freeway segment with base conditions, n 

lanes, crash type y, and severity z (crashes/yr); 

𝐶𝑀𝐹𝑚,𝑓𝑠,𝑎𝑐,𝑦,𝑧 =⁡  crash modification factor for a freeway segment with any cross-section ac, 

feature m, crash type y, and severity z; and 

𝐶𝑓𝑠,𝑎𝑐,𝑦,𝑧 =⁡calibration factor for freeway segments with any cross-section ac, crash type y, and 

severity z. 

The crash modification factor representing the effect of peaking is shown in Equation 3. 

𝐶𝑀𝐹𝑝𝑒𝑎𝑘,𝑓𝑠,𝑎𝑐,𝑦,𝑧 ⁡= ⁡𝑒𝑥𝑝(𝑎⁡ × 𝑃ℎ𝑣⁡) (3) 

Where, 𝑃ℎ𝑣 =⁡proportion of AADT during hours where volume exceeds 1,000 veh/h/ln. 

𝑎 =⁡regression coefficient. The value of this coefficient is positive for multi-vehicle crashes and 

negative for single vehicle crashes. It implies that as the concentration of traffic peaking rises, 

multi-vehicle crash frequency increases while single vehicle crash frequency decreases.  Here, the 

threshold volume of 1,000 veh/h/ln is chosen because traffic stream speed tends to drop as volume 

increased beyond this value. Although this CMF does not include any detailed information 

regarding other traffic characteristics when a road segment is recurrently congested, it applies a 

simple yet rational model to capture the effect of peaking on freeway safety.    

 

 Volume and Density as Predictors 

Lord et al. (2005) aimed to determine the statistical relationship using commonly applied 

predictive models between crashes and hourly traffic flow characteristics. Single and multi-vehicle 

crash records along with corresponding traffic data from loop detectors were collected for a 5-year 

period. Moreover, the model was developed separately for two site types (urban and rural).  

The proposed method started with the assumption that the number of crashes at the i-th segment 

and t-th period, 𝑌𝑖𝑡 has a poisson distribution with a mean of 𝜇𝑖𝑡. 𝜇𝑖𝑡 can be expressed in terms of 

traffic flow characteristics and segment length (f(.)). The model error is gamma distributed with a 

mean of 1 and a variance of 1/𝜑, where φ is called the dispersion parameter. With this condition 

given, it can be showed that 𝑌𝑖𝑡,⁡conditional on f(.) and 𝜑 is distributed as a negative binomial 

random variable with a mean f(·) and a variance f(·)(1 + f(·)/φ) respectively.  

Three forms of functions was used for f(·) in this study: the function of hourly volume, the function 

of hourly volume and density, and function of hourly volume and V/C ratio. Pearson statistics, 

deviance, and Cumulative Residual plots were used to evaluate the developed models. The model 

with the only volume as predictor yielded some unusual results such as single vehicle and total 

crashes increases with the increase in volume. This did not contradict intuition only but states the 
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opposite of what was found from the linear trend of the crash data against the hourly volume. 

However, the inclusion of density or V/C yielded statistically sound model with logical outcomes.  

 Speed and Occupancy as Predictors 

Abdel-Aty et al. (2004) used matched case-control technique for developing a real-time crash 

prediction model as a function of traffic characteristics prior to the crash. Although the case study 

application suffered from small crash data sample (375 crashes recorded over a period of 8 

months), the methodology was sound as it addressed some key issues associated with the case-

control technique.  

Like other studies that used case-control strategy, it considered the traffic characteristic prior to a 

crash as a case and traffic characteristic on the same location, day of the week, and season were 

treated as control. Individual logistic regression models were developed with five traffic-related 

variables for each loop detector. Based on their respective “hazard ratio” (a parameter that 

quantifies the significance of each variable in predicting crash risk), the average occupancy of the 

upstream detector and coefficient of variation of the speed of the downstream detector were 

selected as the most significant variables. The descriptive statistics of the coefficient of variation 

of speed in the downstream detector for crash and no-crash conditions were described as shown in 

Figure 2-3. It clearly shows that the coefficient of variation of speed associated with the crashes 

has a higher mean and range compared to the non-crash observations. 

 

Figure 2-3: Box plot of coefficient of variation of the speed of the downstream detector 

Courtesy: Abdel-Aty et al. (2004) 

Upon developing the logistic regression model, the odd-ratio for each traffic characteristic 

observation was calculated. A threshold value of 1 for the odd-ratio was selected to signal a crash. 

Application of this threshold identified about 69% of the crashes in the dataset (i.e., about 31% 

false negative). Given the applicability of the model in real-time, this result seems promising.  
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Pande and Abdel-Aty (2006) employed traffic surveillance data from freeway loop detectors to 

identify traffic conditions that are prone to rear-end crashes. Traffic speed, variation of speed, and 

average occupancy for both crashes (collected for a 5-year period) and no-crash scenarios were 

analyzed. Exploration of these variables using a Variable Importance Measure (VIM) revealed that 

rear-end collisions are associated with two types of traffic condition. The first type is associated 

with the congested condition, which can be signaled by the average occupancy and variation of 

speed of the detector closest to the crash location. The second type, which occurs when relatively 

free flow condition prevails 5-10 minutes before the crash can be predicted using the average 

occupancy and variation of speed data from a downstream detector.  One of the key aspects of this 

study was that the proposed model was implemented to a different set of crash data. Despite the 

model identified about 75% of the crashes, the author acknowledged that the methodology induced 

a significant number of false alarms. 

2.3 SUMMARY 

The review of past studies on developing macroscopic traffic stream model revealed that the 

discontinuity in the steady state fundamental diagrams had been recognized from as early as the 

1960s. Nonetheless, modern computational tools can improve the development of such models 

by using data collected over an extended period. In contrast, a few studies challenged the 

existence of fundamental diagram discontinuity. 

The review on the link between roadway safety and traffic stream characteristics demonstrated 

that several studies applied probabilistic modeling technique to signal crash occurrence with 

traffic data. However, not many studies focused on the recurrent traffic characteristics that can be 

emerged and applied as a Crash Modification Factor in safety studies. Instead, the studies 

developed models using instantaneous traffic data almost immediately prior to a crash. Such 

models are challenging to implement in reality. Thus, it implies that further research is needed to 

find the link between roadway safety and persisting traffic stream characteristics. 
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3.0 METHODOLOGY 

This chapter presents the mathematical formulation for developing a two-regime macroscopic 

model and the driver reaction time estimation for different density condition. From the 

algorithms for outlier detection to the estimation of driver reaction time, the overall process is 

described in a step-by-step manner. A description of the study area and the available data sources 

are presented toward the end of this chapter.  

3.1 FITTING A MACROSCOPIC GHR TRAFFIC STREAM MODEL 

 Initial Cleaning of Data 

For developing the proposed discontinuous steady-state model, traffic stream data from fixed- 

location sensors are needed for a long span of time (preferably one year). Since the model 

development is data-driven, inconsistent and mixed state data were removed in two stages of the 

process. This section presents the first stage, which involves applying three thresholds that are 

introduced in a prior study (Xu, et al., 2013). In this study, the thresholds are modified and 

applied in a slightly different manner to conform to the study objectives. 

The first two thresholds applied to detect inconsistent observations are known as the Critical 

Speed Threshold (CST) and Critical Density Threshold (CDT). The combined application of 

these two thresholds removes the low-speed observations associated with low volume. Such 

observations exist due to inclement weather, work zones, incidents, or any other sort of capacity 

drop phenomena as well as from observations that include both congested and uncongested flow. 

CST is used to identify low speed (congested) observations. Analysis of traffic data reveals that 

10 mph below the speed limit is a reasonable threshold to determine congested observations. 

CDT is used to identify low volume observations. A density of 35 pc/mi/ln, the threshold that 

separates LOS of D and E for urban freeways in the HCM is defined as the CDT threshold. 

Observations that fall below both CST and CST thresholds are tagged as inconsistent (low-speed 

and low-volume) data points. Figure 3-1 shows speed-flow data obtained from Traffic.com for 

calendar year 2013 and for sensor ID 23774 WB.  The inconsistent data points are shown in 

Figure 3-1(a) bounded by the CST and CDT threshold lines (green points inside the large 

triangle). 
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(a) 

 
(b)  (c)  

Figure 3-1: Inconsistent data filtered by CST and CDT (b) Mixed state observation 

identification by SFDT (c) Mixed state observations in the speed-flow diagram (23774WB) 

To detect time interval (in this case, 5 minutes) data points that represent non-stationary traffic 

conditions, the third threshold termed Speed First Difference Threshold (SFDT) is applied. 

SFDT excludes observations whose speeds differ from the previous 5-minute observation by 

more than 10 mph as shown in Figure 3-1 (b). These non-stationary observations for sensor 

23774W is shown in Figure 3-1 (c) by the green points. It should be noted that outliers 

generating from system measurement error may still exist even after applying these thresholds. 

 

 Fitting a Discontinuous Traffic Stream Model with an 

Overlap  

The process of fitting the proposed steady-state model is explained in this section. The starting 

point is the flow density relationship for the single regime full GHR model (Gazis, et al., 1961) 

as shown in Equation 4. 

𝑞𝑀,𝑖 = 𝑘𝑖 ∗ 𝑢𝑓 ∗ (1 − (
𝑘𝑖
𝑘𝑗
)

𝑙−1

)

1
1−𝑚

 (4) 

Where, 

i=1,2,3 . . . Observation index 

  Valid 

   Mixed-state 
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𝑞𝑀,𝑖= Model flow for observation I (pc/hr/ln) 

𝑢𝑓= Free flow speed (mph) 

𝑘= Observed density (pc/mi/ln) 

𝑘𝑗=Jam density (pc/mi/ln) 

𝑙= Distance headway exponent 

𝑚= Speed difference exponent 

 

In a two-regime (uncongested and congested regime) GHR model, the same form of Equation 4 

is used for each regime, and the regime boundary is determined by a density break point. In the 

proposed model, a transition range is introduced by allowing the two regimes to overlap each 

other which produces the recognized inverted lambda shape when plotted in the flow-density 

domain. The major challenge is to model this transition range. Empirical observations of traffic 

stream data depict that the data points in the transition range follow either the uncongested or the 

congested regime’s characteristics. In other words, the transition range (defined in terms of 

density) includes a mixture of observations from both regimes. In this study, it is proposed to 

model each data point within the overlap by the regime model, either uncongested and 

congested, that results in the smallest absolute error.  

The algorithm for modeling the uncongested and congested regimes along with the overlap range 

is defined by Equation 5, 6, and 7. The subscripts with the parameters represent the 

corresponding regime number 

 

Observed Density Formula for model flow  

𝑘𝑖 ≤ 𝑘𝑏2 
 

𝑞𝑀,𝑖,𝑟=1 = 𝑘𝑖 ∗ 𝑢𝑓1 ∗ (1 − (
𝑘𝑖
𝑘𝑗1
)

𝑙1−1

)

1
1−𝑚1

 

 

(5) 

𝑘𝑖 ≥ 𝑘𝑏1 
 

𝑞𝑀,𝑖,𝑟=2 = 𝑘𝑖 ∗ 𝑢𝑓2 ∗ (1 − (
𝑘𝑖
𝑘𝑗2
)

𝑙2−1

)

1
1−𝑚2

 

 

(6) 

𝑘𝑏2 < 𝑘𝑖 < 𝑘𝑏1 𝑞𝑀,𝑖,𝑟 = {
𝑞𝑀,𝑖,𝑟=1⁡𝑖𝑓⁡|𝑞𝑀1,𝑖 − 𝑞𝑖| < |𝑞𝑀2,𝑖 − 𝑞𝑖|

𝑞𝑀,𝑖,𝑟=2⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7) 

Where, 

𝑟= Regime index (1, 2) 

𝑘𝑏1= Density breakpoint for regime 1 (uncongested regime) 

𝑘𝑏2= Density breakpoint for regime 2 (congested regime) 

 

In Equation (2) through (4), the two density breakpoints (𝑘𝑏1 and⁡𝑘𝑏2) define the upper and 

lower limit of the transition range respectively. 

 

 Requirement for Additional Constraints 

Before discussing the constraints added to fit the proposed model, it is important to explain the 

limitations of distinguishing the two regimes and defining the overlap based on empirical data. 
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All data in this study are from HERE roadside sensors (formerly Traffic.com) in the Raleigh, 

North Carolina urban area. Figure 3-2 shows an example application of the algorithm described 

above to clarify the limitations. In this figure, the observed data are for HERE sensor ID 23771 

WB for the calendar year of 2013 aggregated at a 5-minute interval. The model was fitted with 

MATLAB software using a nonlinear optimization tool with an objective function of minimizing 

the sum of squared error of flow. The red points show the fitted model with no additional 

constraints, while the green ones show the same but with the inclusion of several constraints 

described later. 

 

 

Figure 3-2: An example of the proposed flow-density model with and without any 

constraint 

Several important aspects of the unconstrained fitted model shown in Figure 3-2 are noted 

below: 

• The uncongested curve of the unconstrained model (red line) does not capture a group of data 

points with high flow (<2,000 pc/hr/ln). Instead, the slope of the uncongested regime curve 

flattens out at a flow value near 2,000 pc/hr/ln. It is apparent that this model poorly fits 

several important and valid observations.  Assuming a free flow speed of 65 mph (posted 

speed limit at this location was 60 mph), the capacity of the road section should be 2350 

pc/hr/ln according to HCM. Therefore, the fit of the uncongested curve can be improved by 

constraining the slope at capacity using this information.  

• The queue discharge flow rate (or post-breakdown flow rate) is appeared to be 1,700 pc/hr/ln 

from Figure 3-2. Approximating the pre-breakdown flow rate from the observed data as 

2,350 pc/hr/ln, it is found that the drop in post-breakdown flow rate is about 28% of the pre-

breakdown flow rate. This percentage is significantly higher than the usual range mentioned 

in HCM (2%-20%). 
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The observations highlighted above are also present in the datasets for the other traffic 

monitoring sensors used in this study. The essence of the above discussion is that fitting the 

proposed empirical model without additional constraints may result in unusual and infeasible 

values that deviate from the findings of past research cited in the HCM. To resolve these issues, 

several constraints were implemented to properly fit the model. Although these constraints are 

selected empirically, they are justified by the guidelines provided in HCM.  

 

3.1.3.1 Constraint on Queue Discharge Flow Rate 

The post-breakdown flow rate is usually lower than the pre-breakdown flow rate, resulting in a 

significant loss of freeway throughput during congestion. According to a past study cited in 

Chapter 10 and Chapter 26 of HCM (2010), the average difference between the post-breakdown 

and the pre-breakdown flow rates vary widely from as little as 2% to as much as 20%. In the 

absence of local information, a default value of 7% is recommended. In light of this information, 

a maximum limit of 20% and a minimum limit of 2% of the pre-breakdown flow rate is imposed 

for the reduction in the queue discharge flow rate. The mathematical expressions for pre-

breakdown and post-breakdown flow rates are shown in Eq. (8) and Eq. (9). 

 

𝑞𝑝𝑟𝑒 = 𝑘𝑏1 ∗ 𝑢𝑓1 ∗ (1 − (
𝑘𝑏1
𝑘𝑗1
)

𝑙1−1

)

1
1−𝑚1

 (8) 

𝑞𝑝𝑜𝑠𝑡 = 𝑘𝑏2 ∗ 𝑢𝑓2 ∗ (1 − (
𝑘𝑏2
𝑘𝑗2
)

𝑙2−1

)

1
1−𝑚2

 (9) 

Constraint: 𝑞𝑝𝑟𝑒 ∗ 0.98 ≥ 𝑞𝑝𝑜𝑠𝑡 ≥ 𝑞𝑝𝑟𝑒 ∗ 0.8  

 

3.1.3.2 Constraint on Slope at Capacity 

It is shown earlier in Figure 3-2 that the capacity is underestimated by the unconstrained model 

as the slope of the uncongested regime flattens out, and the regime continues to a high-density 

value. The slope of the flow-density curve at any point of the uncongested regime can be 

obtained by differentiating the model flow equation with respect to density. 

 

𝑑𝑞𝑀,𝑖,𝑟=1
𝑑𝑘𝑖

= 𝑢𝑓((1 − (
𝑘𝑖
𝑘𝑗1
)

𝑙1−1

)

1
1−𝑚1

− 𝑘𝑖 (
1

1 −𝑚1
∗ (1 − (

𝑘𝑖
𝑘𝑗1
)

𝑙1−1

)

𝑚1
1−𝑚1

∗
𝑙1 − 1

𝑘𝑗1
∗ (

𝑘𝑖
𝑘𝑗1
)

𝑙1−2

)) 

 

(10) 

Substituting 𝑘𝑖 = 𝑘𝑏1 in Equation (10) yields the slope at capacity. To resolve the issue 

of decreasing slope at capacity, the slope at the capacity value in HCM is used as a guideline. 

According to Chapter 10 and Chapter 25 of HCM, the equations for flow in a basic freeway 

segment at different density regimes are shown in Equation (11). 
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𝑞𝐻𝐶𝑀,𝑖 =

{
  
 

  
 

𝑘𝑖 ∗ 𝑢𝑓⁡⁡⁡∀⁡𝑘𝑖 ∈ [0, 𝑘𝑏]

𝑞𝑏 +
√1 − 4 ∗ 𝛽 ∗ 𝑞𝑏 ∗ 𝑘𝑖 + 4 ∗ 𝛽 ∗ 𝑢𝑓 ∗ 𝑘𝑖

2 − 1)

2 ∗ 𝛽 ∗ 𝑘𝑖
⁡⁡∀⁡𝑘𝑖 ∈ (𝑘𝑏 , 45]

𝑞𝑐 ∗ (1 −
𝑘𝑖 − 45

𝑘𝑗 − 45
)⁡⁡∀⁡𝑘 ∈ (45, 𝑘𝑗]

 (11) 

 

Where, 

𝑞𝐻𝐶𝑀,𝑖=HCM model flow for observation i 

𝛽= A coefficient defined as a function of free flow speed 

𝑞𝑏= Flow breakdown (pc/hr/ln) as a function of free flow speed 

𝑞𝑐= Capacity of the segment (pc/hr/ln) as a function of free flow speed 

𝑘𝑏 =Density at breakpoint (pc/mi/ln) 

 

To obtain the slope at capacity equation, Equation (11) for density range 45 to 𝑘𝑏is 

differentiated with respect to the observed density and the following expression is obtained 

𝑑𝑞𝐻𝐶𝑀,𝑖
𝑑𝑘𝑖

=

1 +
𝑘𝑖(−4𝑞𝑏𝛽 + 8𝛽𝑢𝑓𝑘𝑖)

2√1 − 4𝑞𝑏𝛽𝑘𝑖 + 4𝛽𝑢𝑓𝑘𝑖
2

−√1 − 4𝑞𝑏𝛽𝑘𝑖 + 4𝛽𝑢𝑓𝑘𝑖
2

2𝛽𝑘𝑖
2

 

 

(12) 

In Equation (12), plugging 𝑘𝑖 = 45 gives the slope at capacity value according to the 

HCM model. The proposed constraint here is that the slope at capacity according to the proposed 

model must be greater than or equal to the HCM slope at capacity value.  

 

  

 Robust Regression 

It is mentioned earlier that the use of robust regression techniques to remove outlier bias is 

gaining popularity. Although the initial stage of model development process involves removing 

clearly inconsistent and non-stationary data from the raw datasets, outlying observations are 

likely to remain in the data after the stage one filters. Since the method described above is data-

driven, it is imperative to fit the model through valid observations only. A customized 

application of robust regression method is proposed in this study. According to this approach, the 

standard error for each data point is estimated by fitting the model. Data points with a standard 

error higher than a certain threshold are removed from the original dataset. Then, the model is 

fitted again with the updated dataset. The process is continued until the maximum standard error 

becomes lower than the threshold. 

In this regard, the selection of threshold is critical. First, there is a significant difference in the 

number of data points in the uncongested and congested regime. Therefore, it is essential to 

distinguish the two regimes and estimate the standard error for each of them separately. The 

estimation of the standard error for each regime is shown in Eq. (13) 
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𝑆𝐸𝑖,𝑟 = (𝑞𝑀,𝑖,𝑟 − 𝑞𝑀,𝑖,𝑟)/𝑆𝑡𝑑𝑟 (13) 

Where, 

𝑟= 1 or 2 for uncongested and congested regimes respectively 

𝑞𝑀,𝑖,𝑟=Modeled flow for observation 𝑖 in regime 𝑟 

𝑞𝑖,𝑟=Observed flow in regime 𝑟 

𝑆𝑡𝑑𝑟= Standard deviation of flow error for regime 𝑟  

 

The second issue with robust regression is that there are two types of observations that need to be 

removed: mixed state observations and observations with extreme measurement error. The mixed 

state data points are valid observations that represent time intervals in which there was a 

switching between congested and uncongested regimes. Following the initial cleaning described 

above, such observations that remain are expected to be more prevalent in the congested regime 

than in the uncongested regime as illustrated in Figure 3-1 (b). The distribution of the mixed 

state observations will be asymmetric around the flow-density curve of the congested regime 

(lying on the left side of the curve) Because these observations do not result from measurement 

error, they are likely to be more prevalent than measurement errors. For example, for every flow 

breakdown, there is likely to be two pronounced mixed state observations, one for the time 

interval when the queue formation shock wave passed by and one for the time interval when the 

queue clearance shock wave passed by. Considering these facts, a symmetric threshold for the 

standard error of ±3.5 is applied for the uncongested regime. This symmetric threshold is 

expected to remove the observations with high measurement error in the uncongested regime. 

For the congested regime, an asymmetric threshold of +2 is applied for all but the final step of 

the robust regression. This threshold is expected to remove the remaining mixed state data points 

and the measurement error outliers on the left side of the flow-density curve. In the final step of 

robust regression, a threshold of -3.5 is applied to exclude any remaining outliers from the 

congested regime on the right side of the flow-density curve.  

The symmetric threshold of ±3.5 standard error applied on the uncongested regime observations 

represents a confidence interval of approximately 99.95% (assuming that the errors have 

Gaussian distribution). On the other hand, a less conservative threshold is applied to the 

congested regime due to the potential presence of mixed state observations. With these set of 

thresholds, the robust regression process is expected to converge without removing excessive 

data points. 

 

3.2 ESTIMATION OF DROP IN DRIVER REACTION TIME 

 Estimating Driver Reaction Time for Different 

Traffic States 

To estimate the driver reaction time required for asymptotic stability, the macroscopic form of the 

GHR model in Eq. (1) needs to be converted to a microscopic form. The microscopic form of the 

fifth and final GHR car-following model is expressed in Eq. 2. Here, the acceleration of the (n+1)th 

vehicle in a traffic stream at a time (t+⁡𝛥𝑡 ) ( termed as  𝑥′′𝑛+1(𝑡 + 𝛥𝑡)⁡)⁡in response to the relative 

speed between the nth and (n+1)th vehicle at time t is expressed as the product of the relative 

speed between the two vehicles and the sensitivity term. 



 

21 

 

 

𝑥′′𝑛+1(𝑡 + 𝛥𝑡) ⁡= 𝛼
[𝑥′𝑛+1(𝑡 + 𝛥𝑡)]

𝑚

[𝑥𝑛(𝑡) − 𝑥𝑛+1(𝑡)]𝑙
∗ [𝑥′𝑛(𝑡) − 𝑥′𝑛+1(𝑡)] (14) 

Where,  

n= Position of a driver in a traffic stream. (n=0 is the most downstream driver) 

𝑥𝑛= Location of the nth driver with respect to a reference point. 

𝑥′𝑛(𝑡)= Speed of the nth driver at time t 

This format of the model is also called the stimulus-response model. According to May (1990), 

the parameter α can be expressed as shown in Eq (15). 

𝛼 =
(𝑙 − 1)𝑢𝑓

1−𝑚

(1 − 𝑚)𝑘𝑗
𝑙−1 

 

(15) 

Thus, the sensitivity factor is equivalent to what is shown in Eq. (16) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁡𝑓𝑎𝑐𝑡𝑜𝑟 =
(𝑙 − 1)𝑢𝑓

1−𝑚

(1 − 𝑚)𝑘𝑗
𝑙−1 ∗

[𝑥′𝑛+1(𝑡 + 𝛥𝑡)]
𝑚

[𝑥𝑛(𝑡) − 𝑥𝑛+1(𝑡)]𝑙
 (16) 

 

For steady-state observation, individual vehicle speed represents the speed of the traffic stream 

and the spacing between two successive vehicles represents the inverse of the traffic density. 

Thus, Eq. (17) can be written as 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦⁡𝑓𝑎𝑐𝑡𝑜𝑟 =
(𝑙 − 1)𝑢𝑓

1−𝑚

(1 − 𝑚)𝑘𝑗
𝑙−1 ∗

𝑢𝑚

(
1
𝑘
)
𝑙 (17) 

 

Now, according to May (1990), for a traffic stream to be asymptotically stable, the product of the 

reaction time and sensitivity must be less than or equal to 0.5. Hence, the expression for the 

required reaction time for asymptotic stability can be derived as: 

𝑡𝑖 ≤
(𝑙 − 1)𝑢𝑓

1−𝑚

2(1 − 𝑚)𝑘𝑗
𝑙−1 ∗

𝑢𝑖
𝑚

(
1
𝑘𝑖
)
𝑙 (18) 

Eq. (18) gives the formula to estimate the driver reaction time required for stability for each 

observation of flow, speed, and density. 

 

 Drop in Drivers Reaction Time Between Two Regimes 

Fitting a discontinuous flow-density model enabled the research team to investigate the drop in 

driver reaction time when the traffic state moves from the free flow (regime 1) to the congested 

flow regime (regime 2). If the reaction time described in Eq. (18) is estimated for a series of density 

values, the following curves are obtained.  

 



 

22 

 

 
Figure 3-3: A typical driver reaction time vs. density plot 

 

Figure 3-3 shows a typical reaction time vs. density plots. To investigate the relationship 

between crash rates and driver reaction time, selecting the appropriate reaction time is critical 

and the logic behind the selection is described here.  

Plotting this reaction time vs. density diagram for different locations revealed that the reaction 

time for the congested regime does not vary significantly. Moreover, the reaction time for a very 

low-density value (such as less than 20) may not have any significance as traffic stream barely 

follows the car-following model. On the other hand, if the transition regime is focused here 

(bounded by the vertical arrows in Figure 3-3), there are two reaction times for each density 

point within this regime. As each vehicle transfers from the free flow to the congested regime, 

the required driver reaction time also drops to get adapted to the change in traffic state. The 

research team hypothesizes that higher the drop in reaction time, higher the risk of getting 

involved in the target accident type. 

The two drops in reaction time shown in Figure 3-3 are considered as of particular interest. These 

two drops termed as ∆𝑡𝑟1⁡𝑎𝑛𝑑⁡∆𝑡𝑟2 are the drops in reaction time at the beginning and the end of 

the transition regime respectively. However, since the end of transition regime is sensitive to the 

break point density for regime 2 (38 pc/mi/ln in Figure 3-3), the primary focus is given on the drop 

at the beginning of the transition regime (∆𝑡𝑟1). 

 

3.3 TARGET CRASH TYPE 

Not all the freeway crashes can be related to the traffic characteristics or the reaction time 

derived from a traffic flow model (e.g., animal or debris related crashes). Moreover, some crash 

occurrence cannot be related to the car-following behavior of drivers (side-swipes). Since the 

estimated driver reaction time is based on the asymptotic car-following stability, rear-end crashes 

were selected as the target crash type. Moreover, given that the transition between flow regimes 

is more likely during heavy peak-hour travel, peak-hour crash rates were also analyzed. Peak-
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hour crashes are defined empirically in this study as the crashes that occur either from 6 am to 9 

am or from 4 pm to 7 pm. However, it is likely that the rear-end and peak-hour crashes are 

correlated. 

3.4 STUDY AREA AND DATA COLLECTION 

To test the relationship between crash rates and driver reaction time, side-fire radar data for 

different freeway locations near the Triangle Area of Raleigh, North Carolina is collected. The 

collected dataset contains the flow, speed, and lane occupancy for both directions of a freeway 

section for the year of 2013 in a time resolution of 5 minutes. Crash data for the segments 

surrounding the sensor locations from 2011 to 2013 is extracted from NCDOT’s accident archive 

and crash analysis tool called “Traffic Engineering Accident Analysis System (TEAAS)” (North 

Carolina Department of Transportation, 1988). 

To select the side-fire radar sensors and the associated segments for crash rate analysis, 

following conditions were considered. To classify the segments of the selected freeway 

locations, Highway Capacity Manual’s (Transportation Research Board, 2010) segmentation rule 

is applied. 

➢ To avoid mandatory lane changing phenomena of vehicles, only sensors that are within a 

basic freeway segment are selected 

➢ Google Earth’s (Google Inc., 2017) historical imagery tool was used to make sure that the 

selected locations did not experience any significant change in road geometry and 

surrounding conditions from 2011 to 2013.  

➢ The selected sensors’ dataset does not contain a significant number of outliers and hence, 

enables to fit the traffic model properly. 

➢ Each segment should be homogenous in terms of the number of lanes throughout their 

entire length. 

After filtering according to these criteria, in total 21 directional segments were selected. The 

locations of these 21 sensors are shown in Figure 3-4 below. The numbers show the tag of each 

sensor. 
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Figure 3-4: Location of the Sensors 
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4.0 ANALYSIS AND RESULTS 

4.1 FITTING A MACROSCOPIC MODEL TO SENSOR DATA 

 Application of CST, CDT, and SFDT 

This section summarizes the two stages of cleaning inconsistent, mixed state, and outlying 

observations. Figure 4-1 shows the percentage of data reduced by the initial thresholds (CST, 

CDT, and SFDT) and by robust regression. 

 

 

Figure 4-1: Percentage of data reduction in different sensors 

The most striking observation from Figure 4-1 is the higher percentage of data reduced by the 

robust regression for sensor 29963EB (~30%) compared to that for other sensors. Data exclusion 

by robust regression is lower than that by the initial filters for all other sensors. The highest 

proportion of data reduced by the initial thresholds is about 16% (29936WB). The proportion of 

outlier detection may also depend upon the health of the detectors. 

 

 Fitted Two-Regime GHR Traffic Stream Models 

A non-linear optimization tool embedded in a MATLAB (MathWorks, 1984) environment is used 

to develop the proposed model for the 21 sensors. The fundamental diagrams for randomly selected 

five sensor locations are shown in Figure 4-2 below. The final parameter values used to plot the 

flow-density and speed-flow fundamental diagrams shown in Figure 4-2 are the parameters 

resulting from convergence of the robust regression algorithm. The estimated values along with 

their standard deviations are listed in Table 4-1. Parameter values for all 21 sensors are provided 

in Appendix B. 
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Figure 4-2: Flow-density and Speed-flow diagrams for 5 sensors 
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Table 4-1: Parameter estimates for different sensors obtained from the fitted models for 

five selected sensor locations 

Sensor 

ID 

uf1 

(mph) 

kb1 

(pc/m/l) 

kj1 

(pc/mi/ln) 
l1 m1 

uf2 

 (mph) 

kb2 

(pc/mi/ln) 

kj2 

(pc/mi/ln) 
l2 m2 

23771 

WB 
63 39.9 606 3.8464 0.9967 474662 35.5 510 1.0374 0.7415 

23774 

WB 
63 37.2 69 11.2073 0.9707 537130 33.2 345 1.0347 0.7222 

23786 

EB 
65 40.4 251 2.4451 0.0056 100000 34.9 1001 1.0976 0.8298 

29953 

WB 
65 48.0 572 4.8622 0.9995 1447754 40.0 1800 1.1102 0.8943 

29995 

WB 
62 43.7 256 5.4517 0.9970 100000 38.7 1160 1.1101 0.8463 

 

In general, the plots in Figure 4-2 illustrate that the fitted models reasonably follow through the 

steady-state observations. Here, the value of the parameters that have physical interpretation 

needs to be discussed. The distance head exponent (l) and speed exponent (m) for both regimes 

do not have any straightforward physical meaning. Same statement applies to the jam density 

and free flow speed for the uncongested and congested regime respectively. From the fitted 

speed-flow plots in Figure 4-2, the free flow speed for the uncongested regime (ffs1) is evident. 

The density breakpoint for the uncongested regime (kb1) is less compared to the HCM default of 

45 pc/mi/ln for all but one (29953W). This parameter along with ffs1 are of importance for 

estimating the capacity of the segment at the sensor locations. According to the HCM default 

method, the capacity of a basic roadway segment varies between 2,320 to 2,350 pc/hr/ln for the 

given range of ffs1 (62-65 mph). However, the site-specific capacities appear from the plots in 

Figure 4-2 are apparently less for sensor 23771 WB and 23774 WB and more for sensor 23786 

EB and 29953 WB than the HCM defaults. The fundamental diagrams for all segments that are 

provided in Appendix A reveal that the model capacity deviates from HCM specified value for 

13 out of 21 sensors. The close agreement of HCM default capacity to only 13 sensors’ data 

underscores that the national average capacity values provided by HCM need to be calibrated 

with field data if high fidelity analysis is desired. 

The difference between the two density break points represents the overlap range. This range 

appears to be a unique characteristic for the five locations based on the proposed approach 

modeled. The fitted overlap in density varies from 2.5 to 8 pc/mi/ln across all sensors. This site-

specific modeling of overlap along with the drop-in capacity has many potential applications 

such as estimating pre-breakdown and queue discharge flow rate, identifying recurring freeway 

bottlenecks, etc. 

Jam density across all sensors varies within a wide range of about 229 to 4207 pc/mi/ln. These 

unusual estimates of jam density are resulted because of the absence of sufficient observations 

near jammed condition. Such unusually large jam density values interpret that the average 

vehicle length in the traffic stream can be as small as 1.26 ft., which is not physically possible. 

Although the reasonable limit of jam density specified in the HCM (150-270 pc/mi/ln) could 
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have been applied to the model as a constraint, it may impact the estimate of other parameters 

due to the lack of jammed observations. 

 

 Reaction Time Calculation 

Driver reaction time required to maintain stability is calculated using Equation 18. The parameter 

values obtained from fitting the model is applied to different density values and the two drops in 

reaction time are estimated as demonstrated in Figure 4-3. Similar plots are generated for the five 

sensors in Table 4-1. Values of the two drops in reaction time for all 21 sensors are provided in 

Appendix B. 

 

 

 

 

Figure 4-3: Reaction time and its drops during transition for five sensors 

It is apparent from these plots that the value of the two drops in reaction time is sensitive to the 

two density breakpoint values. Therefore, it is important to fit these breakpoints as well as the 
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overlap properly. Δtr1 which represents the difference in reaction time between the two regimes at 

a density equal to kb2 varies from 1.22 to 2.95 seconds. Δtr2  is the difference in reaction time 

between the two regimes at a density equal to kb1, and it ranges from 0.68 to 1.68 seconds. As the 

drop in required reaction time is estimated for all sensors, the remaining task is to analyze the 

crash data at these locations and to investigate the correlation of crash rates with these drops.  

 

4.2 ANALYSIS OF CRASH DATA 

Figure 4-4 shows the total, rear-end, and peak-hour crash rates for all the selected segments. It is 

clear that for some segments, rear-end or peak-hour crashes are the major crash type (23774WB, 

29927EB, 29927WB etc.). The lowest percentage of rear-end crash rate relative to the total crash 

rate is 14% (segment at sensor 23782EB).  

 

 
Figure 4-4: Total, rear-end, and peak-hour crash rates for different segments 

Another important observation from Figure 4-4 is that for many segments, the rear-end and peak-

hour crash rates are close to each other. However, for some segments, they are quite different 

(23773EB, 23782EB, 23782WB etc.). To check whether these two crash types are correlated or 

not, a statistical hypothesis test is conducted. The null hypothesis of the test is that the true 

correlation between these two parameters is equal to zero and the alternate hypothesis is that it is 

not. The test result gives a t-statistics=3.845, p-value=0.001, and Pearson Correlation 

Coefficient=0.66. The small p-value rejects the null hypothesis and the Pearson Coefficient value 

proves that there is a moderately strong correlation exists between these two crash rates. 

  

  Crash Rates vs. Drop in Reaction Time  

Figure 4-5 demonstrates the relationship between the rear-end crash rates and the drop in driver 

reaction times. The straight lines show the linear trend between these two parameters. 
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(a) 

 
(b) 

Figure 4-5: Rear-end crash rates vs. (a) ∆tr1, (b) ∆tr2 

 

From visual observation, it is evident that there is no correlation exists between the rear-end 

crash rates and ∆tr2. It could be because this drop in reaction time is sensitive to the selection of 

breakpoint density for the uncongested regime, which makes this predictor less robust to the 

outliers. On the other hand, a positive trend is seen in the rear-end crash rates vs. ∆tr1 plot. To 

find the details of this trend, a linear regression model is fitted and the results are shown in Table 

4-2 below. 

 

Table 4-2: Regression analysis for rear-end crash rates and ∆𝒕𝒓𝟏 

Residuals Minimum 1st Quartile Median 3rd Quantile Maximum 

-16.856 -6.504 -3.485 7.946 21.229 

Coefficients  Estimate Std. Error t-statistics Probability (>|t|) 

Intercept -2.685 9.485 -0.283 0.7802 

∆tr1 15.408 4.605 3.346 0.00339 ** 

Residual Standard Error 11.68 on 19 degrees of freedom 

Multiple R-squared 0.3708 

Adjusted R-squared 0.3376 

F-statistics 11.2 on 19 Degree of freedom 

p-value 0.0033 

 

From the regression analysis, it is evident that there is a strong correlation exists between the 

rear-end crash rates and ∆tr1. The coefficient of ∆tr1 is significant at a level of 0.01, where the 

intercept does not have much significance. However, the interpretation of the intercept term here 

does not have any meaning here since ∆𝑡𝑟1 >0 is true for any location.  

Figure 4-6 shows the variation of peak-hour crash rates with the drop in driver reaction times. 
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Figure 4-6: Peak-hour crash rates vs. (a) ∆tr1, (b) ∆tr2 

Visual observation and the R-square values shown in Figure 4-6(a) and 4-6(b) suggests that the 

variation of peak hour crash rates with ∆tr1 and ∆tr2 is similar to what is observed for rear-end 

crash rates. As it is shown above that peak-hour crashes are correlated with rear-end crashes, the 

correlation of peak-hour crash rates with ∆tr2 serves as an alternate validation of the hypothesis 

that rear-end crash rates are correlated with ∆tr2. 

 

4.3 SUMMARY OF THE FINDINGS  

The application of the proposed two-regime macroscopic model to the sensor data showed 

reasonable fits. The fitted parameters values deviated significantly from the values specified in 

the Highway Capacity Manual, which evidences the necessity of estimating site-specific values 

for free flow speed, density breakpoints, and capacity. The positive correlation of rear-end crash 

rates on the freeway segments with the drop in reaction time (Δtr1) signals that the change in 

traffic state may play a significant role behind the mechanism of rear-end crashes.   
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

Based on the analysis of the results obtained and discussed in Chapter 4, the key findings 

obtained from this study are summarized here. The first section of this chapter discusses the 

findings on fitting a two-regime GHR traffic stream model. Next, key results from the estimation 

of drop in driver reaction time and its correlation with crash rates are discussed. The limitations 

of the study and recommendations for future research are presented in the last section. 

5.1 RESULTS FROM FITTING THE MACROSCOPIC MODEL 

The study proposes a method for fitting the well-known Gazis-Herman-Rothery (GHR) 

macroscopic model. A discontinuity between the transition of the uncongested and congested 

regime is introduced which based the formation of the so-called inversed lambda shaped flow-

density diagram. Such discontinuity enabled the estimation of the drop in driver reaction time 

during the transition from uncongested to congested regime.  

Macroscopic speed and flow data were collected for the calendar year of 2013 from 21 road-side 

sensors located at three different Interstates near Raleigh, North Carolina. Mixed state 

observations are removed by applying thresholds on critical speed and density and a time series-

based threshold on speed data prior to fit the model. An iterative robust regression method is 

applied to remove remaining outliers. A non-linear optimization tool with an objective function 

of minimizing the sum squared error of flow was applied to the observed data. Two constraints 

justified by the Highway Capacity Manual (Transportation Research Board, 2010) were applied 

to fit the models properly. The transition regime observations were modeled based by contrasting 

their conformity with congested and uncongested regime model. The key results obtained from 

the model fitting part are- 

• The reduction of data by the initial filters varied across different sensors from 1.4% to 

15.8%. Although the percentage reduction by robust regression is comparatively less than 

that for 20 sensors (0.4-10.4%), the percentage is unusually high for the sensor 29956EB 

(30.3%). These percentages may depend on the health of the sensors. 

• The fundamental diagrams resulting from fitting the two-regime GHR model showed 

reasonable fits. The estimated free flow speed across 21 locations varied from a little over 

56 mph (29927EB) to 68 mph (23782W). The fitted transition states varied from 33 

pc/mi/ln to 48 pc/mi/ln, while the overlap or the difference between these ranged from 

2.5 (23787EB) to 8 (29953W) pc/mi/ln. With all these parameters having values within 

reasonable ranges, the jam density at the congested regime showed an odd characteristic. 

It spanned from 229 to 4207 pc/mi/ln which led to the interpretation that the average 

vehicle length in the traffic stream is too small. Other parameters (free flow speed of 

congested regime, jam density of uncongested regime, m, l), despite being important in 

fitting the models, do not have any physical interpretation. 
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• The calculation of driver reaction time for different density values revealed that the two 

drops in reaction time during the transition (Δtr1 and Δtr2) are sensitive to the two density 

breakpoint values. The value of Δtr1 and Δtr2 varied from 1.22 to 2.95 seconds and 0.68 to 

1.68 seconds respectively. 

5.2 RESULTS FROM ANALYSIS OF CRASH DATA 

Crash data for the segments surrounding the 21 sensor locations were collected for a three-year 

(2011-2013) period. Crash rates were calculated in 100 million vehicles-miles traveled. Key 

findings from analyzing the crash data and its correlation with the drops in driver reaction time 

are listed below- 

• Crash rates of the selected segments varied from 17 to 173 crashes per 100 million 

vehicles-miles traveled. The percentages of rear-end and peak hour crash rates diverse 

from 14% to 75% and from 33% to 82% respectively. The similarity of these two crash 

types led to a correlation analysis which revealed that a moderately strong correlation 

exists between them. 

• The drop in reaction time at a density equal to kb1 (∆tr2) did not exhibit any correlation 

with either total, rear-end, or peak hour crash rates. The reason could be that the reaction 

time at uncongested regime is not that stable and sensitive to the parameter estimates. 

• The drop in reaction time at a density equal to kb2 (∆tr1) showed a positive correlation 

with rear-end crash rates. A linear regression analysis evidenced that there is a correlation 

exists (adjusted R square of 0.34) between the rear-end crash rates and ∆tr1. The 

coefficient of ∆tr1 is significant at a level of 0.01. The intercept did not have much 

significance since ∆𝑡𝑟1 is non-zero for any location. 

5.3 RECOMMENDATIONS FOR FUTURE STUDY 

The positive correlation between crash rates and ∆tr1 obtained from this study cracked the 

window of future research on crash occurrence and traffic stream characteristics. However, the 

study has several limitations that need to be addressed prior to advancing research on this topic. 

The authors recommend addressing the following major issues for future research- 

 

• It is recognized by the authors that the first-stage removal of unwanted data points 

recommended in this study may remove some valid data points. Moreover, the selection 

of the threshold for this filter was somewhat arbitrary. In future, attempts will be taken to 

combine the two-stage data reduction process into a single robust process that is more 

efficient and consistent. 

• The jam density values obtained from fitting the model did not fall in a reasonable 

boundary and implied that the average vehicle length is too small. The authors believe 
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that this is occurring due to lack of data at a very high-density condition. Further research 

is required to resolve this issue. 

• The authors recommend conducting future studies on the roadway safety using a larger 

sample size of observation. A more diverse sample of freeway sites should be included in 

the analysis. As the first effort to rigorously and jointly estimate discontinuous traffic 

stream models, this study naturally focused on a limited sample of freeway sites to 

address the elements of complexity involved in the model fitting. 

• The nonlinear optimization technique used in this study may require an extensive period 

for computation if traditional license-based (e.g., Excel) or open source (e.g., R) software 

is used. Therefore, it is suggested to use MATLAB for this purpose given that a licensed 

version is available to the user. 
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APPENDIX A. FUNDAMENTAL DIAGRAMS OBTAINED 

FROM FITTING THE MACROSCOPIC MODEL 

 

 

Figure A - 1: Fitted flow-density diagrams 

 



 

40 

 

 

 

Figure A - 1: Fitted flow-density diagrams (Continued) 
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Figure A - 1: Fitted flow-density diagrams (Continued)  
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Figure A - 2: Fitted speed-flow diagrams 
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Figure A - 2: Fitted speed-flow diagrams 
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Figure A - 2: Fitted speed-flow diagrams 
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APPENDIX B. FITTED PARAMETER VALUES 

Table B - 1: Fitted parameter values for all 21 stations 

Station/Sensor 

ID 

Regime 2 Regime 1 
Δtr1 Δtr2 

uf kb kj l m uf kb kj l m 

23771WB 63.3 39.9 606.2 3.85 0.99 4.7E+05 35.5 510.1 1.04 0.74 2.46 1.68 

23773EB 58.8 44.3 246.0 5.55 0.99 1.0E+05 39.3 608.6 1.09 0.80 2.82 1.47 

23774WB 62.8 37.2 69.4 11.21 0.97 5.4E+05 33.2 344.7 1.03 0.72 2.95 0.78 

23775EB 67.8 39.6 196.0 6.09 0.99 1.0E+05 34.6 1808.3 1.17 0.91 2.01 0.84 

23782EB 67.7 41.0 473.1 4.40 0.99 1.6E+06 36.0 1426.3 1.05 0.83 1.34 0.68 

23782WB 68.1 41.0 447.7 4.19 0.99 6.8E+06 36.0 1289.3 1.04 0.83 1.72 0.81 

23785EB 61.8 41.6 289.3 6.95 0.99 1.0E+05 38.6 1044.9 1.11 0.85 1.47 0.90 

23786EB 63.8 44.0 427.7 4.51 0.99 4.3E+05 38.0 716.3 1.06 0.80 1.80 0.70 

23787EB 66.0 38.5 79.7 5.83 0.75 4.6E+05 36.0 416.5 1.03 0.70 1.22 0.73 

29926EB 62.9 42.0 399.9 2.97 0.95 3.4E+05 38.0 1306.6 1.12 0.88 1.67 1.15 

29927EB 56.4 41.7 129.8 9.33 0.99 1.2E+07 38.0 337.4 1.00 0.59 2.63 0.92 

29927WB 59.2 39.0 237.5 8.22 0.99 4.4E+05 35.0 641.3 1.04 0.76 2.67 0.70 

29936WB 67.1 42.4 183.0 3.06 0.79 2.9E+06 38.4 4207.0 1.07 0.88 1.33 0.96 

29953WB 65.3 48.0 572.0 4.86 0.99 1.4E+06 40.0 1800.1 1.11 0.89 2.19 0.70 

29956EB 62.4 40.2 1099.7 1.97 0.20 1.0E+05 36.2 1812.2 1.09 0.84 2.17 0.95 

29963EB 63.3 39.0 76.7 11.02 0.98 5.7E+06 36.0 918.0 1.03 0.78 2.25 0.55 

29963WB 61.7 41.5 146.0 6.72 0.99 6.2E+06 37.5 228.9 1.00 0.54 1.56 0.69 

29976WB 61.9 44.6 342.1 5.61 0.99 1.0E+05 41.6 1043.3 1.12 0.85 1.27 0.88 

29980WB 65.0 39.5 88.9 4.42 0.61 4.7E+05 35.0 465.8 1.02 0.68 1.51 0.68 

29980EB 62.0 38.6 81.5 10.37 0.99 4.5E+05 34.6 467.0 1.02 0.68 2.82 0.80 

29995WB 61.7 43.6 209.6 5.47 0.99 1.0E+05 38.6 2132.9 1.13 0.88 1.80 0.86 

 

 


