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EXCUTIVE SUMMARY 

To be able to understand and model the implications of the advanced technologies and their impact 

on traveler behavior, it is vital to have integrated model systems that fully capture the interactions 

between supply and demand dimensions of travel. This research proposes a multi-resolution traffic 

simulation platform which integrate (1) an activity-based travel demand model, referred to as 

AgBM which can perform an agent-based microsimulation to predict multi-dimensional travel 

behaviors and (2) a simulation-based dynamic traffic assignment tool, referred to as DTALite, to 

conduct large-scale traffic operations that have active traffic management strategies as ingredients. 

As a result, the traffic congestion and feedback loops associated with complex trip interactions and 

human activity-travel decisions are captured.  

In addition, the recently emerging trend of self-driving vehicles and information sharing 

technologies, made available by private technology vendors, starts creating a revolutionary 

paradigm shift in the coming years for traveler mobility applications. By considering a 

deterministic traveler decision making framework at the household level in congested 

transportation networks, this paper aims to address the challenges of how to optimally schedule 

individuals’ daily travel patterns under the complex activity constraints and interactions. We 

reformulate two special cases of household activity pattern problem (HAPP) through a high-

dimensional network construct, and offer a systematic comparison with the classical mathematical 

programming models proposed by Recker (1995). Furthermore, we consider the tight road capacity 

constraint as another special case of HAPP to model complex interactions between multiple 

household activity scheduling decisions, and this attempt offers another household-based 

framework for linking activity-based model (ABM) and dynamic traffic assignment (DTA) tools. 

Through embedding temporal and spatial relations among household members, vehicles and 

mandatory/optional activities in an integrated space-time-state network, we develop two 0-1 

integer linear programming models that can seamlessly incorporate constraints for a number of 

key decisions related to vehicle selection, activity performing and ridesharing patterns under 

congested networks. The well-structured network models can be directly solved by standard 

optimization solvers, and further converted to a set of time-dependent state-dependent least cost 

path-finding problems through Lagrangian relaxation, which permit the use of computationally 

efficient algorithms on large-scale high-fidelity transportation networks.
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1.0 INTRODUCTION 

Metropolitan areas count for a major portion of economic activities in US and it is critical to 

maintain and improve the health of transportation systems in metropolitan areas so as to increase 

the economic competitiveness. Maintaining and operating metropolitan transportation systems is 

challenging because of the lack of effective models and analysis tools to: (1) estimate and predict 

travel demand; and (2) represent/analyze the complex interactions between traffic management 

and driver behaviors. In the past, these challenges are usually addressed separately. Therefore, it 

is necessary to develop a new integrated tool to synergistically address the issues of travel 

behaviors and travel decision-making, traffic assignment and traffic operations. This report is for 

the development of a simulation platform, where multi-resolution simulation will be enhanced 

with smart travelers, information sharing, and household-level daily scheduled activities. 

Great strides have been made in the past couple of decades in advancing travel demand modeling 

from the traditional 4-step travel demand models where the demand and supply sides were 

considered static to present day state-of-the art integrated travel model systems. On the travel 

demand front, the profession has progressed from traditional trip-based methods to activity-based 

models (ABMs), which date back to the pioneering work of Kitarmura (1998) (see Rasouli et al. 

(2014) for a detailed synthesis on ABMs).  ABMs view travel as derived demand, arising from the 

necessity of individuals to participate in various activities. This facilitates representing travel in a 

behaviorally realistic way in ABMs. On the other hand, network supply/simulation has progressed 

from static traffic assignment to dynamic traffic assignment (DTA) models that employ 

microscopic simulation and are capable of evaluating various traffic management strategies on the 

fly.  

To consider the traffic congestion and feedback loops associated with complex trip interactions, 

there are a wide range of studies aiming to combine ABM and DTA to better capture the interplay 

between human activity-travel decisions and underlying congested networks with tight road 

capacity constraints. For example, Lin et al. (2008) proposed a conceptual framework and explored 

the model integration of activity-based model (CEMDAP) and dynamic traffic assignment model 

(VISTA).  Pendyala et al. (2012) further integrated activity-travel demand models (OpenAMOS), 

DTA tools with the long-term land use modeling layer (UrbanSim). To further study the impacts 

of dynamic traffic management strategies and real-time traveler information provision, Pendyala 

et al. (2017) proposed a tightly integrated modeling framework for representing activity-travel 

demand and traffic dynamics in an on-line environment.  

In this report, a new simulation platform for integrating ABM and DTA models is proposed for 

integrated active traffic operations evaluation in metropolitan areas. It allows minute-by-minute 

data conversion and communication utilities between different ABM and DTA packages, and 

supports comprehensive and streamlined analysis of the complex transportation system 

environment to evaluate a wide range of ABM+DTA scenarios, such as, dynamic pricing, dynamic 

flow control, and dynamic information provision. 
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Further, the past decade has witnessed unprecedented advancements in the auto industry, 

specifically in the domain of autonomous vehicle technologies. Several auto companies have 

forged new paths and introduced vehicles of the future that need minimal human intervention for 

their operation (Tesla Motors Team (2016); Sherman (2016)). Ridesourcing, operated by 

Transportation Network Companies (TNCs) such as Uber and Lyft, is another game changing 

technology introduced in the recent times. TNCs aim at providing reliable and inexpensive 

personalized travel options that combine the best of personalized transport (for example, door-to-

door travel), as well as transit services (where the users pay per trip, and also do not have to drive 

the vehicle themselves). Recent reports show that 12% of registered voters across the United States 

used ridesourcing services at least once in the past month (Morning Consult (2015)).  

The rapidly growing popularity of TNCs coupled with autonomous vehicle technologies, could 

potentially redefine the way in which individuals schedule their activities and also the way in 

which travel demand is managed by network operators. On the traveler’s front, the freedom from 

driving could mean flexible activity schedules and increased productivity while travelling. On the 

other hand, network operators could handle demand by incentivizing/dis-incetivizing travel during 

a certain portion of the day (similar to surge pricing by Uber), or using a specific route. There is 

growing interest in the field to study incentive-based demand management strategies (for example, 

see Hu et al. (2014)). It is therefore of critical importance to understand and accurately depict these 

transformative technologies and their implications on activity-travel patterns in the travel demand 

model systems. While the integrated models developed so far cater to modeling the current array 

of travel options (modes, demand management strategies, etc.), most of the integrated model 

systems are not capable of handling the emerging transportation technologies (ride-sharing 

services, autonomous vehicle technologies) that are going to become a reality in the near future. 

Specifically, ABMs still operate based on zonal level information (such as skims, by time-of-day) 

provided by DTA models. The ABMs are oblivious to network logistics such as availability of 

ridesourcing options and incentives/disincentives customized for specific trips/travelers. On the 

other hand, vehicle routing problems (VRP), used to depict ride-sharing services in DTA models, 

view travel as disjoint trips that are independent of each other. The solutions to VRP are typically 

optimization-based and lack a sound behavioral foundation (Cordeau et al. (2001)). Solutions to 

VRP in the standard DTA models are often aimed at serving the maximum number of trip requests 

without taking into consideration the precedence constraints (or linkages) between the trips. 

Consider an individual’s schedule comprising of three trips: a) pick-up his child, b) accompany 

the child to the playground and c) take the child home. A VRP algorithm could produce a solution 

where trip requests for activities ‘b’ and ‘c’ are served, but in reality, activities ‘b’, and ‘c’ have a 

precedence constraint of engaging in activity ‘a’. This vital behavioral constraint is ignored in the 

VRP optimization techniques operated in DTA models. 

More importantly, at the household level, how to recognize complex resource constraints, multi-

agent interactions, and consistency through trip chains of different individuals is an important 

concern for accurate activity-based modelling and analysis. Different modeling paradigms have 

been developed, including deterministic optimization-based models by Recker (1995), and 

probabilistic micro-simulation-based utility maximization models by Bhat et al. (2004), Pendyala 

et al. (2005), Pribyl and Goulias (2005), Miller and Roorda (2003), and Arentze and Timmermans 

(2004). The emerging mobile apps with multi-modal traveler information and personal activity 

schedules enable travelers to intelligently schedule their activities and share their trip requests. In 
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addition, the forthcoming autonomous vehicle system would allow and encourage a fully 

optimized planning process for mapping household activities and travel requests (to be met by 

personal or shared vehicles). Therefore, this study also focus on the household activity pattern 

problem (HAPP) that is first systematically formulated by Recker (1995), which aims to find the 

optimal path of household members for completing their prescribed activities based on the 

available number of vehicles, scheduled activity participation, and ride-sharing options within a 

long period as the unit of analysis.  

Typically, based on a conventional mixed integer linear programming model for the pickup and 

delivery problem with time windows (PDPTW), many typical cases in HAPP, e.g., five cases in a 

classical paper by Recker (1995), Recker (2001), Recker et al. (2001), and Gan and Recker (2008), 

require a very large number of linear and integer constraints to capture the complex rules in real-

world household-level activity scheduling progress. Recently, several algorithms had been 

proposed to address more realistic side constraints and large-sized examples, to name a few, Chow 

and Recker (2012) and Kang and Recker (2013). In addition, Liao et al. (2013a, 2013b) presented 

a new set of super-network models for various person-level activity scheduling problems, where 

the multi-dimensional network construct contains travel links, state transition links and activity 

transaction links. To formulate HAPP as a mathematically rigorous model, how to fully consider 

complex coupling constraints among three layers, namely household members, vehicles and 

mandatory/optional activities, is extremely challenging, especially for large-scale multi-modal 

transportation network with flexible ride-sharing and household member activity-coordination 

options.  

Based on mathematical programs of HAPP, Kang et al. (2013) studied the network design problem 

considering the interaction between the household-level activity pattern and infrastructure changes. 

Chow and Djavadian (2015) proposed a new market equilibrium model to capture the interaction 

of traveler activity schedules in a capacitated system with a macroscopic flow restriction on a link 

or node facility. Abdul Aziz and Ukkusuri (2013) examined capacitated vehicle routing problems 

with the time-dependent congestion costs, which are determined by a network-wide cell 

transmission model. In a recent study by Fu et al. (2016), the intra-household interactions are 

considered through Markov decision processes and the road congestion effect is reflected by the 

static travel time function.  

In this report, we aims to cast HAPP problems as number of time-dependent and state-dependent 

path searching problems, which have a class of computationally efficient algorithms available in 

discretized space-time network and high-dimensional space-time-state networks. To capture the 

impacts of traffic congestion on activity generation and scheduling, this paper also reformulates 

two special cases of HAPPs as system-optimal multi-household activity scheduling subject to the 

tight road capacity constraints. The key is how to prebuild a set of embedded finite state machines 

(FSM) in a network to precisely represent and translate side constraints from the traditional models, 

which could eliminate activity time window and vehicle selection constraints in the resulting 

optimization model. Specifically, we consider Case A as Multi-vehicle and Multi-person vehicle 

routing problem with mandatory and discretionary activities. Further, with the given ride-sharing 

options for each household, we propose one more dimension to represent the activity performing 

status in each vehicle and model our Case B  as Multi-vehicle and Multi-person ridesharing 

problem with mandatory and discretionary activities. These two problems can be formulated as 0-

1 integer linear programming models, with the space-time-state network being indexed through 
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vehicle’s location, vehicle’s timestamp and cumulative activity completion state. Then the road 

capacity constraint can be directly added to model the network congestion and resulting activity 

scheduling change. Through dualizing the capacity constraints to the objective function by 

Lagrangian relaxation, our proposed model can be further solved through time-dependent state-

dependent least cost path-finding algorithms, which permits the use of fast computational 

algorithms on large-scale high-fidelity transportation networks. 
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2.0 SIMULATION PLATFORM FOR THE INTEGRATION OF 

AGENT-BASED ACTIVITY-BASED MODEL AND DYNAMIC 

TRAFFIC ASSIGNMENT 

The proposed multi-resolution traffic simulation platform mainly includes an agent-based travel 

demand model, referred to as AgBM which can performance an agent-based microsimulation to 

predicts multi-dimensional travel behaviors, and a simulation-based dynamic traffic assignment 

tool, referred to as DTALite to conduct large-scale traffic operations that have active traffic 

management strategies as ingredients. 

Specifically, AgBM provides DTALite only time-dependent origin-destination (OD) pair telling 

DTALite the departure times and destinations of agents. Then the DTALite engine will be 

launched to generate the core simulation output files for AgBM, including link-level measures of 

effectiveness (MOE), agent trajectory, etc. These simulation output files provide necessary 

information for AgBM to predict reasonable travel (agent) behavior changes in response to real-

time traffic conditions and active traffic management strategies, such as new departure time and 

re-routing decisions by each traveler. AgBM will predict travelers’ pre-trip and dynamic route 

decisions based on observed current conditions. These AgBM outputs will in turn be fed into 

DTALite again as input files to update the DTALite simulation configuration in a real-time manner. 

AgBM defines convergence criteria as a dynamic behavioral equilibrium, i.e. all simulated agents 

stop making any further behavior changes. This equilibria condition is also fed to DTALite to 

produce the final outputs for the integrated model. As a result, after the AgBM is integrated with 

DTALite, the travelers in DTALite will have more “intelligence” in their learning and decision 

making process. For instance, an AgBM-enabled traveler in DTALite will be able to determine the 

departure time according to multiple factors. Also the traveler can change path choice en-route not 

only based on the minimum travel cost but also many other factors according to the latest traffic 

information. These new features reflect the latest reality and will definitely provide the decision 

makers with more convincing proofs to help analyze active traffic management strategies. 

2.1 THE PROCEDURE OF DATA COMMUNICATION 

Many of the traffic analysis tools (e.g. VISSIM, TransModeler, Aimsun, and Paramics) have 

proprietary components that could create impediments for exchanging data across independent 

software packages that require the development and application of individual utility functions.  

While the actual solution will be derived during the project execution, our proposed solution to 

this challenge is to develop an open data format that allows data conversion and communication 

utilities from their own different formats to the proposed Agent+ data bus. While the framework 

can be implemented without an agent+ data bus or an open data communication format standard 

on a data hub, only ad-hoc linkages across specific software packages can be established, which 

could fail to allow comprehensive and streamlined analysis of the complex transportation system 

environment to support a wide range of ABM+DTA scenario evaluation. 
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Output: Link/Path/OD MOE

 
Figure 1: The data flow chat of Agent+ data bus interface for integrating DTA and ABM 

models. 

Fig. 1 above shows the Agent+ Data Bus concept. Our team already implemented an open-source 

Agent+ data hub that allows a day-by-day and min-by-min integration of ABM and DTA models. 

New development efforts are needed to implement the data bus for an on-line data communication 

environment, but can be implemented with minimal risks given our team’s experience in 

developing the Data hub. 

Table 1: Example Data flow of Individual DTA or ABM Module within Agent+ Data Bus. 

Package Software Packages 

Connected to Data Bus 

Receive Input from Data 

Bus 

Provide Output to Data Bus 

ABM CSV file reading and writing 

utility 

Day-to-day or min-by-min 

traffic conditions at 

link/path/OD levels 

Min-by-min traffic request for 

possible departure time, 

destination, and mode change 

DTA CSV file reading and writing 

utility or Data receiving and 

aggregation package 

Traffic network, vehicle 

origin and destination, 

existing traveled path, real-

time traffic data stream 

Information for upstream 

vehicles to change routes, 

updated travel time and queue 

warnings, traffic conditions at 

link/path/OD levels 

 

2.2 MODELING AND IMPLEMENTATON FRAMEWORK  

2.2.1 Relation between Data Hub and Data Bus Modules 

The Data Hub hosts essential network, demand, signal control data for multi-resolution modeling. 

The real-world traffic measurements from private data vendors and public agencies can be also 

archived in the databases. 

The Data Bus aims to enable tight interconnections between three critical entities: data, models, 

and simulators of decision makers. The data bus provides excellent data interchange 

interoperability which holds a key means of accelerating the integration of DTA+ABM distributed 
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simulation. In the long run, it allows simulation models to be executed through multiple 

computation instances in a virtual cloud computing center or in a parallel computing environment. 

2.2.2 Needs for Synchronizing Simulation Clock 

Multiple modules (e.g. demand simulator, network simulator) within the multi-resolution analysis 

framework execute in different processors and communicate with each other asynchronously.  

Different simulation modules can run with different execution cycles, and each step size is 

determined by the corresponding simulation needs (e.g. 6 seconds for mesoscopic traffic simulator 

vs. 1 min for travel demand simulator), computational resource constraints, as well as input/output 

dependency between different models. The proposed data bus concept further highlights the needs 

for standardized data format across multi-resolution simulation, a tight coupling with ABM and 

DTA simulation, and clearly defined rules for performing multi-horizon simulation/prediction for 

applications such as dynamic flow control, dynamic pricing and dynamic information provision. 

In the SHRP II Maryland test bed with multiple simulators, it is important to ensure all the 

computer applications are synchronized with a common simulation clock, while certain high-

fidelity simulation systems may be even slower than real-time (e.g., one simulated second is equal 

to 10 real-world seconds). 

2.2.3 Synchronizing Simulation Clock by Using Scheduled Files as Software 

File Token 

In general, [source: wiki] a security token (or sometimes a hardware token, authentication token, 

USB token, cryptographic token, software token, virtual token, or key fob) may be a physical 

device that an authorized user of computer services is given to ease authentication. In our study, 

we use files as software tokens. 

 
Figure 2: Illustration of tokens in a distributed computing environment. 

Each DTA/ABM process must have the file token to move forward, then perform simulation and 

generate the next token required by the sequential process. The file tokens have fixed names to be 

better synchronized across processes. 
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2.2.4 Data Flow Chart for Each Process in the Integrated Framework 

Read input schedule file to follow the token reading and output frequency and file name 

specification. 

While (for each x second scheduled) 

{ 

If (input file token is ready) 

{ 

Perform simulation/analysis  

Generate output file token (for next process) 

} 

} 

Specifically, in the proposed agent+ modeling framework, we will first specify the data updating 

frequency and file name convention in a file called “Input_simulation_shedule.csv”, for output 

Link/Path/OD MOE files and for input attributes and agent routing attributes. In this example, the 

input and output data streams are defined with respect to the DTA module. 

 
Figure 3: Sample content of Input_simulation_shedule.csv file. 

By detecting if the required input files are available every time intervals (say 1 min), the agent+ 

modeling framework can accordingly use the scheduled input and output files as tokens for 

synchronizing the simulation clock with the data bus’s master clock. 
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Figure 4: Implemented example of Agent+ framework with connections to data hub. 

2.3 DATA FILE DESCRIPTIONS  

A general example is show in Figure 5 to illustrate those necessary data files in the DTA simulation 

package. 



 

12 

 

 
Figure 5: Sample files from DTALite for OD MOE files and agent lists currently in 

simulator. 

Specifically, there are three data blocks: 

Data Block 1: MOE output files from DTA 

(1) RT_output_linkMOE_secXX.csv 

Attributes: from_node, to_node, travel time, speed and timestamp at 60-second resolution. 

(2) RT_output_ODMOE_secXX.csv 

Attributes: zone number, travel time, travel distance and  number of agents every 10 or 15 min. 

(3) RT_output_pathMOE_secXX.csv 

Major attribute is the node sequence for each path at 60-second resolution. 

Data block 2: Current agent list output from DTA, at current time or after a whole day 

(1) RT_Output_Current_Agent_secXX.csv 

Main 15 attributes for agents currently in the traffic simulator: agent_id, detour node sequence, 

pricing type, and value of time, as shown in Figure 6. 

 

Figure 6: Sample attribute list about current agents in DTA simulator. 

(2) RT_Output_ End-of-Day_Agent_dayXX.csv 

Attributes: Experienced travel times and path for each agent from the previous day:  



 

13 

 

Data block 3: min-by-min input files for updating DTA status  

RT_Input_linkAttribute_secXX.csv 

RT_Input_Updated_Agent_secXX.csv 

Input_routing_policy.csv  

These real-time link attributes file and agent file are updated every 60 seconds, and the above 2 

files can be controlled from ABM or updated based on predefined schedules to model.  

The updated agent files can allow models to change traveler decisions in terms of departure time, 

destination, and information type (e.g. from historical, pretrip at origin, to real-time en-route) and 

route information. Canceling trip option is also allowed by removing agents from the to-be-

simulated list or simply delaying the departure time of agents to next day. 
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3.0 MATHEMATICAL MODELS FOR THE INTEGRATION OF 

HOUSEHOLD-LEVEL ABM AND DTA 

The notation used in this section is listed in Table 2. 

Table 2: Example Data flow of Individual DTA or ABM Module within Agent+ Data Bus. 

Symbols Descriptions 

𝑁 Set of nodes in the physical network, including necessary virtual nodes 

𝑁𝑣 Set of vehicle nodes for vehicle selection 

𝐿 Set of links in the physical network, including necessary virtual links 

𝑃 Set of household members  

𝑃𝑚 Set of household members who have mandatory activities 

𝑃𝑛 Set of household members who chooses one mandatory activity from multiple candidates 

𝑃𝑞  Set of household members who have discretionary activities 

𝑉 Set of available vehicles 

𝐴 Set of activities  

𝐴𝑛(𝑝) Set of household member 𝑝’s candidate activities for one kind of mandatory activity  

𝐴𝑣 Set of mandatory activities of vehicle 𝑣’s driver 

𝑅 Set of  vertices in the space-time/space-time-state network 

𝐸 Set of  edges/arcs in the space-time/space-time-state network 

𝑊 Set of cumulative vehicle activity-performing state 

𝐸(𝑝, 𝑎𝑚) Set of  edges/arcs of household member 𝑝’s mandatory activity 𝑎𝑚 

𝐸(𝑝, 𝑎𝑛) Set of  edges/arcs of household member 𝑝’s candidate activity 𝑎𝑛 for one kind of mandatory 

activity 

𝐸(𝑝, 𝑎𝑞) Set of  edges/arcs of household member 𝑝’s discretionary activity 𝑎𝑞  

𝐸(𝑣, 𝑎𝑚) Set of  edges/arcs of mandatory activity 𝑎𝑚 of vehicle 𝑣’s driver 

𝑖, 𝑗 Index of node set 𝑁 

(𝑖, 𝑗) Index of link set 𝐿 

𝑡, 𝑠 Index of time intervals in the space-time-state network 

𝑤, 𝑤′ Index of state in the space-time-state network 

(𝑖, 𝑡) Index of vertex in the space-time network 

(𝑖, 𝑗, 𝑡, 𝑠) Index of edges/arcs in the space-time network 

(𝑖, 𝑡, 𝑤) Index of vertex in the space-time-state network 

(𝑖, 𝑗, 𝑡, 𝑠) Index of edges/arcs in the space-time-state network 

𝑝 Index of household member set 𝑃 

𝑎 Index of activity set 𝐴 

𝑡(𝑖, 𝑗) Travel time of link (𝑖, 𝑗)  

𝑐𝑖,𝑗,𝑡,𝑠
𝑝

 Travel cost of arc (𝑖, 𝑗, 𝑡, 𝑠) of person 𝑝 in the space-time network 

𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣  Travel cost of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) of vehicle 𝑣 in the space-time-state network 

[𝑎𝑘 , 𝑏𝑘] The time window of event 𝑘, such as, activity starting time window, activity ending time 

window 

𝑇𝐷(𝑝)/𝑇𝐷(𝑣) Earliest departure time of household member 𝑝/ vehicle 𝑣  

𝑂(𝑝)/𝑂(𝑣) Origin node of household member 𝑝/ vehicle 𝑣 

𝐷(𝑝)/𝐷(𝑣) Destination node of household member 𝑝/ vehicle 𝑣 

𝑇 The time horizon in the space-time network/space-time-state network 

𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠 Capacity of arc (𝑖, 𝑗, 𝑡, 𝑠) 
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𝐶𝑎𝑝𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ Capacity of arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) 

𝑥𝑖,𝑗,𝑡,𝑠
𝑝

 Binary variable, = 1, if household member 𝑝 visits the traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠) in the 

space-time network; = 0 otherwise 

𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
𝑣  Binary variable, = 1, if vehicle 𝑣 visits the traveling/waiting arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑤, 𝑤′) in the space-

time-state network; = 0 otherwise 

𝑁 Set of nodes in the physical network, including necessary virtual nodes 

𝑁𝑣 Set of vehicle nodes for vehicle selection 

 

3.1 THE PROCEDURE OF DATA COMMUNICATION 

In this paper, our study focuses on three particular cases in HAPP (namely A, B, C) and further 

extends to one more general case D. The general given input includes the population used for 

activity generation, a physical transportation network, a set of different types of activities 

(mandatory, semi-mandatory, optional activities) with specific time windows and utility values, a 

set of vehicles, as well as the activity/vehicle assignment set to each household member. By 

adapting the classical assumption/definition from Recker (1995), we present the following 

problem statements. 

(1) Case A is a multi-vehicle and multi-person vehicle routing problem with mandatory and 

discretionary activities, which is similar to Case IV in the paper by Recker (1995). (i) Members of 

the household share a set of vehicles; a subset of vehicles may be available for use by any member 

of the household, and the remainder may be reserved for use by certain members; (ii) A subset of 

activities can be performed by any member of the household, and the remaining activities must be 

performed by certain members; (iii) Certain members can have specific mandatory activities or 

optional activities;  (iv) Some members may perform no activities; some vehicles may not be used.  

(2) Case B is a multi-vehicle and multi-person ridesharing problem with mandatory and 

discretionary activities, which can be treated as a special sub-problem of Case V in the paper by 

Recker (1995). The specific definition is: (i) the ride-sharing pattern that which household 

members will share one vehicle and which one is the driver has been given; (ii) A subset of 

activities can be performed by any member of the household, and the remaining activities must be 

performed by certain members; (iii) Certain members can have specific mandatory activities or 

optional activities. 

(3) Case C is an extension of cases A and B, which considers tight road capacity constraints to 

capture the underlying congestion in physical transportation networks, so that the influence of 

time-dependent link travel time on household activity patterns can be observed. As a result, this 

case is a system optimal multi-household activity scheduling problem under time-varying traffic 

conditions. 

(4) Case D is a dynamic household-level equilibrium problem where each household is inclined to 

choose the optimal activity pattern, which considers vehicle selection, mode choice and ride-

sharing options simultaneously. As studied in a recent paper by Liu and Zhou (2016), when there 

is no link capacity constraint, each agent (e.g., passenger, vehicle, or household) can choose the 

best/shortest path without affecting each other. Once the limited resource constraint is strictly 
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considered, some agents may have to accept a longer path in order to finish their own travel and 

this kind of decision mechanism could invoke bounded rationality to those agents.  

Specially, Fig. 7 specifically compares the data flow of (i) existing integration of ABM and DTA 

and (ii) our proposed models. The simulation-based integration in Fig. 7 focuses on searching 

individual activity-travel pattern under dynamic user equilibrium conditions, and the mathematical 

program oriented modelling framework proposed in this paper aims to optimize the household 

activity decisions with system optimal goals under household-level activity requirements and 

network capacity constraints. In our future study, Case D will be further examined to study possible 

dynamic household-level equilibriums with household activity interactions. 

Synthetic Population Generator

Activity-travel Demand Model 
(utility-maximization v.s. 

simulation-based)

Individual Activity-travel Patterns

Convergence Check

Activity-travel Demand and 
Network Dynamics

Network Loading 
with road capacity 

(analytical v.s. 
simulation-based)

Optimal Path Finding 
and Vehicle 
Switching

Dynamic Traffic Assignment Model

No

Yes

Synthetic Population Generator

Household Activity Patterns and Network Dynamics

Objective: minimize total system travel cost

Constraints: 
(i) activity satisfaction (mandatory, semi-mandatory, 
optional) 
(ii) vehicle selection and ridesharing pattern
(iii) network capacity

Platform: time-discretized space-time-state networks

Single-level Multi-Household System Optimal Model

Household activity-travel requirements

a b

 

Figure 7: Existing integration framework of ABM and DTA; (b) Proposed modelling 

framework of Case C. 

3.1.1 Network Construction and Conceptual Illustration of Case A 

For illustrative purposes, a hypothetic three-node network shown in Fig. 8(a) is used to explain the 

problem addressed by Case A. There are two household members (p1 and p2), two available 

vehicles (v1 and  v2), and two activities (a1 and a2). The available vehicle set of household members  

p1 and  p2 is {v1, v2} and {v2}. The available activity set of household members  p1 and  p2 is {a1, 

a2} and {a1}, respectively, and the both activities belong to the mandatory activity and should be 

finished finally. 

In order to model those requirements above, the physical network is modified as shown in Fig. 

8(b), where the previous home node and activity nodes are split as several nodes. The detailed 

explanations are as follows. First, the home node is extended as six nodes, where (i) each 

household member has his/her dedicated node as his/her origin node, (ii) two vehicle nodes are 

created and one can view the links between household member origin node and vehicle nodes as 

vehicle selection links, while each vehicle node can only be visited less than or equal to once by 
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all passengers, and (iii) node D serves as the super destination node. Moreover, to follow an 

activity-on-the-link representation scheme, the extended network on the right has now activity 

starting node 1' and ending node 1'' corresponding to the activity node 1 on the left-hand side, and 

the link between the two nodes can be used to represent the required activity time duration. 
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Figure 8: (a) the physical network; (b) the corresponding modified network. 

In order to consider passenger-to-vehicle preference, the travel costs on those vehicle selection 

links can be passenger-specific. For example, the travel cost from passenger p1’s origin to the super 

destination is 0, which indicates that when passenger p1 stays at home as one particular vehicle 

selection, there is no travel cost. In addition, the travel cost on link (p1, v1) is higher than that on 

link (p1, v2), indicating passenger p1’s higher preferences toward vehicle 2 compared to vehicle 1.  

Each activity in HAPP typically has one specific time window, then we assume that the beginning 

time windows for (i) passengers p1 and p2 and (ii) activities a1 and a2 are [1, 3], [1, 4], [9, 10], and 

[20, 21], respectively, along the total time horizon of 32 time units. Furthermore, the waiting cost 

of each time interval at origin nodes and destination node is assumed to be 0, and the waiting at 

activities nodes has a cost of 1 at each time interval. Within a deterministic disutility minimization 

framework, we assume negative cost values on activity links shown in Fig. 2(b).  

A standard time-discretized space-time network can be constructed through the procedure 

proposed in the papers (Tong et al., 2015; Li et al., 2015; Liu and Zhou, 2016; Lu et al., 2016), 

and the feasible space-time prism can be greatly reduced as illustrated in Fig. 9. As a result, the 

problem becomes how to find passengers’ trajectory satisfying all time windows and activity 

requirements in the space-time network so as to minimize the total travel cost of all household 

members. 
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Figure 9: Feasible searching region in the space-time network. 

As a remark, the (time-dependent) travel time on each travelling arc could be given in advance to 

reflect the congestion due to complex travel route choice interactions in the real-world traffic 

network. However, in the following Case C, we directly consider tight link/arc capacity inside the 

model to compute the resulting congestion effect explicitly. When the number of inflow vehicles 

exceeds the capacity of traveling arc, some vehicles have to wait at the waiting arc for available 

travelling arc capacity at next time interval. The detail about how tight capacity constraint is 

considered in the time-discretized space-time networks can be found in recent papers by Lu et al. 

(2016) and Liu and Zhou (2016). Their agent-based approach does not use the traditional flow-

based nonlinear link/path cost function, and the travel cost of each agent is the result of the 

interaction among different agents in space-time networks. 

3.1.2 Network Construction and Conceptual Illustration of Case A 

The most difficult challenge in modeling the household-level ridesharing problem is how to 

recognize the complex coordination among different household members, pertaining to the 

following questions such as who is the driver and where/when the driver should drop off and pick 

up passengers. Considering offline planning applications, our Case B assumes that the set of 

possible ridesharing patterns is pre-specified with the given drop-off and pick-up locations with 

time windows to choose.  

An illustrative example is given in Fig. 10(a), where there are two household members (p1 and p2), 

one available vehicle, and three activities (a1, a2 and a3). The given ride-sharing pattern requires 

that driver p1 needs to drop off the passenger p2 to his/her own activities within given beginning 

time windows, and then this driver needs to pick up p2 from the activity locations within given 

activity ending time windows. The driver p1 could accompany passengers to perform their activity, 

and also can leave to conduct his/her own mandatory activities. In this example with a quite busy 

household activity agenda, the driver has to perform the mandatory (deriver as D) activity a1 while 

the passenger needs to finish the mandatory (passenger as P) activities a2 and a3. 
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Figure 10: (a) the physical network; (b) the corresponding modified network. 

Accordingly, we construct a drop-off node and a pick-up node for each passenger at the activity 

location in Fig. 10(b). It should be remarked that, in a typical case, one is dropped off and picked 

up at the same activity location, but our formulation also makes it possible that one passenger is 

dropped off at one activity and then picked up at another location if he/she can take other travel 

modes (walking, transit or taxi) to the (spatially different) pick-up location. The starting node and 

ending node of the passenger activity (shown as P activity 3' and 3'') is considered a special drop-

off node and pick-up node in drivers’ network. 

In addition to using the two dimensions (space and time) to depict vehicles’ travel trajectory, this 

section will introduce one more state dimension to model ride-sharing status. More precisely, the 

state code covers each traveler’s service status, including the driver and all passengers. Through 

adding one more dimension and exogenously listing the possible relation of location, time, and 

vehicle state, a set of hard activity-performing constraints for the driver and passengers in each 

vehicle could be embedded in advance in the space-time-state network, which will greatly reduce 

the set of side constraints and make our proposed mathematical model tractable for network flow 

optimization algorithms. 

To solve the single-vehicle routing problem with pickup and delivery service with time windows 

(VRPPDTW), Psaraftis (1983) proposed a cumulative service state {1, 2, 3} to record the service 

status of each passenger, where 3 means that the passenger has not been picked up, 2 means that 

the passenger has been picked up but not been delivered, and 1 means that the passenger has been 

successfully delivered. In this paper, we adopt the cumulative state representation as {0, 1, 2}: 0 

means that the activity has not been performed, 1 means that the activity is being performed or the 

passenger has been dropped off at the activity location but not been picked up, and 2 means that 

the activity has been performed or the passenger has been picked up. While Mahmoudi and Zhou 

(2016) firstly proposed a third dimension as vehicle carrying state to solve the VRPPDTW, our 

third dimension of household-oriented state (with a rich representation of different household 

members, driver, passenger and associated activities) and the process of state transition are 

systematically different with those of  Mahmoudi and Zhou (2016). The general comparison is 

listed in Table 3. 
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Table 3: Comparison of model building between Mahmoudi and Zhou (2016) and our case 

B. 

 Vehicle-oriented state based VRPPDTW 

(Mahmoudi and Zhou, 2016) 

Provide Output to Data Bus 

State representation Vehicle carrying state that indicates how 

many passengers are carried subject to its 

carrying capacity. 

Vehicle, designated driver (as a household 

member) multiple passengers, activity-

execution states 

Multiple passenger 

activity task 

Not modelled one passenger could conduct multiple 

mandatory and optional activities 

The third dimension 

(state) 

0: passenger is not carried by the vehicle;  

1: passenger is being carried by the vehicle. 

0: the activity of one passenger has not 

been performed; 

State transition logic 

between driver and 

passenger 

Not modelled 1: the activity is being performed or the 

passenger has been dropped off at the 

activity location but not been picked up; 

 

Since one activity could have 3 different states, if there are n activities for all passengers in one 

vehicle, it would require 3n variables to represent all possible states. The total number of states is 

shown in Table 2 depending on the number of activities. However, if one passenger has multiple 

activities, the possible states could be reduced because one passenger cannot perform multiple 

activities simultaneously. Also, the tight time window and transition preference for each activity 

can greatly reduce the number of possible states reasonable within a feasible space-time prism. In 

addition, the rapid development of hardware of computers could provide more memory and faster 

computation speed to address those large number of state search decisions. 

Table 4: The maximum number of possible states corresponds with the number of activities 

in one vehicle. 

Number of activities 1 2 3 4 5 6 7 8 

Maximum number of possible states 3 9 27 81 243 729 2187 6561 

 

We now use the example above to illustrate our cumulative activity-performing state and the state 

transition at different activity locations and times. There are one vehicle with two household 

members and three activities, so the vehicle’s activity-performing state can be [a1, a2, a3], or more 

generically denoted as [_,_,_], where the first slot represents the driver’s activity-performing state 

of activity a1 and the second slot and the third one represent passenger p2’s two activity-performing 

states of activities a2 and a3, respectively.  To reduce the number of states in this combinatorial 

optimization problem, one can also implement the activity-performing requirement as constraints 

on the activity link (1'→1") for the driver, so the resulting reduced state vector is [a2, a3].  

Since activities a2 and a3 are mandatory for passenger p2, all possible vehicle’s state could be [a2 

= 0, a3 = 0], [1,0], [2,0], [0,1], [0,2], [2,1], [1,2], and [2,2] by enumeration. It is noticed that [a2 = 

1, a3 = 1] is not included because it is impossible that passenger p2 is dropped off at two locations 

simultaneously. Fig. 11(a) illustrates a graph of possible state transitions for the example above. 

In addition, if there is the same type of multiple activities, such as, shopping at location 2 vs. at 

location 3, passenger 2 may just need to choose one of the two locations, so the resulting possible 

state transition will be that shown in Fig. 11(b). 
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Figure 11: (a) both activities need to be performed; (b) exact one of two activities should be 

performed. 

There are three types of mutually exclusive multidimensional arcs in the space-time-state network: 

(1) Travelling arcs (i, j, t, s, w, w' = w) with a time-dependent cost on link (i, j) departing at time t, 

with the same state w as transportation services do not change activity performing states.  

(2) Waiting arcs (i, i, t, t+1, w, w') with a unit of waiting costs at location i from time t to time t+1. 

A special Case is that, the waiting cost should be zero at the super home origin and destination 

nodes.  

(3) State transition/service arcs (i, i, t, t, w, w') with a utility (i.e. negative travel cost) when 

performing their activities at the drop-off location. As shown in Fig. 6, at node i=2', time t= 6, 7 

or 8 within a given time window, we have a number of possible state changes, for example,  w=[0,0] 

with a possible transition to w'=[1,0], or w=[0,2] with a possible transition to w'=[1,2].  

As the ending state for a2 must be 2 so the passenger 2 will be picked up automatically among any 

feasible solutions and there is no benefit at pick-up nodes to avoid double counting of service 

utilities. 
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Figure 12: Feasible arcs at node 2' in a space-time-state network. 

3.1.3 Conceptual Illustration of Case C 

As an extension of Cases A and B, Case C strictly honors the travelling arc capacity in the space-

time network and space-time-state network, similar to the consideration in the recent papers along 

this line (Lu et al., 2016; Liu and Zhou, 2016). Compared with the constant link free-flow travel 

time, the underlying time-varying congestion could dramatically affect the passenger/vehicle’s 

departure time, route choice, mode choice, destination choice, and even activity generation.  

Without loss of generality, we adopt a time-invariant network (Liu and Zhou, 2016) shown in Fig. 

13 to illustrate the congestion effect for two households with two different activities, where 

household 1 (household 2) has one member who departs from home node H1 (H2) to perform 

activity A1 (A2) then go back home, respectively. 

1

2

3

4

(3, 1)

(1, 1)

(1, 1)

(4, 1)

(1,1)

(Link travel time = 7, Link capacity = 1)

(Link travel time, Link capacity)

H1

H2

A1

A2

(1, 1)

(1, 1)

(1, 1)

(1, 1)
Virtual link

Physical link

 
Figure 13: Feasible arcs at node 2' in a space-time-state network. 

What can be observed in Table 5 is summarized as follows and those observation can also be 

applicable to space-time and space-time-state networks. 
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(1) When the link capacity is not taken into account, the vehicles from both households choose 

their own shortest path. The physical path node sequences of households 1 and 2 is 1→3→2→4

→2→3→1 with path travel time of 6. 

(2) When the link capacity is considered, the system optimal objective of Case C could make 

household 1 change its path as  1→2→4→2→1 with a larger path cost of 8. Meanwhile, household 

2 would switch a new path as 1→3→4→3→1 with an increased cost of 10. 

(3) In observation (1), the travel time of household 2 from 1 to 4 is 3, but now it will increase to 5 

due to link capacity constraint in observation (2). If the passenger of household 2 has a strict time 

window for activity 2, the increased path travel time from 1 to 4 could make passenger depart 

earlier to satisfy the time window.  

(4) If the time budget of household 2 from 1 to 4 is less than 5, the passenger would cancel activity 

2 or may change to an alternative by switching to other possible travel modes. 

(5) If Case D is considered for possible equilibrium conditions, one household could choose the 

previous shortest path and the other has to accept the longer path, 1→4→1, with total travel time 

of 14. It also could lead to changes in departure time, activity cancel or mode choice. In addition, 

Braess paradox exists in the network above, so blocking links 3→2 and 2→3 definitely could 

improve the transportation efficiency and further influence household activity patterns from the 

perspective of traffic managers. 

Table 5: Result analysis of different cases. 

Different cases Physical path selection Remarks 

Path 1

 

Path 2 

 

Path 3

 

Path 4

 
Case A/B: without link 

capacity constraint 

× × × √; √ Benchmark 

Case C: system optimal 

with link capacity constraint 

√ √ × × Compared with Case A/B, 

household has possible 

departure time change, 

route choice change, and 

possible activity cancel or 

mode choice change due to 

link capacity constraints. 

Case D: 

household 

equilibrium 

with link 

capacity 

constraint 

With 

links 

3 2   

× × √ √ Compared with Case C, the 

total travel time is 

increased. 

Without 

links 

3 2  

√ √ × × Braess paradox occurs, as 

the system-wide cost 

reduces without the link. 

√: One household (vehicle) chooses the corresponding path; 

×: No household (vehicle) chooses the corresponding path; 



 

25 

 

3.2 MATHEMATICAL PROGRAMMING MODELS 

3.2.1 Space-time Network-based Optimization Model for Case A 

Based on the two-dimension space-time network constructed in section 2.2, we formulate our 

mathematical programing model that satisfies all requirements in Case A, which aims to optimize 

vehicle selection, activity-performing selection and route guidance for each household member so 

as to minimize the total household travel cost.  

Model 1: 

Objective function 

 

 



p Estji

p

stji

p

stji xc
),,,(

,,,,,, )(min       (1) 

Subject to 

(1) Flow balance constraint for each person: 
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(2) Vehicle selection constraint at vehicle selection node: 
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(3) Mandatory activity participation for one specific household member: 
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(4) Mandatory activity with multiple candidates for one household member: 
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(5) Discretionary activity for each household member 
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(6) Binary variable: ( , , , ) {0,1}p

i j t sx   

The objective function is to minimize the total system travel cost of all household members, 

where the travel cost ci,j,t,s on each arc has been predefined in the space-time network construction 

stage. Eq. (2) is the standard person-based flow balance constraint. Eq. (3) means that each 

household member can only choose one vehicle or don’t choose any vehicles (a.k.a. staying at 

home in our example). Eq. (4) represents that the activity duration arc of each mandatory activity 

of a specific household member should be visit exactly once by that household member. For 

example, if one household member must go to a company for work, one of working arcs must be 

visited exactly once by the household member. Eq. (5) ensures that if one household member needs 

to perform one type of activity with multiple candidate locations/time durations, he/she must 

choose one candidate to complete one activity instance among all options. For example, if one 

household member needs to go shopping and there are two candidate shopping malls, finally only 

one shopping mall should be visited exactly once to mark the completion state of the shopping 

activity. Inequality (6) represents the flexibility associated with those optional activities, as they 

could be performed or not, depending on the availability of those eligible household members and 

the required travel cost to reach those locations. In short, the proposed model in this section is a 0-

1 integer linear programing model, or more precisely, a multi-commodity flow optimization 

problem with a limited set of side constraints. This compact formulation enables the use of standard 

optimization solvers for a real-world transportation network. 

Table 6 offers a systematic comparison for detailed modelling techniques between our proposed 

model and classical model proposed by Recker (1995), specifically between our Case A and Case 

IV of Recker. 

Table 6: Comparison between Case IV (Recker, 1995) and our Case A. 

Modelling constraints Model R4: Case IV 

(Recker, 1995) 

Model 1 for our Case A Remarks 

(1) Time representation Continuous Discretized  

(2) Network 

representation 

Abstract physical traffic 

network 

Time-discretized space-

time physical traffic 

network 

 

(3) Objective function Eqns (1a)-(1f) with 

multiple goals 

Eqn (1) with travel cost 

only 

 

(4) Coupling constraints 

for vehicle selection of 

household member 

Constraints (40a)-(40b) Embedded in the 

modified physical 

network 

 

(5) Vehicle spatial 

connectivity constraints 

Constraints (2), (3), (4’), 

(5’) and (6) 

Constraints (2)-(6) in the 

space-time network for 

modelling constraints (5)-

(9) 

Model 1 needs to build 

one specific activity 

duration link for each 

activity to represent the 

activity process 

(6) Vehicle temporal 

constraints 

Constraints (7)-(10) 

(7) Household spatial 

constraints 

Constraints (26)-(30) 

(8) Household temporal 

constraints 

Constraints (31)-(33) 

(9) Illogical activity 

constraints 

Constraints (21)-(24) and 

(36)-(39) 
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(10) Vehicle capacity 

constraints 

Constraints (14)-(17) Always satisfied (solo 

driving pattern) 

(11) Activity time 

window constraints 

Constraints (11)-(13) and 

(34)-(35) 

Embedded in the space-

time network 

Model R4 provides a 

starting time window and 

return-home window for 

each activity, but in 

Model 1 each activity 

only has a starting time 

window and does not 

have the return-home 

window. Instead, each 

household member has a 

return-home window for 

his/her arrival at home 

(12) Travel cost/time 

budget constraint 

Constraints (18)-(19) Not considered but can be 

easily added 

 

(13) Variable definitional 

constraints  

Binary and continuous 

variables 

Binary variables only Model R4 is a mixed 

integer linear 

programming model. 

Model 1 is a 0-1 integer 

linear programming 

model. 

 

3.2.2 Space-time-state Network-based Optimization Model for Case B 

Before presenting the model for case B, it should be emphasized that the space-time-state network 

needs be pre-built and satisfies the given time windows of each activity and the predefined arc 

attributes, such as, the location of each node, the travel time or travel cost of each arc, and the 

logically feasible state transition in the three-dimension network. More importantly, the slate of 

passengers’ activity-performing states in the final solution for each vehicle exactly depends on the 

type of different activities, mandatory activity vs. discretionary activity. As shown in Fig. 11(a) in 

section 3.1.2, when the two activities are mandatory for passenger 2, the super starting state at the 

origin and super ending state at the destination are ["0,0"] and ["2,2"], respectively. On the other 

hand, when only one of two activities needs to be executed in a daily schedule in Fig. 11(b), the 

final arrival state could be ["2,0"] or ["0,2"], with a virtual ending state shown in Fig. 14(a).  

Similarly, if the two activities are optional, the final state could be one of four possible alternatives 

["0,0"], ["2,0"], ["0,2"] or ["2,2"], while the final selection of the optimal activity states is highly 

depending on the vehicle and time resources it consumed along the daily activity chain as well as 

the corresponding objective function in terms of benefit and travel costs. To satisfy the flow 

balance constraint for a network flow programming model, we need to build a virtual super ending 

state, as shown in Fig. 14(b), with connections from those possible ending states at the physical 

destination, e.g., four states in the above example, ["0,0"], ["2,0"], ["0,2"] and ["2,2"]. As a remark, 

there is no benefit/utility during the state transition to the virtual super ending state. This state-

transition based modeling paradigm could systematically capture the complicated possible 

interactions between multiple household members in a daily scheduling process. 
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Figure 14: (a) one of two activities should be performed; (b) two activities are optional. 

Based on the prebuilt 3D space-time-state network and given ride-sharing patterns, we now present 

our optimization model that satisfies all requirements in Case B that provides the optimal vehicle 

route guidance to the driver(s) to enable the scheduling of everyone’s activities. 

Model 2: 

Objective function 

 
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
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Subject to, 

(1) Flow balance constraint for each vehicle: 

   

     
   , , , , , , , , , ,

, , : , , , , , ' , , : , , , , ,

1 , , 0,0, ,0

1 , , 2, ,2 , ?

0

v v

i j t s w w i j t s w w

i t w i j t s w w E i t w j i s t w w E

j O v s DT v w

x x j D v s T w v

otherwise

 

 

    


      



   

  (8)  

(2) Mandatory activity performing constraint for the driver on the activity arcs (including ride-

sharing): 
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(3) Binary variable:  , , , , , 0,1v

i j t s w wx    

The objective function in Eq. (7) aims to minimize the total travel cost of the household, including 

the travel cost of vehicles and the benefit from everyone’s performed activities. Eq. (8) is the 
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standard vehicle-based flow balance constraint. With the given initial departure state [0,0, … ,0] 
and virtual ending states for each vehicle, the given activity requirements of each passenger have 

been embedded in the space-time-state network. Similar to Eq. (4), Eq. (9) ensures that the 

household driver can finish his/her mandatory activity with given time windows and time duration, 

which means that the activity duration arc of each mandatory activity should be visit exactly once 

by the driver/vehicle. The decision variable , , , , ,

v

i j t s w wx    is a binary variable that indicates whether 

or not the arc (i, j, t, s, w, w’) will be chosen in the space-time-activity path of vehicle 𝑣. Finally, 

the model we proposed is also a 0-1 integer linear programing model, which has one more 

dimension compared to Case A but still can be directly solved in GAMS in a reasonable-size 

network.  

In our Case B, the ridesharing pattern is prescribed, so the case can be viewed as a sub-problem of 

Case V in the paper (Recker, 1995). In Case V (Recker, 1995), it requires to build drop-off and 

pick-up nodes at each activity location and the set of available vehicles is expanded by designating 

driver seat and passenger seat(s) for each vehicle. The corresponding model has six categories of 

constraints, including vehicle temporal constraints, household member temporal constraints, 

vehicle spatial constraints, household member spatial constraints, vehicle capacity and budget 

constraints, and vehicle and household member coupling constraints. In our Case B, we also build 

drop-off and pick-up nodes for each activity with specific time windows. Since the ridesharing 

pattern is given a priori and modelled as a pair of drop-off-first then pick-up actions, we do not 

need identify the specific driver seat and passenger seat(s), and the coupling constraints for vehicle 

and household member is automatically coded through the state transition graph or explicitly taken 

as activity-performing constraints in Eq. (9). The temporal and spatial constraints of vehicle and 

household member are all embedded in the well-structured space-time-state network where the 

state transition graph defines the possible activity visit sequences of passengers/vehicles.  

It should be reminded that if we treat the start node and the end node of the activity duration link 

for the driver as a drop-off node and pick-up node, respectively, the driver’s activities can also be 

added into the cumulative activity-performing state. As a result, side constraints (9) can also be 

embedded in the space-time-state network, and the mathematical model above is reduced to be a 

time-dependent state-dependent least cost path-finding problem, which could be efficiently solved 

by dynamic programming with parallel computing technology on large-scale networks. One multi-

loop label correcting algorithm is designed in Appendix A. 

As a remark, it is also possible to define another state instead of cumulative activity-performing 

state to model Case B. Based on the specific requirements in one problem, different state 

definitions could lead to different model formulations (less or more side constraints), different 

network structure and computation complexity. One specific example can be found in recent 

papers by Mahmoudi and Zhou (2016) and Mahmoudi et al., (2016) where they applied vehicle 

carrying state {0,1}  and vehicle cumulative service state {0,1,2}  to solve the VRPPDTWs, 

respectively, with different model formulation, networks, and algorithms. Therefore, our proposed 

formulation for Cases A and B is not the only possible modelling choice, and one should examine 

the size of state variables and nature of complex constraints to reformulate the problem based on 

the preferred network structure and available space and time complexity requirements. 
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3.2.3 Link Capacity Constraints of Case C 

Since Case A considers a solo-driving pattern, one vehicle can only carry one person. In the 

mathematical model of Section 3.2.1, the person-based formulation is equivalent to the vehicle-

based model. After converting the hourly road capacity into "specific time interval-based travelling 

arc capacity in the space-time network, the tight arc capacity constraint can be formulated as, 

 Estjicapx stji

p

p

stji  ),,,(,,,,,,,  (10) 

To consider the “queue spillback” phenomenon, additional inequality needs be added to represent 

the link storage capacity constraint by using cumulative arrival counts and cumulative departure 

counts on that link. The detailed formulation can be found in the paper by Li et al. (2015). 

Similarly, since the mathematical model of Section 3.2.2 is vehicle-based formulation, the tight 

capacity constraint can be formulated as, 

 Ewwstjicapx wwstji

v

v

wwstji  )',,,,,(,',,,,,',,,,,  (11) 

Regarding the queue spillback and congestion propagation property from Newell’s simplified 

Kinematic wave model, the specific formulation is similar to the constraints in the paper by Li et 

al. (2015) which doesn’t consider the merge and diverge issues, but with one more dimension w. 

As stated at the end of Section 3.2.2, the driver’s activity participation constraint can also be 

embedded in the space-time-state networks so that case B becomes a time-dependent state-

dependent least cost path-finding problem. When the road resource capacity constraint (11) is 

recognized, there are two research directions to solve our proposed system optimal problem for 

large-scale real-world applications: 

 (1) Lagrangian relaxation: the link/arc capacity constraints can be dualized to objective function 

(7), so a new time-dependent state-dependent least cost path problem is transformed in the 

Lagrangian relaxation framework to obtain a lower bound. Since the optimal sub-gradient in binary 

integer programming model is hard to be obtained, the gap between the lower bound and the 

optimal solution cannot be well analytically proved. Meanwhile, when more side constraints from 

queue spillback consideration are taken into account, dualizing those constraints might not be a 

suitable approach. 

(2) Queue-based simulation: Since our proposed model is a system optimal problem considering 

complex traffic dynamics, we can apply event-based simulation to solve the large-scale problem 

where (i) the event-based simulation process is consistent with the time-discretized space-time-

state network, (ii) different travel flow models can be handled, and (iii) the marginal cost analysis 

(Ghali and Smith, 1995) can be used to find the least marginal cost path for system optimal 

solutions. The specific algorithm design can refer to the paper by Lu et al (2016), which proposed 

a simulation framework to solve agent-based eco-system optimal traffic assignment in congested 

networks. 
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4.0 NUMERICAL EXPERIMENTS 

4.1. Small-scale experiment for Case A 

The proposed model for Case A in Section 3.1 will be tested in the following network shown in 

Fig. 9(a), where there are two household members 𝒑𝟏 and 𝒑𝟐, two available vehicles 𝒗𝟏 and 𝒗𝟐, 

and four candidate activities 𝒂𝟏, 𝒂𝟐, 𝒂𝟑 and 𝒂𝟒. Household member 𝒑𝟏 can choose any one of the 

two vehicles, and has one mandatory activity 𝒂𝟏 to meet with others and one optional activity to 

swim. Household member 𝒑𝟐 can only choose 𝒗𝟐 and will go to one of the two shopping malls. 

The corresponding modified network is constructed in Fig. 9(b) where nodes 1 and 2 are origin 

nodes, nodes 3 and 4 are vehicle nodes, and node 5 is the final destination node. It is observed 

from the activity links that the time durations and costs for performing activities 1 to 4 are (60, -

20), (30, -10), (30, -15), and (20, -20), respectively. The specific time windows are listed in Table 

4. The waiting cost at each time interval is 0 at origin and destination nodes and 1 at activity nodes. 
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Fig. 15 (a) the physical network; (b) the corresponding modified network 

 

Table 7. The specific time window for each event 

Location (node) 1 2 5 11 13 15 17 

Time window [1, 3] [1, 3] [1, 130] [15, 18] [15, 18] [18, 20] [86, 90] 

 

Our proposed 0-1 integer linear programming model for this example is solved in GAMS. The 

related source code can be downloaded at the website: 

https://www.researchgate.net/publication/306459026_Experiment_1_1. Finally, the total travel 

cost of this household is 24. The specific optimal solution is listed in Table 5, and can be also 

illustrated in Fig. 10.   

Table 8. The optimal solution for each household member 

https://www.researchgate.net/publication/306459026_Experiment_1_1
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Household member 𝑝1: 𝑥𝑖,𝑗,𝑡,𝑠
1 = 1 Household member 𝑝2: 𝑥𝑖,𝑗,𝑡,𝑠

2 = 1 

𝑖 𝑗 𝑡 𝑠 𝑖 𝑗 𝑡 𝑠 

1 3 3 4 2 4 1 2 

3 6 4 5 4 6 2 3 

6 7 5 15 6 9 3 15 

7 11 15 16 9 13 15 16 

11 12 16 76 13 14 16 46 

12 7 76 77 14 9 46 47 

7 6 77 87 9 6 47 59 

6 5 87 88 6 5 59 60 
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Fig. 16 The trajectories of two household members 

It is observed that 𝑝1 should not go to activity 4 (swimming) and 𝑝2 does not need to go to activity 

3 (shopping mall 2) due to the trade-off between the required travel costs and corresponding 

activity benefits. Therefore, if we increase the benefits of activities 3 and 4 to 17 and 23, 

respectively, the optimal solution will be that (i) the total cost is 22, (ii) household member 𝑝1 will 

visit activities 1 and 4 sequentially and then go back home, and (iii) household member 𝑝2 will 

visit activity 3 (shopping mall 2) rather than activity 2. Meanwhile, if we assume that the link 

travel time increases due to tight link capacity constraints when more other household activity trips 

are considered, the activity pattern of this household is expected to change again. In short, the final 

activity selection and route guidance are comprehensively evaluated and selected based on the 

possible time-varying travel cost in the physical network, available time windows, and the benefits 

of performing individual available activities. 

4.2. Small-scale experiment for Case B 

This section will test our proposed model for Case B in Section 3.2 based on the network shown 

in Fig. 11(a), where there are three household members with one driver and two passengers. They 

will share one vehicle to perform their daily activities. The driver 𝒑𝟏 has one mandatory activity 

𝒂𝟏 and needs to drop off and pick up two passengers to conduct their activities. Passenger 𝒑𝟐 has 
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one mandatory activity 𝒂𝟐  and one optional activity 𝒂𝟑 , and passenger 𝒑𝟑  has one mandatory 

activity 𝒂𝟒. The corresponding modified network is plotted in Fig. 11(b) where the activity of the 

driver is represented by one specific activity link and each activity node of passengers is added 

with two additional nodes as drop-off node and pick-up node.  
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Fig. 17 (a) the physical network; (b) the corresponding modified network 

Based on the procedure explained in Section 3.2, the state has three slots as [_, _, _], of which the 

first two slots are for activities 2 and 3 of passenger 𝑝2 and the last slot is for activity 4 of 

passenger 𝑝3. We still use cumulative activity-performing state of {0,1,2} as before. All possible 

states that can be generated by algorithms are listed in Table 6. 

Table 9. Enumeration of all possible states  

State ID State representation State ID State representation State ID State representation 

1 [0, 0, 0] 9 [0, 0, 1] 17 [0, 0, 2] 

2 [1, 0, 0] 10 [1, 0, 1] 18 [1, 0, 2] 

3 [2, 0, 0] 11 [2, 0, 1] 19 [2, 0, 2] 

4 [0, 1, 0] 12 [0, 1, 1] 20 [0, 1, 2] 

5 [0, 2, 0] 13 [0, 2, 1] 21 [0, 2, 2] 

6 [2, 1, 0] 14 [2, 1, 1] 22 [2, 1, 2] 

7 [1, 2, 0] 15 [1, 2, 1] 23 [1, 2, 2] 

8 [2, 2, 0] 16 [2, 2, 1] 24 [2, 2, 2] 

 

In addition, as noted in Section 3.1, specific time windows can also eliminate those impossible 

transitions. In this example, the time window for each event is listed in Table 7. 

 

 

Table 10. The specific time window for each event 
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Location 

(node 

number) 

Node 1 

(departure) 

Node 1 

(arrival) 

Node 

10 

Node  

11 

Node 

12 

Node  

13 

Node  

8 

Node  

9 

Node  

6 

Time 

window 
[1, 3] [1, 170] 

[15, 

16] 

[114, 

115] 

[28, 

30] 

[127, 

139] 

[127, 

129] 

[137, 

139] 
[41, 43] 

 

Based on the time window information, it is impossible that (i) activity 3 happens before activity 

2, (ii) the drop-off event and pick-up event of activity 4 happens before those of activity 2, 

respectively, and (iii) the drop-off event and pick-up event of activity 3 happens before those of 

activity 4. Therefore, the remaining possible states will be [0, 0, 0], [1, 0, 0], [1, 0, 1], [2, 0, 1], [2, 

0, 2], [2, 1, 1], [2, 1, 2], and [2, 2, 2]. For the convenience of implementation in algorithms, we 

can label each state with one corresponding ID, such as, using 1 to 8 to represent the eight states 

above sequentially. The final possible state transition is demonstrated in Fig. 12, where virtual arcs 

with virtual ending state are also built for developing a single-origin-to-single-destination problem. 

In short, the possible state transition can be reduced with consideration of time windows before 

constructing a space-time-state network. Meanwhile, it is also feasible and straightforward to list 

all possible state transition without involving time windows and then consider the relation among 

activity locations, time windows, and state transition to construct the space-time-state network 

directly. As a result, those impossible state transition can also be eliminated when solving our 

mathematical model, but the price of this method is to require a bigger computer memory to store 

all possible state transition and a more complex space-time-state network. 

[1, 0, 1]

[2, 1, 1]

[2, 0, 1]

[2, 0, 2]

[2, 1, 2]

[1, 0, 0]

[0, 0, 0]
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Pick up passenger     at node 133p

Pick up passenger     at node 112p

Drop off passenger     at node 82p

Pick up passenger     at node 133p

Same vertex for illustration

[2, 2, 2]

Virtual arc

_][_,

_][_,

_][_,
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Pick up passenger     at node 92p

State 1

State 2

State 3

State 4

State 5

State 7

State 6

State 8

State 8

 
Fig. 18 The possible state transition graph 

In addition, the benefit or negative cost of performing activity for all passengers is assumed to 

occur during the state transition at drop-off nodes, as illustrated in Section 2.3. The negative travel 

costs for activities 1,2, 3, and 4 are given as -20, -10, -15, and -15. Based on the constructed space-

time-state network, our proposed 0-1 integer linear programming model for this example is solved 

in GAMS. The related source code can be downloaded at the website: 

https://www.researchgate.net/publication/306458887_Experiment_2_1. Finally, the total travel 

cost of this household is 40. The specific optimal solution is listed in Table 8.   

Table 11. The optimal solution for the household 

https://www.researchgate.net/publication/306458887_Experiment_2_1
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The only vehicle: 𝑥𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′
1 = 1 

𝑖 𝑗 𝑡 𝑠 𝑤 𝑤′ Remarks 𝑖 𝑗 𝑡 𝑠 𝑤 𝑤′ Remarks 

1 4 3 15 1 1 Depart at home at time 3 7 2 103 104 3 3  

4 10 15 16 1 1  2 4 104 112 3 3  

10 10 16 16 1 2 

State transition (passenger 

𝑝2 is dropped off at node 

10 for activity 2) 

4 4 112 113 3 3  

10 4 16 17 2 2  4 11 113 114 3 3  

4 5 17 27 2 2  11 11 114 114 3 4 

State transition 

(passenger 𝑝2 is picked 

up at node 11 for activity 

2) 

5 12 27 28 2 2  11 4 114 115 4 4  

12 12 28 28 2 3 

State transition (passenger 

𝑝3 is dropped off at node 

12 for activity 4) 

4 5 115 125 4 4  

12 5 28 29 3 3  5 5 125 126 4 4  

5 2 29 39 3 3  5 13 126 127 4 4  

2 2 39 40 3 3  13 13 127 127 4 5 

State transition 

(passenger 𝑝3 is picked 

up at node 13 for activity 

4) 

2 2 40 41 3 3  13 5 127 128 5 5  

2 6 41 42 3 3  5 2 128 138 5 5  

6 6 42 43 3 3  2 1 138 148 5 5 
Arrive at home at time 

148 

6 7 43 103 3 3 
The driver 𝑝1 performs 

activity 1 
1 1 148 149 5 8 

State transition (from 

final state to assumed 

final state, the virtual arc 

cost is 0) 

 

It is observed that passenger 𝑝2  will not perform activity 3 due to the trade-off between the 

required travel costs and corresponding activity benefits. If we increase the benefit of activity 3 

from 15 to 20, the optimal solution will change to be that (i) the total cost is 37, and (ii) activity 3 

will be performed by passenger 𝑝2. Moreover, when the link travel time is modelled as a time-

dependent attribute due to road congestion effect, the final household activity pattern is expected 

to change accordingly. 

4.3. Medium-scale experiment within a Lagrangian relaxation framework 

using cumulative activity-performing state 

This section aims to examine the computation efficiency of using cumulative activity-performing 

state for a general HAPP in a medium-scale transportation network.  We choose a subarea of 

Phoenix regional network as our study case with 1186 nodes, 3164 links and 387 activity locations, 

shown in Fig. 13. The given input data for this experiment are listed in Table 9. 

Table 12. The input data of this experiment 
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age

nt_

id 

agen

t_ty

pe 

from_n

ode_id 

to_no

de_id 

departur

e_time_st

art 

departure_

time_windo

w 

arrival_

time_sta

rt 

arrival_ti

me_wind

ow 

base_pro

fit 

option

al 

1 0 23 23 30 5 40 5 150 0 

2 0 24 24 10 20 70 10 133.33 0 

3 0 26 26 40 10 60 5 83.33 0 

4 0 25 25 20 20 80 5 150 0 

5 0 39 39 70 5 90 5 133.33 0 

6 0 35 35 20 5 110 5 183.33 0 

7 0 38 38 35 10 120 5 133.33 1 

Ve

h 1 
1 13 13 1 1 120 1   

Ve

h 2 
1 13 13 1 1 120 1   

“agent_id” could be activity id or vehicle id. “agent_type” = 1 for vehicles, and 0 means activities. 

Field “from_node_id” and “to_node_id” are the same and define (i) the activity performing 

location or (ii) vehicle’s origin/destination (home). “departure_time_start” defines the start time 

of activity or vehicle departure, and “depature_time_window” is the feasible time window duration. 

“arrival_time_start”, and “arrival_time_window” defines the activity/vehicle end time window. 

“base_profit” is the benefit/utilities of performing the corresponding activity. The “optional” flag 

indicates that if an activity is optional, its value is 1, otherwise it is mandatory as 0. As a result, 

the problem becomes that two vehicles at home (node 13) plans to perform 6 mandatory activities 

and 1optional activity. 

 
Fig. 19 One subarea of Phoenix regional transportation network 

To solve this problem, we use cumulative activity-performing state {0,1,2} to record the activity 

completion process. It is reminded that the maximum number of possible states could be 37 for 7 

activities. In order to model the competition for one activity by two vehicles simultaneously, we 

dualize that constraint to our objective function and adopt the forward dynamic programming 

algorithm within a Lagrangin relaxation framework, which can refer to the process of solving the 
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VRPPDTW for multiple vehicles by Mahmoudi and Zhou (2016). The related C++ source code 

and data set can be downloaded at the website: https://github.com/xzhou99/Agent-

Plus/tree/master/HAPP. Table 10 lists the impact of different number of activities on the CPU 

computation time of 5 Lagrangian iterations (for distributing different tasks to two vehices) and 

computer memory usage. In the above case, the vehicle/activity preference for household members 

is not considered. If a pre-specified vehicle-to-activity mapping is given, the search space in the 

space-time-state network could be further reduced.   

Table 13. CPU computation time and memory use under different number of activities 

# of activities 

Maximum numbers of 

activity performing 

states 

CPU time (seconds) RAM (GB) 

4 81 15.5 0.3 

5 243 38.2 1.3 

6 729 112.3 3.6 

7 2187 337.4 11.3 

4.4. Large-scale experiment within a simulation-based framework with 

simplified activity representation and road capacity constraints 

This section aims to present the initial test result of the simulation-based approach for system 

optimal dynamic vehicle routing under road capacity constraints. The Salt Lake City regional 

traffic network is selected shown in Fig. 14 where there are 13,923 nodes, 26,768 links and 2,302 

zones. The total number of simulated vehicles is about 1.35 million from 15:00 to18:00. The traffic 

flow model chooses point queue model, which just considers the tight road capacity constraints. 

The details of implementing spatial queue model and Newell’s simplified kinematic wave model 

by simulation can be found in the paper (Zhou and Taylor, 2014). 

 
Fig. 20 Salt Lake City regional traffic network (Lu et al., 2016) 

https://github.com/xzhou99/Agent-Plus/tree/master/HAPP
https://github.com/xzhou99/Agent-Plus/tree/master/HAPP
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This experiment can be treated as a special version of Case A. Each origin zone is analogous to 

one household and those destination zones can be viewed as those mandatory activity locations. 

The process that vehicles depart from origin to destination is like that household members 

complete their mandatory activities with flexible time windows. The simulated average trip time 

index (mean trip simulated travel time/trip free-flow travel time) of 100 iterations is depicted in 

Fig. 15 and finally shows a convergence pattern. A parallel computing technique (Qu and Zhou, 

2017) is embedded in the simulation process, and the search process for single activity is extremely 

simple compared to the full scale space-time-state search presented in the medium-scale example, 

so the computational time for one iteration is just 1 min 25sec in our workstation with 40 available 

CPU threads and 192G memory. As stated in the paper (Lu et al., 2016), this simulation algorithm 

still needs further improvements on path marginal travel time calculation and step size 

optimization of each iteration. 

 
Fig. 21 Average trip time index of each iteration 

5.0 CONCLUSIONS 

Despite all advancements in the real-time traffic control, DTA modelers still seek for a robust 

framework to extend their existing model (1) from single-OD demand to trip chaining, and (2) 

from driving your own mode to shared-use vehicle systems. In this research, a multi-resolution 

simulation platform is proposed to integrate ABM and DTA for better capture the interactions of 

travelers, activity, and traffic dynamics. In addition, by embedding a set of hard constraints into a 

well-structured (space-time and space-time-state) network structure, we reformulate two difficult 

cases in HAAP using a person-based or vehicle-based network flow programming model with very 

few side constraints. Meanwhile, the tight road capacity is highly considered for capturing the 

underlying congestion effect for the cases above. The numerical experiments demonstrate our 
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proposed methodology and analyze the impacts of different activity benefits on the final vehicle 

routing and household member activity selection.  
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APPENDIX A 

 

MULTI-LOOP LABEL-CORRECTING ALGORITHM 

  

 
𝐿𝑖,𝑡,𝑤(𝑣) ∶=  0 // label cost at vertex (𝑖, 𝑡, 𝑤) for vehicle 𝑣 

𝐿𝑗,𝑠,𝑤′(𝑣) ∶=  +∞; for each vertex (𝑗, 𝑠, 𝑤′) ∈ 𝑅 − {(𝑖, 𝑡, 𝑤)} // label cost at vertex (𝑗, 𝑠, 𝑤′) for vehicle 𝑣 

node pred of vertex (. , . , . , . ) ∶=  −1;  

time pred of vertex (. , . , . , . ) ∶=  −1; 

state pred of vertex (. , . , . , . ) ∶=  −1; 

𝐿𝐼𝑆𝑇: = {(𝑖, 𝑡, 𝑤)}; 

While 𝐿𝐼𝑆𝑇 ≠ ∅ do 

for each time 𝑡 ∈ [0, 𝑇] do // adding time window of each activity can further reduce the searching region 

begin 

for each state 𝑤 do // the number of states can be reduced by the activity sequence for each passenger 

begin 

for each link (𝑖, 𝑗) do // 

begin 

derive downstream state 𝑤’ based on the feasible state transition  

derive arrival time 𝑠 = 𝑡 + 𝑇𝑇𝑖,𝑗,𝑡,; 

if (𝐿𝑖,𝑡,𝑤(𝑣)  + 𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′(𝑣)  < 𝐿𝑗,𝑠,𝑤′(𝑣)) 

begin 

𝐿𝑗,𝑠,𝑤′ ∶=  𝐿𝑖,𝑡,𝑠(𝑣𝑢)  + 𝑐𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′(𝑣) ; // label update 

node pred of vertex (𝑣, 𝑗, 𝑠, 𝑤′) ∶= 𝑖;  

time pred of vertex (𝑣, 𝑗, 𝑠, 𝑤′) ∶= 𝑡;  

state pred of vertex (𝑣, 𝑗, 𝑠, 𝑤′) ∶= 𝑤; 

if vertex (𝑗, 𝑠, 𝑤′) ∉ 𝐿𝐼𝑆𝑇 then add vertex (𝑗, 𝑠, 𝑤′) to 𝐿𝐼𝑆𝑇 

end; 

end; // for each link 

end; // for each state 

end; // for each time 
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