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EXECUTIVE SUMMARY 

Performance measurement estimates in the HCM 6th Edition are heavily relied upon by 

practitioners and decision makers in the planning, design, and operations of our transportation 

systems.  Despite their significance, limited guidance is available for properly collecting and 

applying field data to validate HCM predictions. In some cases it is difficult to obtain 

measurements (i.e., freeway density over a segment); in other cases there are inconsistent practices 

for determining measures (i.e., arterial travel speed). In addition to the HCM, microsimulation 

tools are frequently applied for traffic analysis, but guidance for field-measurement for calibration 

and validation of simulation-based metrics is similarly missing.  

The cost and/or lack of availability of field data has historically been a barrier for analysts to 

verify their results, in which cases HCM and simulation users rely on a “reasonableness” check 

based on visual observations and judgment. However, the continued advancement of automated 

data from detectors and probes has remarkably reduced the barrier associated with obtaining field 

data to compute performance measures. The advancement of automated traffic data has the 

potential to add significant value to analysts. Crisp and clear definitions are needed to ensure that 

field data are properly collected, applied, and evenly compared against HCM or simulation 

predictions for all facility types. 

Development of definitions and field-measurement techniques should be supported by real-

world case studies that compare field-to-model results for key performance measures across 

multiple facility types. The definitions and methods should be vetted and approved by the TRB 

Highway Capacity and Quality of Service (HCQS) committee and ultimately incorporated into the 

HCM. Similarly, simulation guidance through, for example, the FHWA Traffic Analysis Toolbox 

should consider field-estimation guidance. With new emphasis on performance measurements in 

the MAP-21 legislation, clear guidance and consistency in performance estimation is more 

important than ever. 

This research effort documents the field data collection technologies available for 

performance measurement as well as their use cases and limitations. The researchers identified 

freeway capacity as a performance measure with inconsistent measurement and application across 

the United States. Two applications of capacity were developed, the first addressing the difference 

in estimation methods for pre-breakdown flow and capacity used around the US and the second 

using  regression analysis to identify geometric and land use impacts on the time of day of freeway 

congestion. 
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1.0 INTRODUCTION & BACKGROUND 

 BACKGROUND 

Performance measurement estimates in the HCM 6th Edition (Transportation Research Board, 

2016) are heavily relied upon by practitioners and decision makers in the planning, design, and 

operations of our transportation systems.  Despite their significance, limited guidance is available 

for properly collecting and applying field data to validate HCM predictions. In some cases it is 

difficult to obtain measurements (i.e., freeway density over a segment); in other cases there are 

inconsistent practices for determining measures (i.e., arterial travel speed). In addition to the HCM, 

microsimulation tools are frequently applied for traffic analysis, but guidance for field-

measurement for calibration and validation of simulation-based metrics is similarly missing.  

The cost and/or lack of availability of field data has historically been a barrier for analysts to 

verify their results, in which cases HCM and simulation users rely on a “reasonableness” check 

based on visual observations and judgment. However, the continued advancement of automated 

data from detectors and probes has remarkably reduced the barrier associated with obtaining field 

data to compute performance measures. The advancement of automated traffic data has the 

potential to add significant value to analysts. Crisp and clear definitions are needed to ensure that 

field data are properly collected, applied, and evenly compared against HCM or simulation 

predictions for all facility types. 

Development of definitions and field-measurement techniques should be supported by real-

world case studies that compare field-to-model results for key performance measures across 

multiple facility types. The definitions and methods should be vetted and approved by the TRB 

Highway Capacity and Quality of Service (HCQS) committee and ultimately incorporated into the 

HCM. Similarly, simulation guidance through, for example, the FHWA Traffic Analysis Toolbox 

should consider field-estimation guidance. With new emphasis on performance measurements in 

the MAP-21 legislation, clear guidance and consistency in performance estimation is more 

important than ever. 

 RESEARCH OBJECTIVES 

The objectives of this research are to: 

1) Identify technologies available to collect traffic data for performance measurement. 

2) Document the use cases and limitations of the technology or collection methodology. 

3) Develop new techniques to compare and use disparate methodologies used in the United 

States for capacity and pre-breakdown flow estimation: 

a. Develop a comparison model to allow for agencies to compare output capacities 

from different capacity estimation methods. 

b. Develop a regression analysis of the time of day of freeway congestion to identify 

the impacts of geometrics and land use. 
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 PROCESS FLOW CHART 

Figure 1 shows the process flow for the research project, with two major new methodologies 

based on the literature search and technology documentation. 

 

 
 

Figure 1– The process flow of the research approach 

 REPORT ORGANIZATION 

This report is organized in 5 Chapters. Following this introductory chapter, a review of the 

technology options and their use cases and limitations for performance measure data collection is 

given in Chapter 2. Chapter 3 documents a new comparison model developed to allow agencies to 

compare output capacities from different capacity estimation methods. Chapter 4 focuses on a new 

prediction model of the time of day of congestion based on geometric and land use factors. Chapter 

5 gives overall conclusions and recommendations for future work. 
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2.0 LITERATURE REVIEW 

 DATA COLLECTION TECHNOLOGIES AND APPLICATIONS 

A total of seven technologies were identified in use by agencies in collecting performance 

measures. Ten performance measures were identified from the HCM and simulation that could 

be collected from at least one of the technologies. Table 1 shows the combination of each 

technology and the potential for use in performance measurement. The following sections 

provide documentation and examples of each technology. 

 

Table 1 Data Collection Technologies and Use Cases 

 

 BLUETOOTH 

2.2.1 Technology Description 

Bluetooth devices are a standard technology used for short-range, low power, wireless data 

transfer. It can make personal area networks, enabling communication with other fixed or mobile 

devices by using radio signals, specifically using short-wavelength UHF radio waves in the 

unlicensed industrial, scientific, and medical (ISM) band from 2.4 to 2.485 GHz (BlueMAC 

Analytics, 2015). It also involves technologies concerned with a spread spectrum, frequency 

hopping, full-duplex signal at a nominal rate of 1600 hops/sec. Currently, the 2.4 GHz ISM band 

is available and unlicensed in most countries (Bluetooth SIG, 2015). 

Data Source 

1. 

Bluetooth 

Probes 

2. 

Inductive 

Loop and 

Weigh in 

Motion 

3. 

Microwave 

Radar 

4. 

Video and 

ALPR And ALP 

5.  

Automated 

Vehicle 

Identification 

6.  

Probe Vehicle 

Fleets 

7.  

Instrumented 

Vehicles 

1. 

Speed 

Spot        

Segment        

2. Travel Time        

3. Capacity        

4. Flow        

5. Occupancy        

6. Demand        

7. % Trucks        

8. Density        

9.Queue        

10. O-D        
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2.2.2 Applications in Performance Measures 

A Bluetooth data source has many benefits and uses, as it can monitor road speeds and travel 

times in real-time. From Traffax’s BluFAX monitoring sensors, efficient and reliable real time 

logging, processing, display and reporting of data is able to be provided (Traffax, 2015). According 

to the BlueTOAD Company, the data is archived for robust analysis of not only travel time and 

speed but also speed trends, origin-destination, route patterns, trip length analysis and signal timing 

studies, MAC address detection counts and so forth (Trafficcast, 2015).  Figure 2Error! 

Reference source not found. shows the BluFAX concept with device and the installation and 

operation of the Bluetooth device, BlueTOAD can be seen in Figure 3. 

 

 
Figure 2 The BluFax Concept & Device 

 

 
Figure 3 BlueTOAD 

 

With respect to performance measure for speed, Brian Portugais performed adaptive traffic 

speed estimation research to validate collected data from Bluetooth based space-means speeds by 

comparing the results with data collected radar based sensors (Portugais, 2014). Figure 4 shows 

the results of Bluetooth validation in one case study. Steven focused on experimenting with 

Bluetooth-based speed data in order to check validity on the rural freeway. He mentioned that 

Bluetooth data collection is feasible on a rural freeway because it has confidence with a high 

enough sample size during daytime hours, but not overnight hours (Click, 2012).  
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Figure 4 Bluetooth validation one-step ahead forecasts (Click, 2014) 

According to several company websites, travel time reporting is a key factor in using 

Bluetooth devices in the traffic environments. The BluFax portable and real-time systems are being 

used to collect data to drive travel time information all over the world. It provides cost-effective, 

accurate travel time data on freeways, as well as arterial roadways. There are several examples to 

apply Bluetooth. In the I-95 Corridor Validation Study, the BluFax data offered a baseline for 

validating GPS data acquired from INRIX and it was also used to evaluate signal timing changes 

along arterials (Traffax, 2015). BlueMAC created intelligent travel time reports automatically with 

detailed graphs of multiple variables, and tables with specific data points, and it also enable to 

access this data and save in a CSV format (BlueMAC Analytics, 2015). Qiao performed a study 

on stochastic freeway applications with short-time travel time prediction by using real time 

Bluetooth travel time data (Qiao, 2013). Porter tried to assess appropriateness with five different 

kinds of antennas in order to improve the Bluetooth-based travel time data collection system 

(Porter, 2013).  
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Figure 5 The BlueMAC reports: Origin-Destination 

Traffax Company mentioned that while the concept of travel time and origin-destination 

applications is similar, the approach method for origin and destination applications has to fulfill 

requirements of each study. The BluFax device and BluSTAT software deal with various study 

cases like the following: Interchange studies, Freeway Corridor Origin-Destination Studies, 

Freeway-Arterial Corridor Studies, Area-wide, large-scale origin-destination studies, Cordon 

Studies, High-density urban environments, Pedestrian Origin-Destination Studies. The BlueMAC 

provides information like: how many trips were made to each location, the percentage of the traffic 

flow that went to each destination, and much more. As you can see from Figure 5, BlueMAC 

support data for Origin-Destination studies that can be reported in a variety of graphs and tables, 

it also provides accessible data in a CSV format like travel time. 

 INDUCTIVE LOOP DETECTOR & WEIGH IN MOTION 

2.3.1 Technology Description 

There are many studies and trials in terms of parameter measure based on loop detector. 

However, because loop detector has some deficiency like inaccuracy of data although it can cover 

almost type of vehicles, recently fusing data combined loop detector and probe data or Bluetooth 

have performed by many researchers and engineers.  
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Figure 6 Weigh in motion site for traffic data collection (KISTLER) 

 

2.3.2 Applications in Performance Measures 

Figure 6 shows the KISTLER weigh in motion technology. The Kistler loop detector company 

mentioned that loop detector can provide not only monitoring traffic real time but also key vehicle 

data like vehicle weight and imbalance, axle loads and distances, vehicle speed and driving 

behavior and much more through their brochure of web-site (Kistler, 2015). In order to improve 

freeway traffic speed estimation, Bachmann explored several techniques for loop detector with 

probe vehicle as a fusing data (Bachmann, 2013). Loop detectors cover almost all the vehicles with 

large amount of sample size but it is not imprecise which have some error data. Otherwise, the 

quality of probe vehicle data is excellent but it is only a small portion of the vehicles. This is 

because he used concept of fusing data to compensate their defects in order to improve assess 

performance measure for speed.  

 

 
Figure 7 Kapsch Weigh in motion 
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Figure 8 EMX industries Loop Detect Devices 

 

Furthermore, some company website deal with both technology and devices with respect to loop 

detectors and weigh in motion. EMX Industries Company introduce many devices focusing on 

loop detector, their latest vehicle detector provides functions for automatic sensitivity boost 

(ASB), delay, fail-safe/fail-secure and infinite and normal (5 min.) presence (EMX, Inc., 2015). 

From Figure 7, Kaspsch WIM Company concentrated on weigh in motion technology, they can 

measure and provide information not only various weight features (trailer, axle, unbalanced 

weight etc.) but also vehicle features such as vehicle speed, vehicle class, unique vehicle number 

and so on. They also supports additional applications like Automatic Number Plate Recognition 

(ANPR) cameras, Laser-scanner Vehicle Detection and Classification, surveillance cameras, 

section control and speed enforcement (Kapsch, 2015). 

 MICROWAVE RADAR 

2.4.1 Technology Description 

The Remote Traffic Microwave Sensor (RTMS) operates by a frequency modulated 

continuous wave radar unit, as it transmits electromagnetic energy at the X-band of 10.525 GHz. 

As shown in Figure 9, microwave radar sensors installed roadside transmit energy toward an area 

of the roadway from an overhead antenna (FHWA, 2007). When a vehicle enter in the area of the 

antenna beam, the part of the transmitted energy is reflected back towards the antenna and the 

receiver gets information like the vehicle’s volume, lane occupancy, speed, and so on. 

 
Figure 9 Microwave radar operation 
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Figure 10 Wavetronix 

 

 
Figure 11 Vehicle-Based Detection & Dual Radar (Wavetronix) 

 

2.4.2 Applications in Performance Measures 

The microwave radar device in the company of Wavetronix, SmartSensor HD, can detect 

performance measures such as average speed, count, occupancy, 85th percentile speed. Figure 10 

and Figure 11 show operation of Wavetronix. One of their products is dual radar, which also 

provides a highly accurate measurement that is then used to calculate each individual vehicle's 

speed (Wavetronix, 2015). To be more specific, there are two categories in terms of measured 

quantities, per-lane interval data and per-vehicle data. The former includes volume, average speed, 

occupancy, classification counts, 85th percentile speed, average headway, average gap, speed bin 

counts, direction counts, and the latter includes speed, length, class, lane assignment, range. 

Furthermore, many companies including the IRD (international road dynamics) company provide 

applications such as following: actuated intersection control, stop-bar and mid-block detection, 

freeway traffic management and incident detection systems, ramp metering, queue detection and 

work zone safety systems, permanent and mobile traffic counting stations, traveler information 

and travel time prediction, enforcement of speed, and red-light violation (IRD, Inc., 2015).  

In another research paper, Nale attempted to analyze traffic flow features experimenting with 

expressways in Beijing by using floating car data and remote traffic microwave sensors (RTMS) 

data. Through several tests, demonstrated and performed comparative analysis in terms of traffic 

flow characteristics are studied in the relationship between occupancy and density, relationship of 

flow-speed-density, and the relationship between FCD speed and RTMS speed (Zhao, 2009). 

Coifman also had much research related to RTMS measures, set out to evaluate the performance 
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of different kinds of four loop sensors and RTMS (Coifman, 2006). After that, he estimated 

aggregate data from freeway detectors between RTMS and loop detector with respect to both 

occupancy and flow (Coifman, 2005). It also proved that the speed measurement accuracy of 

RTMS can achieve up to 95%, which is higher than that of a single loop detector (Yu, 2013). This 

paper shows that the accuracy percentages for volume, speed, and classification measurements by 

using those sensing technologies with various conditions and parameters. Consequently, 

microwave radar sensors provided suitably accurate traffic volume and speed detection, but their 

performance in vehicle classification was not adequate (Yu, 2013). 

 VIDEO AND LICENSE PLATE RECOGNITION (LPR) 

2.5.1 Technology Description 

Video cameras and License Plate Recognition (LPR) are widely used in  various real-life 

applications, such as automatic toll collection, traffic law enforcement, parking lot access control, 

and road traffic monitoring (FHWA, 2007; FHWA, 1998). An LPR algorithm identifies a vehicle’s 

license plate number from a photo or photos taken by a camera. The algorithm includes a 

combination of a number of techniques, such as object detection, image processing, and pattern 

recognition. LPR is also known as automatic vehicle identification, car plate recognition, 

automatic number plate recognition, and optical character recognition (OCR) for cars. 

Video detection and LPR technologies are provided by various vendors (Image Sensing, 

2015). These technologies can provide real-time traffic measurement and data collection over a 

wide area. In typical applications, a number of zones are defined on the images or on the field of 

view of the camera. Depending on the configuration and purpose, video detection can provide per-

lane presence as well as volume, occupancy, speed and classification information for the specified 

zones.  

 

 
Figure 12 IZ100series ALPR Camera System (INEXZAMIR) 
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Figure 13 IZ500series ALPR Camera System (INEXZAMIR) 

 

2.5.2 Applications in Performance Measures 

Video image processing enables extracting useful information for traffic operations and 

management. On arterials, video detection is commonly used at signalized intersections instead of 

the traditional inductive loops to provide the needed sensing for actuated and adaptive signal 

operations. On freeways, surveillance cameras provide real-time feed to traffic operations centers 

to support incident response and other operational decisions.  

For performance measurements, through video image processing, it is possible to classify 

vehicles, and estimate speeds, flow, and density. Accuracy of these estimates depends on the 

quality of the video (e.g., resolution, frame rate) and the complexity of the image processing 

algorithms. To obtain reliable results, image processing algorithms need to be calibrated for the 

particular field conditions and camera position and angle. If LPR is implemented, it is possible to 

estimate OD flows and travel times between two camera locations. This can be accomplished by 

matching the license plates observed at two locations. It is also possible to track individual vehicles 

as they progress within the field of view by tracking their color fingerprints or signatures (as it was 

done with the NGSIM datasets). Tracking individual vehicles allows estimating additional 

information such as lane changes, travel times, and turning movements.  

Of course, the measurement of these traffic flow parameters are possible for the road segments 

within the field of view of the cameras. Obstructions, such as road geometry, vegetation and large 

trucks, may block the view and detection of traffic flow or vehicles. In addition, bad weather 

conditions may degrade the quality and reliability of the video data. 

 AUTOMATED VEHICLE IDENTIFICATION 

2.6.1 Technology Description 

AVI systems permit individual vehicles to be uniquely identified as they pass through a 

detection area. Although there are several different types of AVI systems, they all operate using 

the same general principles. A roadside communication unit broadcasts an interrogation signal 

from its antenna. When an AVI-equipped vehicle comes within range of antenna, a transponder 

(or tag) in the vehicle returns that vehicle’s identification number to the roadside unit. The 

information is then transmitted to a central computer where it is processed. In most systems, the 

transponder and reader/antenna technology are independent of the computer system used to 

manage and process the vehicle identification information (IRD, Inc., 2015; Traffic Tech, 2015). 
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2.6.2 Applications in Performance Measures 

Obvious applications of AVI include travel time and OD estimation between two locations 

where the (tag) readers are installed. Since not all vehicles carry tags or transponders, the measured 

attributes will be for a sample of the traffic. To the extent how well that sample represents the 

overall traffic is important to understand. For example, if only trucks carry transponders then, their 

travel times may not be generalizable to the rest of the traffic. In general, the higher the percentage 

of the vehicles equipped with transponders the better and more reliable the estimates become. 

Figure 14 and Figure 15 show widely used transponders for traffic and toll management which are 

produced by TagMaster and Confidex, respepectively.  

Eventually, faster and smoother traffic flow to reduce congestion is mainly benefit. There are 

some attempts in some research paper, Pérez et al. performed experiment in order to get proper 

speed with signals various options (Perez, 2010) and Lujaina et al. deal with how to prevent over 

speeding violations by using RFID and Global System for Mobile Communications (GSM) 

(Lujaina, 2014).  

 
Figure 14 LR-6XL reader (TagMaster) 

 

 

Figure 15 RFID (CONFIDEX) 

 

 PROBE VEHICLE FLEET DATA 

2.7.1 Technology Description 

Many companies carry out and provide probe vehicle data as a type of analysis, so consumers 

are available to get useful traffic data from named INRIX, Here.com, TOMTOM, RITIS and so 
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on. Additionally, there are some research fusing data between probe and loop detector data, mainly 

dealing with speed factor in terms of estimating and comparative analysis.  

In the case of INRIX, it collects trillions of bytes of information about speed based on over 

250 million real-time mobile phones and various vehicles including connected cars and fleet 

vehicles equipped with GPS locator devices. The data collected is processed in real-time, creating 

traffic speed information for major freeways, highways, and arterials across North America, as 

well as much of Europe, South America, and Africa. Figure 16 shows various types of probe 

vehicle sourcing with the information of events. 

 

 
Figure 16 INRIX Connected Driver Network 

Recently, the Here introduced new technologies like the traffic-jam warning system, called 

Traffic Safety Warning, and an interface, named Sensor Ingestion Interface Specification. The 

former systems alerts the driver with a proper time period by updating every minute to react to the 

event like a traffic jam ahead. Plus, the Here also works in the field of automated vehicles to 

determine HD Map data for manufacturers when testing their vehicles. The highly accurate 

mapped data of private test tracks provides these cars with a reliable navigation system to 

complement data collected from on-board sensors. HD Map data is also highly accurate, with 

accuracy levels of 10 to 20 centimeters, and it makes approximately 2.7 million changes to its 

global map database every day (HERE, 2015). 
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Figure 17 Congestion Scan by INRIX 

 

 
Figure 18 INRIX System Monitoring Dashboard 

 

2.7.2 Applications in Performance Measures 

INRIX can archive and provide real-time traffic data based on one-minute intervals. This data 

can predict speed with the impact of special events before, during, and after an event as shown in 

Figure 17 and Figure 18. Speed positions can also be analyzed to determine the average speed for 

all significant roads to accurately map and quantify the extent of recurrent congestion (INRIX, 

2015). By using this INRIX data, Kim carried out comparing INRIX with loop detector data in 

order to discover probe data features, the pros and cons by using speed performance measure (Kim, 

2014). Bachmann also dealt with fusing data with loop detector data and tried to prove the 

developing accuracy of data to establish the true traffic speed. In order to this, the microsimulation 

model of a major freeway in the Greater Toronto Area was used. As a result, in order to get reliable 

data, we need to consider following this; the most data, depending on the technique, the number 

of probe vehicles and the traffic conditions (Bachmann, 2013). INRIX have descriptions that 

origin-destination analysis can enable the reduction of cost and complexity, if the accuracy of data 
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and reliability of information using GPS data are improved with a network of more than 250 

million vehicles and devices (INRIX, 2015). INRIX also possible to provide how many vehicles 

pass a spot by time of day, day of week and actual vehicle counts on a specific day. Additionally, 

Abbas presents two models to calculate traffic control delay based on synchronized Bluetooth and 

global positioning system (GPS) probe vehicle data (Abbas, 2013). 

 INSTRUMENTED VEHICLE DATA 

2.8.1 Technology Description 

The Global Positioning System (GPS) originally developed by the Department of Defense for 

tracking of military ships, aircraft, and ground vehicles. However the usage of GPS has been 

expanded far beyond original expectations. There are civilian applications for GPS in almost every 

field, such as surveying, transportation, natural resource management, agriculture, etc. Probe 

vehicles are equipped with the GPS to monitor location, direction, and speed information (FHWA, 

1998).  

Many smartphones in the market integrated with a GPS. However GPS sensor has several 

limitations including low accuracy of GPS in urban areas with tall buildings because of the multi-

path interference (Parkinson, 1996), low precision of GPS localization, and high-power 

consumption when the GPS is in use (Ballantyne, 2006; Raskovic, 2007; Simjee, 2005). Because 

of this high-power consumption, running an application that relies on the continuous use of GPS 

receiver depletes the phone battery quickly. However, the GPS can be turned on occasionally for 

a very short duration (e.g., one-two seconds) to locate the vehicle in a transportation network or a 

network link whereas the accelerometer data can be collected continuously to estimate when the 

vehicle comes to a stop.  

For the most part, the use of smartphones as a mobile platform for sensing traffic conditions 

on the roadways has been limited to the GPS data (White, 2011; Changepoint, 2015; Mohan, 

2008). However, recently, data from accelerometer and other motion sensors have been utilized 

for the purpose of identifying the travel mode of the phone user. Researchers build models to 

predict various modes of travel such as driving a car, riding a bicycle, taking a bus, walking, 

running, riding a metro, riding on light rail, and riding a train (Manzoni, 2010; Lester, 2008; 

Jahangiri, 2014). Travel modes having very similar sensor data, such as driving a car and riding a 

bus, can increase the classification error (Jahangiri, 2014). Acceleration data are generally used 

together with GPS data in mode detection (Feng, 2013). Some recent studies also incorporate other 

sensors data such as gyroscope (Jahangiri, 2014). Using different sensor data in combination with 

GPS have proven to yield more accurate results in these studies.  

2.8.2 Applications in Performance Measures 

The advantages in using GPS in probe vehicles include relatively low operating costs after 

initial installation, and continuous collection of position and time data along the entire vehicle 

trajectory. The main disadvantage of GPS is occasional signals lost in urban areas due to large 

buildings, trees, tunnels, or parking garages. Therefore, vehicle speed can’t be calculated. In Figure 

19, sample raw GPS and OBD speed data for a 25-minutes trip is shown. As seen in the figure, at 

some points GPS speed suddenly drops to zero while vehicle is moving at high speed as indicated 

by the OBD speed. In Figure 20, small circles show the vehicle position for a short duration while 
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the vehicle waiting in a queue at a traffic signal. Although the vehicle is stationary there is variation 

in the raw GPS coordinates. In the picture, each small circle represents a raw GPS data point 

collected at 1 Hz and different colors represent different cars. Because of these potential 

inaccuracies in raw GPS data need to be filtered appropriate interpolation techniques should be 

applied to minimize the errors.  

 

 
Figure 19. Speed comparison with GPS and OBD 

 

 
Figure 20. GPS Location error 

 FREEWAY CAPACITY AND PRE-BREAKDOWN FLOW 

2.9.1 Definition of Breakdown 

Previous researchers have used several different definitions for the “breakdown” 

phenomenon. The term “breakdown” on a freeway is typically used to describe the transition event 

of traffic from a free flow speed (near or at the posted speed limit) to congestion. Freeway 
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breakdown is currently defined as the occurrence of one of the following: speed below a pre-

specified threshold, variable speed threshold, or a sudden drop in speed (Aghdashi, 2015). 

With respect to the first definition (speed below a pre-set threshold), the thresholds have also 

varied with the researcher. Graves et al. (1998) and Okamura et al. (2000) suggested that 

breakdown occurs when the speed is less than 30 mph during five consecutive one-minute 

intervals, when the speed is lower than 25 mph, or the queue length exceeds 1 km (0.62 miles) for 

a minimum period of 15 minute period. Brilon (2005) used a threshold speed of 70 km/h (43.5 

mph) on German freeways.  

With respect to the second definition (variable speed threshold), Aghdashi (2015) defines 

freeway breakdown is defined as a speed reduction of more than 25% below the free flow speed 

for at least 15 minutes, i.e., 75% of free flow speed is variable speed threshold.  

With respect to the third definition (sudden speed reduction), Persaud et al. (1998 and 2001) 

defined breakdown as a sharp decrease in flow and speed at a downstream ramp segment for the 

minimum period of 5 minutes. However, Kuhne et al. (2006) suggested that breakdown should be 

defined using three requirements: traffic flow remains more than 1000 veh/hr/ln, more than 10 

mph speed reduction, and below the speed threshold of 46.5 mph. Recently, Elefteriadou et al. 

(2014) defined a breakdown as a sharp drop of minimum speed of 10 mph for at least 5 minutes. 

Many researchers have also attempted to define breakdown using the concept of occupancy 

and features of flow rates. Elefteriadou (2003) proposed a concept of breakdown related to three 

different flow rates (the maximum pre-breakdown flow, the breakdown flow, and the maximum 

discharge flow). In addition, Elefteriadou concluded that breakdown flow is lower than the 

maximum flow on both pre-breakdown and discharge condition. To identify breakdown, Jia (2010) 

applied not only a single speed threshold, but also a density threshold based on the level of service. 

Amjad (2013) suggested the concept of mature or immature breakdown, formulating the change 

of flow rate as negative or positive, and increasing or decreasing. Recently, Song (2015) clearly 

defined the terms of breakdown (recurrent and non-recurrent), bottleneck, and congestion by probe 

vehicle data. However, the definition of breakdown is still not clear, due to the many methods used 

to study it, thus ongoing research into the concept of congestion in the transportation is crucial due 

to the fact that congestion is a serious issue. 

2.9.2 Characteristics of Breakdown 

2.9.2.1 Breakdown Probability Model 

Research on breakdown is closely associated with freeway capacity and has contributed to the 

development of capacity. Recently, researchers have realized that breakdown and capacity are 

stochastic in nature. Elefteriadou (1995) developed a probabilistic model for breakdown at 

merging section, which measures the impact of ramp-vehicle clusters on the probability of 

breakdown activation. Lorenz and Elefteriadou (2001) analyzed speed and volume data collected 

at two freeway bottlenecks in Toronto to develop a breakdown probability model, and found that 

the highest volume appears immediately before a breakdown, and that the flow rate increases with 

the probability of breakdown. Kondyli (2009) suggested performance measures of lane changes 

and behavior, and showed that these have a significant impact on occurrence of breakdown when 

a ramp merging section occurs. Geistefeldt (2011) proposed that capacity design is influenced by 

a specific percentile of the breakdown probability, using a comparison of conventional capacity 
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and stochastic capacity as proof of the concept. Aghdashi (2016) suggested a parameter defined as 

the "Acceptable Breakdown Rate" through the use of a pre-breakdown flow rate distribution and 

sufficiently large breakdown samples. Shojaat (2016) provided a new stochastic performance 

measure called “Sustained Flow Index (SFI)” which accounts for the stochastic nature of capacity. 

Geistefeldt, Aghdashi, and Shojaat used the Weibull distribution to develop their breakdown 

probability model. 

2.9.2.2 Identifying Breakdown 

Researchers have proposed several methods to identify breakdown and bottleneck: the 

plotting cumulative curve, wavelet transform method, and contour maps of the spatiotemporal 

status of congestion. Cassidy and Bertini (1999) demonstrated the use of transformed cumulative 

curves, including the vehicle arrival number and the cumulative occupancy with time, which 

described critical traffic features of bottleneck flows as measured by detectors and breakdown 

activation time information. Sarvi et al. (2007) studied the discharge flow rate under congestion 

and the average time in queueing status (the latter obtained by plotting the start and end times of 

breakdown cumulative curves with vehicle count versus time). Zheng et al. (2011), using the 

wavelet transform (WT) method, identified a variety of features such as the location of an active 

bottleneck, the activation time of congestion at an upstream sensor location, and the start and end 

of the transition from free flow to congestion. Song et al. (2015) suggested historic congestion 

contour map using INRIX data on link-based speed from vehicle probes, created the average 

historic congestion index (AHCI) for identifying a recurrent bottleneck, and provided useful 

information on congestion status via the spatiotemporal pattern. 

2.9.3 Breakdown Prediction Model in Planning Level 

2.9.3.1 Traffic Prediction Techniques and Statistical Model 

The two most-often used approaches for traffic prediction are: simulation models and data 

mining techniques. Clark (2003) used a multivariate extension of a non-parametric regression 

simulation model to predict the state of traffic based on the actual traffic data from London 

motorways. Ben’s (1998) mesoscopic simulator (DynaMIT) provided traffic prediction and travel 

guidance using the trajectories of individual vehicles to simulate overall traffic data. Yuan et al. 

(2011) suggested a Cloud-based system for computing optimal driving routes and predicted future 

traffic conditions by using historical traffic patterns, including taxi trajectories.  

Data mining techniques have been developed to predict traffic condition based on real-time 

datasets, often (due to the increase in accessibility of real-world data) in conjunction with statistical 

models. Box and Jenkins’s (1970) ARIMA (Auto-Regressive Integrated Moving Average) time 

series model has been widely used in traffic prediction. Williams et al. (1998) developed a model 

which integrated ARIMA and exponential smoothing (ES) models. Ishak (2004), Van Lint (2002), 

and Park (1998) used a neural network (NNet) model to predict traffic parameters such as speed, 

travel time, and traffic flow. Pan et al. (2012) studied traffic prediction technique using the real-

world data on the road network collected from LADOT (Los Angeles Department of 

Transportation). The use of ARIMA, NNet, ES, and HAM (Historical Average Model) models has 

improved (by about 70%) the accuracy of traditional short-term and long-term average speed.  

Qi et al. (2013) suggested the use of a basic stochastic approach at the macroscopic level of 

the freeway for short-term traffic speed prediction during peak time. Qi and colleagues, using 
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speed transition probability data based on real world traffic data for a six-year period from a 38 

mile segment of the I-4 in Orlando, showed that the transition probabilities could be categorized 

into cumulative negative/positive transition and expected values, and fitted using logistic and 

exponential models. Based on their work, Qi et al. suggested that future research should use 

probabilistic approaches rather than the conventional deterministic approaches. 

Even though many attempts of traffic prediction are performed, these are limit to 

methodological approach without sufficient sample size. The conceptual traffic prediction models 

have studied, however, it would be important to develop a prediction model for breakdown and 

traffic congestion specifically, and these are as follows. 

2.9.3.2 Breakdown Prediction Model 

Accurate prediction of breakdown is an increasingly significant research area in the field of 

transportation due to the numerous economic, environmental and social losses caused by 

congestion.  

Graves, T. (1998) used CART (Classification and Regression Trees), a tree-based classifier 

of key factors such as speed and occupancy, to predict whether a breakdown will activate after five 

or ten minutes. Dong (2009) constructed a breakdown prediction model for travel time and 

reliability based on a transition probability matrix of Markov Chain data and real-world 

measurements. Dong’s model predicted not only the probability of flow breakdown but also the 

resulting flow rate. Kondyli (2013) developed a breakdown probability model (BPM) using 

lifetime statistics data to identify breakdown, to assess the breakdown location, and to predict 

speed and flow. Kondyli used separately sections of freeway and ramp to predict breakdown 

probability. Kondyli recommended that any new traffic operator or system should be closely 

located in the merge area and suggested that speed drop is a better performance measure than other 

factors (e.g., occupancy, volume-occupancy correlation). 

Given these circumstances, researchers have concentrated on aspects of characteristic and 

methodology of breakdown on prediction. However, the author have a motivation through review 

materials; it needs for additional prediction steps with wider perspective as a planning level based 

on methodologies from previous research and ITS (Intelligent Transportation System) archived 

data which is collected from RITIS, HERE, and PeMS. 

2.9.4 Freeway Capacity 

Researchers have used breakdown events to develop freeway capacity estimation models with 

different definitions for capacity. The HCM 6th Edition (TRB, 2016) defines capacity as the flow 

rate at which the cumulative probability of breakdown is 15%. Further, the HCM recommends a 

binned Least Squares estimate of a Weibull distribution using observations of free flow volumes 

and pre-breakdown volumes to establish the breakdown probability distribution (Aghdashi, 2016). 

One major limitation to this methodology is the fitting of binned data leads to inconsistent 

distributions near the capacity estimate. This methodology uses speed dropping below 75% of the 

free flow speed to identify breakdown events. 

The second methodology identified is used by the Florida DOT to measure capacity where 

fixed sensors are available (Kondyli, 2013). This method uses only flow observations from the 

pre-breakdown periods and estimates capacity as the 85th percentile of observed pre-breakdown 

flows. It is important to note that this percentile cannot be directly compared to the HCM 
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probability as the HCM distribution includes both uncongested and pre-breakdown observations. 

In this method, breakdown events are identified as a drop in speed of at least ten miles per hour 

within a ten minute period.  

The final methodology was developed by Shojaat et al. (2017) based on initial research in 

Germany. The methodology defines the Sustained Flow Index (SFI) as the product of the 

breakdown probability distribution and the flow rate. The SFI was not initially developed for 

capacity analysis but rather for identification of optimal flow rates for planning or traffic 

management. In addition to the optimal value, it is also possible to identify the expected value 

which the authors indicate may be close to theoretical capacity. Breakdowns are identified as speed 

drops below 70 kilometers per hour, a threshold calibrated based on flow observations on German 

expressways.  
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3.0 COMPARISON OF FREEWAY CAPACITY AND PRE-

BREAKDOWN FLOW ESTIMATION METHODS 

 METHODOLOGY COMPARISON 

A total of three breakdown definitions and three capacity estimation methods were identified 

in the literature for comparison. The methodologies are listed below based on the source in Table 

2 as identified in the literature review in section 2.9.4. 

 

Table 2 Breakdown and Capacity Definitions 

Source Breakdown Definition Capacity Definition 

Highway Capacity 

Manual 

Speed drops below 75% of 

Free Flow Speed 

15% Breakdown Probability from 

Weibull Distribution 

Florida DOT 

(Kondyli, 2013) 

Speed drops 10mph within 

10 minutes 

85th Percentile Pre-breakdown Flow 

Rate 

SFI (Shojaat, 2017) Speed drops below 70 km/h 1) Maximum Sustained Flow Index 

2) Expected Value of SFI 

In order to test the differences in both breakdown definitions and capacity definitions and their 

impacts on the final capacity estimate, a full factorial study was performed using every 

combination of breakdown and capacity definition, resulting in nine final capacity estimates for 

each study location.  

 DATA SOURCES 

A total of 14 recurring bottlenecks were identified through speed analysis around the US. Data 

were collected for one year for each site as well as summary information on the bottleneck.   
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Table 3 shows the summary information for the 14 sites including the number of breakdown 

events observed and other geometric information. Speed and flow observations were collected 

from microwave radar and inductive loop sensors located upstream, within and downstream of the 

bottleneck to ensure the observed breakdowns were not due to spillback from other downstream 

events. Each 15 minute observation of speed and flow was classified into either 1) uncongested, 

2) pre-breakdown, or 3) post-breakdown flow. 
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Table 3 Capacity Comparison Site Descriptions 

 

 ANALYSIS AND RESULTS 

After running the nine combinations of breakdown and capacity methods on each dataset, the 

output capacities were compared. Figure 21 shows the HCM capacities for the study sites based 

on each of the breakdown definitions with FL for the Florida definition, GER for the SFI definition 

adopted from German studies, and HCM. Comparing to Figure 22 for Florida method capacities 

and Figure 23 for SFI method capacities, it is clear that the HCM method is most prone to extreme 

capacity values. 

 

Figure 21 HCM-based Capacity by Breakdown Type 

No State City Road Name Source Type Data Duration (1 yr) Breakdowns AADT Lanes

1 MD Baltimore I-695 WB HERE Weaving 2015.01.01 – 12.31 43 183901 4

2 MD Baltimore I-695 WB HERE Weaving 2015.01.01 – 12.31 178 191741 4

3 CA Los Angeles I-5 EB PeMS Lane Drop 2014.06.02 – 05.29 540 228000 4

4 CA San Jose I-880 NB PeMS Merge 2014.06.02 – 05.29 146 172000 3

5 FL Miami SR-826 NB RITIS Lane Drop 2014.06.02 – 05.29 309 200100 4

6 NC Raleigh I-440 EB HERE Merge 2014.06.02 – 05.29 137 80000 2

7 CA San Diego I-5  EB PeMS Merge 2015.01.01 – 12.31 282 206000 5

8 CA Los Angeles I-5 EB PeMS Merge 2015.01.01 – 12.31 962 218000 4

9 CA Santa Ana I-5 WB PeMS Merge 2015.01.01 – 12.31 549 359000 5

10 CA Santa Ana I-405 WB PeMS Merge 2015.01.01 – 12.31 446 252000 4

11 CA San Diego I-805 NB PeMS Merge 2015.01.01 – 12.31 294 181000 3

12 CA Los Angeles I-5 EB PeMS Merge 2015.01.01 – 12.31 615 218000 4

13 CA Santa Ana I-5 WB PeMS Weaving 2015.01.01 – 12.31 528 352000 5

14 CA Santa Ana I-405 EB PeMS Weaving 2015.01.01 – 12.31 283 229000 4
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Figure 22 Florida-based Capacity by Breakdown Type 

 

Figure 23 SFI Optimal Flow by Breakdown Type 

Next, the resulting capacity values were run through an ANOVA to determine the significant 

factors out of 1) site differences, 2) breakdown method differences and 3) capacity method 

differences. Out of these three factors, only the site and capacity method were found to be 

significant as shown in   
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Table 4. 
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Table 4 ANOVA Results for Capacity and Bottleneck Methods 

 

Based on the findings of the ANOVA analysis, a linear regression was fit using binary variables 

to represent each site, capacity method and breakdown identification method. Variables were 

removed using the backwards elimination method removing the least significant variable until all 

variables p<0.1 are removed.   
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Table 5 shows the resulting parameter estimates and remaining variables. In this model, sites 

5, 7, 8, 10 and 12 are found to not be significantly different in capacity when accounting for the 

capacity estimation method. Additionally, the HCM and Expected Value of the Sustained Flow 

Index are found to not be significantly different. When applying this model to convert between 

capacity methods, we find that capacities from the Florida method are on average approximately 

315 pcphpl lower than the HCM method, while the optimal SFI method capacities are on average 

approximately 345 pcphpl lower than the HCM method. It is important to note in the fit diagnostics 

shown in Figure 24 that there are a few outliers on the quantile plot indicating that more data may 

be needed to make a definitive comparison model. 
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Table 5 Capacity Regression Parameters 
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Figure 24 Capacity Regression Fit Diagnostics 
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4.0 PREDICTIVE MODEL OF BREAKDOWN FOR PLANNING 

LEVEL APPLICATIONS 

 BACKGROUND 

Traffic congestion leads to various societal problems not only in modern transportation 

systems but also with respect to economic, environmental and social issues. According to a recent 

Urban Mobility Report (Schrank et al. 2015), the cost of congestion, including delay and wasted 

fuel, is approximately $160 billion for the 471 assessed urban areas in the United States and has 

been increasing since 1982 due to the fact that the number of residents and jobs are increasing 

commensurate with economic growth, increasing vehicle miles traveled. It is therefore becoming 

increasingly important to develop effective management plans and geometric improvements 

needed to improve freeway mobility. 

Freeway congestion is usually classified into two types: recurring and non-recurring. The 

former is typically caused by excessive demand, or a physical constriction such as a lane drop, 

merge, diverge and weaving section whereas the latter is contributed by a crash or other un-

predicted event, such as severe weather, and incidents (Skabardonis et al. 2003). According to data 

published by Cambridge Systematics (2005), recurrent congestion accounts for a large portion 

(approximately 40%) of all traffic congestion in the United States, and this can be improved 

through effective transportation management. Eventually, improved understanding and analysis of 

recurrent congestion is a focal point to alleviate congestion. This type of congestion typically 

activates at a fixed location called a “bottleneck” during peak travel periods because the demand 

of commuters regularly exceeds the capacity of the freeway. The bottleneck locations of a freeway 

are closely related to a change in the capacity or the demand of the section, or, in other words, a 

bottleneck has either a lower capacity than other sections or a higher demand than other sections. 

These conditions can be caused by a lane drop, weaving, merge or diverge segment or low posted 

speed limits (Darroudi, 2014). However, these are not enough to explain completely the 

characteristics of recurrent breakdown in the bottleneck, thus, additional influential factors must 

be identified. For example, several segments on the freeway may activate a recurrent breakdown 

due to the complex geometry near a downtown even though the section posing the bottleneck is a 

basic segment with low ramp density. In another case, recurrent breakdown may be caused by the 

correlation between the bearing of freeway and the position of the sun in peak periods, regardless 

of bottleneck type. Various explanatory variables on the planning level therefore may be applied 

to predict recurrent congestion.  

Previous research in this area has focused on the issue of whether a bottleneck activates or not 

using short term prediction methods, with high resolution data requirements that are typically not 

available network-wide. Identifying the breakdown start time statistically is a more effective 

approach for analyzing recurrent congestion in peak time. Through the use of appropriate planning 

level variables and the statistical parameter values on breakdown activation time, a predictive 

model can provide ITS operators and freeway planners information for freeway segments where 

ITS data coverage is not available. 

Traffic Management Center (TMC) operators are focused on the details of data and real-time 

information often at the scale of the individual vehicles. On the other hand, transportation planners 

have an interest in operations at larger temporal (daily) and spatial (facility or regional) scales. 



 

32 

 

From the planning level perspective, predictable recurrent congestion may have characteristics or 

regular patterns which can give rise to breakdown repeatedly. Possible planning level impacts on 

the start of breakdown may include the distance from downtown, type of city, bearing with respect 

to the rising or setting sun, speed limit and so forth. Many possible variables can support the 

prediction of recurrent breakdown location and activation time, while these models can be 

validated using massive traffic data available through Intelligent Transportation Systems (ITS), 

including the emerging probe data systems. Thus, in order to mitigate congestion through traffic 

management, it is useful to analyze variables associated with recurrent breakdown in order to 

deploy ITS strategies at the time when they are most needed. 

The primary objective of this part for the final report is to estimate the distribution of freeway 

breakdown activation time using widely available planning level explanatory variables. The effort 

includes developing stochastic methods using the best fitting distribution and collecting massive 

ITS detector and probe vehicle data on fifty real world facilities in six states. 

 DATA COLLECTION 

Data for model development were gathered from the freeway Performance Measurement 

System (PeMS), HERE (Traffic.com) and INRIX (26). A total of fifty locations were considered 

with 10, 37, and 3 sites extracted from PeMS, INRIX, and HERE, respectively. In TABLE 6, 

sensor sites comprise six states in CA, FL, NC, VA, PA, and MD. Various bottleneck types were 

identified, including 9 weaving sections, 26 merges, 7 diverges, and 8 lane drops. For this research, 

15 minute aggregated data are collected for one year: calendar year 2015 at 46 sites and June, 2014 

to May, 2015 for 4 sites. For reference, the average AADT per lane across all sites is 24,350 with 

a maximum value of 37,000 vehicles and a minimum of 11,000. 

 
TABLE 6  Summary of Site Distribution 

City 
Number of 
Bottlenecks 
Analyzed 

Facility / Direction 

Los Angeles, CA 3 I-5 EB 

San Jose, CA 1 I-880 NB 

San Diego, CA 2 I-5 EB, I-805 NB 

Santa Ana, CA 4 I-5 WB, I-405 WB, I-405 EB 

Washington D.C. 9 I-395 NB, I-66 EB, I-95 NB, I-495 NB, I-270 SB, I-495 WB 

Baltimore, MD 5 I-695 WB, I-695 SB, I-695 EB 

Miami, FL 1 SR-826 NB 

Philadelphia, PA 3 I-95 SB, I-276 WB, I-476 NB 

Pittsburgh, PA 1 I-376 WB 

Charlotte, NC 11 I-485 WB, I-85 EB, I-85 NB, I-77 EB, I-77 SB, I-77 WB, I-77 NB, I-485 NB, I-277 NB 

Durham, NC 1 I-40 WB 

Asheville, NC 1 I-240 EB 

Raleigh, NC 8 I-440 EB, I-440 WB, I-540 EB, I-540 WB, I-40 WB, I-40 SB, I-40 EB 

Number of Sites 50  

 OVERALL FRAMEWORK 

The overall framework is outlined in Figure 25. The first step was to collect the ITS data from 

three sources, i.e., PeMS, HERE, and INRIX. In the next step, the author defined the speed 

threshold for identifying breakdown by setting the free-flow speed. According to the data sources, 
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the free-flow speed can be determined using one of three approaches: 1) the average value that 

satisfies the low flow rate (less than 500 pcphpl) and high speed (more than 51 mph); 2) the speed 

limit plus 5 mph; or 3) the reference speed, then, 75% of the free flow speed is the speed threshold 

(HCM 2010). In step 3, the author restricted breakdown activation time as follows: a sustained 

breakdown period of at least 30 minutes; an activation time between 6:00 AM and 11:00 AM 

(morning peak time) or between 2:00 PM and 7:00 PM (evening peak time); and, only the first-

occurring breakdown for each peak time. In the fourth step, the author created a graph of the 

breakdown activity time distribution. In the fifth step, the author used a distribution fitting software 

to get the best fit and characterized the parameters for each site based on the selected fitted 

distribution. 

 
Figure 25 Overall Processing of the Methodology 

In the sixth step, the author began to construct the planning-level prediction model by 

considering which explanatory variables to include, such as ramp density, AADT, types of 

bottlenecks, bearing, weather, geometrical factor, and distance from downtown. In the seventh 

step, using linear regression, the author tested potential models and the different parameters using 

statistical analysis software. After that, the author validated and calibrated the final model to prove 

that the proposed explanatory variables are appropriate for planning-level predictions. 

 IDENTIFYING PEAK PERIOD BREAKDOWN 

Defining when a breakdown occurs is key to establishing an effective breakdown prediction 

model. In order to identify the breakdown activation time, this paper uses variable speed threshold 

which is 75% of the free flow speed (4, 8, 13). The free-flow speed can be determined in three 

ways: the average value that is consistent with low flow rates (less than 500 pcphpl) and high speed 
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(more than 51 mph), 2); the speed limit plus 5 mph; or the reference speed established from the 

data provider.  

For the purpose of identifying peak period breakdown in this study, the authors restricted the 

modeling of the breakdown activation time to the AM peak period, namely between 6 AM to 11 

AM. This time boundary captured the highest frequency of breakdowns in our sites. Secondly, our 

focus was only on those breakdowns that lasted over 30 minutes. Finally, only the first occurring 

breakdown in each AM peak period is considered, signaling the start of the congestion. Therefore, 

breakdowns in the model are limited to one observation at each peak time for each day.  

 

FIGURE 26  Breakdown Activation Time Frequency for all sites 

FIGURE 26 shows the identified breakdown time distributions for the first AM and PM 

breakdown times at all sites (only AM data was used for modeling). It shows the overall frequency 

of breakdowns (total of 7,166) at each peak time and confirms that the number of AM peak time 

breakdowns (4,717) is greater than that of the PM peak time (2,449) in the sample. Examining 

similar graphs for all locations showed 29 sites with recurring congestion in the AM peak, 13 sites 

in the PM peak and 8 with fairly low sample size. 

One of the main hypotheses in this research is that the distribution of recurring breakdown 

activation time can be modeled using a statistical distribution across different locations. The 

observations of breakdown activation time were entered into a distribution fitting software, EasyFit 

(27) to select the best fitting distribution. This process was scoped to distributions with only two 

parameters.  

Goodness of fit was determined using the Kolmogorov-Smirnov (K-S) test. The Cauchy and 

Weibull distributions appeared to both be superior. The authors selected the Weibull distribution 

in part because it included only positive values, whereas the Cauchy distribution also includes 

negative values. In addition, when only the AM peak period is considered, the Weibull ranked 

higher than the Cauchy distribution. 
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Conceptual Graph for α (shape) Value (β = 1) Conceptual Graph for β (scale) Value (α = 2) 

FIGURE 27 Theoretical Feature in Weibull Distribution 

In the Weibull distribution, alpha and beta represent the shape and scale parameters, 

respectively. Since our primary interest is in predicting the most likely activation time, the focus 

is on assessing how the value of the parameters affect the movement of the distribution mode. 

FIGURE 27 depicts various distribution statistics, and how they are sensitive to the shape and scale 

parameters. It is evident that the mode increases significantly with the shape parameter at low 

values, then stabilizes at high values. The mode also increases in a linear fashion with the scale 

parameter beta. This implies that any planning level variables that reduce either alpha or beta will 

tend to shift the mode of the distribution to the left, thus predicting an earlier most likely 

breakdown time. 

 PLANNING LEVEL VARIABLES 

The fifty recurrent breakdown activation locations identified have a wide variety of geometric 

and design characteristics. Features that may impact AM peak breakdown activation time include 

free flow speed, AADT, weather conditions, bottleneck type, ramp density, distance from 

downtown, bearing, sunlight, and unusual geometrics. All those variables were considered in the 

model development. 

Free flow speed is an important variable that is used by the HCM to estimate freeway capacity 

(8). In this study, free flow speed values ranged from 49-70 mph, with an average of 64 mph across 

all fifty sites. Bottleneck type is classified by the HCM segment type, namely weaving, on-ramp, 

off-ramp, and lane drop. Many research efforts related to breakdown have focused on on-ramp 

bottlenecks, but rarely on weaving and lane drop sections. Ramp density can also contribute to 

recurring congestion due to the many lane changes around on and off ramps and due to the demand 

surges that may occur at merge locations. It is defined as the number of ramps located within 6 

miles, 3 miles upstream and downstream from the sensor location.  

AADT data for each site is collected from ArcGIS shape files available from each state. The 

value “AADT per lane” is used to account for traffic intensity. Distance from downtown may be 

an important factor to analyze and predict breakdown activation time because morning recurrent 

congestion is usually influenced by commuters traveling towards downtown. It is measured as the 

distance between the center point of downtown and the sensor location as the crow flies. Bearing 

represents the compass direction of travel on the freeway. It is a proxy for the effect of sun glare 

which may impact driver vision, resulting in excess braking and breakdown at lower flow rates.  
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Similarly, the presence of sunlight in a driver’s peripheral vision is estimated at each peak 

time using the bearing of the freeway segment. It is assumed that degree of the sunlight of sunrise 

and sunset are 90° and 270°, respectively. This factor is modeled as a binary variable indicating if 

due East or West are within a 60 degree arc centered on the bearing of the freeway segment (28). 

Principal geometric effects are also identified that may have a significant impact on breakdown 

activation time. Sharp horizontal curves and vertical grades exceeding 5%, are entered as binary 

variables.  

Lastly, weather data is sourced from project SHRP2-L08 (29). That study categorized 11 

weather event types identified as capacity impacting in the HCM 2010 (8). It includes weather 

event data for 91 cities in the United States for each hour of each month from 2001 to 2010 based 

on data reported by the National Weather Service (NWS). This study used the average (long term) 

value of the probability of inclement weather at each site, in the AM peak period analyzed (6 - 11 

AM). 

 MODEL DEVELOPMENT 

The team applied two linear regression models to predict the Weibull parameters that best fit 

the breakdown time distribution. Dependent variables (Y) are the site-specific alpha and beta 

parameter values from a best fit Weibull distribution. The independent variables are characteristic 

(𝑋𝑖) at each site.  

The statistical model is in the form: 

y = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛    (Equation 1) 

Where: 

𝛽0 = intercept term 

𝛽i = coefficient for explanatory variable (i) 

n = the number of effective variables in each dataset  

The parameters are characterized for each site based on the selected fitted distribution. The 

nine variables introduced earlier are included in the regression along with the squares of each 

numeric variable to account for any possible quadratic relationships. The Statistical Analysis 

System, or SAS (30) was used to perform the linear regression. Significant variables were 

identified using the backward selection algorithm (recursively removing insignificant variables) 

with a significance threshold of 0.05 required to remain in the model. 

 CALIBRATION AND VALIDATION SETS 

The authors considered that the predictive model may perform well on sites where it is locally 

calibrated, but not be as robust when applied to cities where data were not used in the calibrated 

model. Thus, two different models were fit. The first model included sites in cities that has more 

than 3 sites in the overall dataset. The corresponding validation set included only sites that had 

cities represented in the calibrated model. The second model uses a validation set where all 

withheld sites are from cities not represented in the calibration dataset. This second approach tests 

the model transferability to sites outside the calibration domain. The dataset description is shown 

in TABLE 7. 
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TABLE 7  Calibration and Validation Dataset 

Set Type Name Count Description 

Calibration 

Dataset 

Repeated Site 

Removed 
23 All AM sites(29) – Repeated Site Set(6) = 23 

Excluded Site 

Removed 
23 All AM sites(29) – Excluded Site Set(6) = 23 

Validation 

Dataset 

Repeated Site 6 

Choose randomly one site from repeated locations 

(Charlotte, Los Angeles, Philadelphia, Raleigh, Santa 

Ana, and Washington D.C.) and combine them. 

Excluded Site 6 
All unique locations (Asheville, Baltimore(2), 

Pittsburgh, San Diego, San Jose) 

 CALIBRATION RESULTS 

The results of the linear regression models are shown in   
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Table 8. Ramp density (the number of ramps within six miles) was significantly associated 

with breakdown activation time in the AM peak time. AADT per lane was also associated with 

congestion onset, except for the model run using the second calibration (unique sites held for 

validation). Both free flow speed and inclement weather have a significant impact on breakdown 

occurrence (beta model for both calibration datasets). Finally, the author also identified merging 

segments, weaving bottleneck type, and having “sun ahead” conditions as significant variables in 

each calibration dataset. Sensitivity analysis is applied to confirm the impact of varying a specific 

variable and find the range of feasible values. In each of the graphs that follow, trend curves of 

mean, mode, median, and variance for the breakdown start time are observed by changing variable 

value for each calibration set.  
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Table 8 Calibrated Linear Regression Models 
Calibration 
Set type 

α, β 
(adj. 𝑅2) 

Variable 
Parameter 
Estimate 

Standard 
Error 

Type II SS 
F 

Value 
Pr > F 

Repeated Site 
Removed Set 

α, shape 
(0.3796) 

Intercept 5.89323 1.33247 40.4012 19.56 0.0003 

Ramp Density 0.17975 0.06679 14.9594 7.24 0.0145 

AADT per lane* -2.1162 5.9E-05 26.1997 12.69 0.0021 

Merge 1.81138 0.64698 16.1898 7.84 0.0114 

β, scale 
(0.6400) 

Intercept 144.298 39.17445 19.1086 13.57 0.002 

Free Flow Speed -3.95856 1.23204 14.5391 10.32 0.0054 

Free Flow Speed 
squared 

0.03125 0.00977 14.4075 10.23 0.0056 

Ramp Density 0.24145 0.0555 26.6572 18.93 0.0005 

AADT per lane* -10.9 0.0003343 14.8394 10.54 0.0051 

AADT per lane 
squared* 

1.7641 6.54E-09 10.2561 7.28 0.0158 

Inclement Weather 
squared** 

-0.0761 224.23617 16.2286 11.52 0.0037 

Excluded Site 
Removed Set 

α, shape 
(0.4798) 

Intercept 19.321 4.56112 23.03262 17.94 0.0006 

Ramp Density 0.11955 0.05093 7.07188 5.51 0.0321 

AADT per lane* -8.9858 0.00032918 9.56446 7.45 0.0148 

AADT per lane 
squared* 

1.3879 6.19E-09 6.46094 5.03 0.0394 

Degree from East*** -0.6533 0.02579 8.23531 6.42 0.0222 

Degree from East 
squared*** 

0.0249 0.00011129 6.4529 5.03 0.0395 

Sun Ahead -2.20261 0.955 6.82764 5.32 0.0348 

β, scale 
(0.6575) 

Intercept 158.49263 34.34528 26.00423 21.3 0.0003 

Free Flow Speed -3.74592 1.00607 16.92872 13.86 0.0018 

Free Flow Speed 
squared 

0.02833 0.00798 15.38548 12.6 0.0027 

Ramp Density 0.13874 0.05337 8.25174 6.76 0.0194 

Inclement Weather** -19.59306 451.43236 23.00272 18.84 0.0005 

Inclement Weather 
squared** 

2.8861 6536.74428 23.80447 19.49 0.0004 

Weaving -2.3406 0.80896 10.22244 8.37 0.0106 

*AADT in ten thousands, **% Inclement Weather, ***Degree from East in tens of degrees 

In the Repeated Site Removed, the breakdown start time increased with ramp density 

(FIGURE 28) but decreases (breakdown is earlier) with inclement weather, AADT per lane, and 

free flow speed. Start time is later in a merge section, but the difference between merge and non-

merge sections is very small. In the Excluded Site Removed, all central tendencies of breakdown 

activation time occur later by increasing ramp density. For both AADT per lane and degree from 

East, all values except the variance have a zero slope (flat line), implying that change in these 

variables does not affect the central tendencies of start time. However, according to this model, 

breakdown is activated earlier by increasing free flow speed, and interruption of a driver’s sight 

by sunlight or the presence of a weaving section. These effects result in decreased values of the 

mean, the mode, and the median, implying an earlier activation start time. Inclement weather plot 

(FIGURE 28) reveals an unexpected phenomenon, with all values have a U shape. A breakdown 

is activated much later compared to any actual segment breakdown start time (after 8:30 AM) 

when the inclement weather probability is low or high (less than 2% or more than 5%). This points 

to a core deficiency in the implementation of the second model for any practical purpose.  
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Ramp Density (Repeated Site Removed Set) Inclement Weather (Excluded Site Removed Set) 

FIGURE 28  Modeled Breakdown Start Time Sensitivities 

 VALIDATION COMPARISONS 

In order to test the goodness of fit for the two validation sets, the model-predicted Weibull 

parameters are estimated using the statistical model and compared to their fitted site-specific 

counterparts. The results are shown in Table 9. It is evident that the set selected from repeated 

cities has largely small differences between the best fit and predicted parameters. On the other 

hand, the difference for predicted Weibull parameters in the Excluded Set is excessive indicating 

poor prediction. Specifically, the predicted beta values in the Excluded Set tends to be significantly 

higher than the best fit parameters. Through these two validation results, it is clear that the 

predicted result from the Repeated Set fits much better than the Excluded Set. 

Table 9 Comparison of Site-Specific Fitted vs. Model Predicted Parameter Values 

Validation 
Set type 

Site 
No. 

City 

Site-Specific  
Fitted 

Model 
Predicted 

Absolute  
Difference 

Alpha Beta Alpha Beta Alpha Beta 

Repeated 
Set 

21 Charlotte 6.611 6.785 4.034 6.249 2.577 0.536 

8 Los Angeles 1.184 5.179 4.455 5.343 3.271 0.165 

49 Philadelphia 2.758 4.957 4.314 4.101 1.555 0.856 

33 Raleigh 4.520 6.178 4.960 7.425 0.440 1.248 

13 Santa Ana 1.943 3.233 1.860 7.587 0.083 4.354 

37 
Washington 

D.C. 
1.672 2.649 1.546 2.859 0.126 0.210 

Excluded 
Set 

30 Asheville 5.374 7.754 5.180 4.497 0.194 3.256 

42 Baltimore 2.598 5.641 3.418 10.281 0.820 4.641 

43 Baltimore 6.411 7.491 4.756 12.099 1.656 4.608 

48 Pittsburgh 2.092 3.097 3.745 176.868 1.653 173.771 

11 San Diego 3.012 3.930 2.277 17.173 0.734 13.242 

4 San Jose 8.448 8.370 3.267 18.244 5.181 9.874 

 
 

In order to compare the best fit to predicted distribution of breakdown activation time, two 

sites are considered in each selection procedure from Figure 29. These are plotted using the fitted 

and predicted alpha and beta values from Table 9. The x-axis represents the time series of AM 

peak time (6 - 11AM); the y-axis shows the cumulative probability of a breakdown activation time 

based on the Weibull distribution. Additionally, the empirical distributions of activation times are 
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plotted in green. The vertical lines show the modes of the empirical, site-specific fitted and model 

predicted modes of the three distributions. 

Figure 29 Validation Fitting CDF Plots Result 

Firstly, the difference between fitted and predicted mode is about 15 minutes the Raleigh using 

the Repeated Set approach. The 80th percentile breakdown time is 8:00 AM for this facility. Both 

examples using the Repeated Site selection procedure tended to produce good matches between 

the fitted and predicted distributions, though they both deviated from the empirical distribution. 

The two validation sites using the Excluded Site selection procedure had very poor predictions of 

breakdown activation time. The Asheville site shows that the predicted distribution shifted 

approximately one hour earlier than the observed and best fit Weibull distribution. This result is 

effected by the large difference in the beta parameter value between the best fit and predicted 

distribution (see Table 9). This low predicted beta value may be due to the fact that the 

bottleneck type at this site is a weaving section, which has a negative parameter estimate in the 

statistical model (see   
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Table 8).  

The Pittsburgh site plot shows another example of poor prediction caused by an excessively 

large predicted beta value. The poor beta prediction is a result of the Pittsburgh site having both 

free flow speed and inclement weather frequency that are beyond the range of values used in the 

calibration set. The free flow speed is 49 mph, the lowest value in the entire set of 29 total AM 

sites. Secondly, the average percentage of inclement weather in all studied site is only 3 percent 

while Pittsburgh value exceeds 10 percent. Inclement weather has a very high impact on the beta 

value as shown in the sensitivity analysis. The outlier inclement weather probability causes the 

predicted distribution to shift entirely outside of the time period of interest.  

The author attempted to confirm what variables might be behind poor prediction results by 

conducting a sensitivity analysis in which free flow speed and inclement weather probability 

values were changed while other variables were held constant, in order to reduce the difference 

between the fitted and the predicted beta. Table 10 shows that the predicted beta value (3.146) 

closest to the fitted beta value (3.09) is achieved when inclement weather probability is 3% and 

free flow speed is 65 mph (similar to the average values of all 29 sites, 3.74% and 63.14 mph, 

respectively). The author concludes that the Pittsburgh site shows a poor predictive result due to 

low free flow speed and high inclement weather probability. 

Table 10 Effects on Predicted Beta of Simultaneously Changing Free Flow Speed 
(FFS) and Inclement Weather 

Inclement Weather 
Probability 

FFS=49 FFS=55 FFS=60 FFS=65 FFS=70 

11% 176.8677 172.0992 169.6593 168.636 169.0291 

10% 136.8618 132.0933 129.6535 128.6301 129.0233 

9% 101.619 96.85047 94.41062 93.38727 93.78042 

8% 72.14837 67.37984 64.93999 63.91664 64.30979 

7% 48.44994 43.6814 41.24155 40.2182 40.61135 

6% 30.5237 25.75516 23.31531 22.29196 22.68511 

5% 18.36966 13.60113 11.16128 10.13793 10.53108 

4% 11.98783 7.219288 4.779438 3.756088 4.149238 

3% 11.37819 6.609651 4.169801 3.146451 3.539601 

2% 16.54075 11.77221 9.332364 8.309014 8.702164 

1% 27.47552 22.70698 20.26713 19.24378 19.63693 

0% 44.18248 39.41394 36.97409 35.95074 36.34389 
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Figure 30 Sensitivity Analysis for Predicted Beta (Inclement weather in Excluded 
Set) 

Figure 30 shows the results of sensitivity analysis (Table 10). Each single dot represents the 

predicted beta value for a given site’s probability of inclement weather. Outliers for inclement 

weather probability include two sites in California (Site 4 and 11), with an inclement weather 

probability of about 1% and a high predicted beta value (more than 15), and two sites in Baltimore 

(Site 42 and 43) with a high probability (about 5%) and a high predicted beta value (more than 

10). To summarize, with the exception of site 30 (Asheville), it is difficult to predict congestion 

onset using the Excluded Set due to the inclement weather probability.  
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5.0 CONCLUSIONS AND FUTURE WORK 

 SUMMARY OF RESEARCH AND FINDINGS 

The research team identified seven major technologies available for traffic data collection and 

which of the traditional HCM and simulation performance measures could be measured by each 

technology. Of these performance measures, the team found three primary methods for estimating 

freeway capacity across the country. A nationwide study of microwave radar and inductive loop 

sensor data found that the underlying breakdown method used by each of the three methods was 

not individually significant in differences in the final capacity estimate. Among the capacity 

estimation methods, the Florida DOT method using the 85th percentile pre-breakdown flow rate 

estimated capacities approximately 315 pcphpl lower than the HCM, while the optimal Sustained 

Flow Index method estimated capacities approximately 345 pcphpl lower than the HCM.  

The research team also developed a congestion onset prediction model at the planning level 

that considers not only significant variables for breakdown activation time but also characterizing 

the breakdown activation time distribution. A set of locally calibrated models were shown to 

accurately predict breakdown activation time within 7 minutes. Interchange ramp density, 

inclement weather probability, AADT per lane, and free flow speed were found to significantly 

impact the breakdown activation time.  

 RECOMMENDATIONS FOR FUTURE RESEARCH 

The research team recommends that continued research is needed to address the collection or 

estimation methodologies for many HCM performance measures as there are many limitations due 

to the type of deployment or sampling of traffic. Ongoing research such as NCHRP 15-57 are not 

only developing new HCM methodology but are also focused on how emerging datasets can 

address these methods. The team also recommends that capacity estimation methods continue to 

be compared as the findings in this report are limited due to the sample size available for a 

nationwide study. More clarity on capacity differences are necessary as states begin to collect more 

data and need to compare to existing HCM or other methods. Finally, the researchers recommend 

further investigation into predicting breakdowns as the findings have implications for planning, 

operations and management of freeway facilities. 
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