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EXCUTIVE SUMMARY 

The increasing use of internet as a major ticket distribution channel has resulted in passengers 

becoming more strategic to fare policy. This potentially induces passengers to book the ticket 

well in advance in order to obtain a lower fare ticket, and later adjust their ticket when they are 

sure about trip scheduling. This is especially true in flexible refund markets where ticket 

cancellation and exchange behavior has been recognized as having major impacts on revenues.  

Therefore, when modeling this behavior, it is important to account for the characteristic of the 

passenger that optimally makes decision over time based on trip schedule and fare uncertainty.  

In this paper, we propose an inter-temporal choice model of ticket cancellation and exchange for 

railway passengers where customers are assumed to be forward looking agents. A dynamic 

discrete choice model (DDCM) is applied to predict the timing in which ticket exchange or 

cancellation occurs in response to fare and trip schedule uncertainty. Passengers’ decisions 

involve a two step process. First, the passenger decides whether to keep or adjust the ticket. Once 

the decision to adjust the ticket has been made, the passenger has the choice to cancel the ticket 

or to change departure time. The problem is formulated as an optimal stopping problem, and a 

two step look-ahead policy is adopted to approximate the dynamic programming problem.  

The approach is applied to simulated and real ticket reservation data for intercity railway trips. 

Estimations results indicate that the DDCM provides more intuitive results when compared to 

multinomial logit (MNL) models. In addition, validation results show that DDCM has better 

prediction capability than MNL. The approach developed here in the context of exchange and 

refund policies for railway revenue management can be extended and applied to other industries 

that operate under flexible refund policies. 
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1.0 INTRODUCTION AND LITERATURE REVIEW 

Ticket cancellation and exchange behavior has significant impact on the revenue management 

(RM) system (Iliescu, 2008). In flexible refund markets, passengers are inclined to book their 

tickets in advance in order to obtain lower fares, and to exchange/cancel the tickets when 

changes in their schedule intervene. Moreover, the use of internet as a major ticket distribution 

channel has affected the behavior of customers who have now better access to fare information, 

and are becoming more strategic in their choices. Reliable predictions in cancellation and 

exchange decisions are believed to enable analysts to derive more efficient overbooking and 

refund/exchange policies. RM applications to air transportation have demonstrated to 

significantly reduce the number of empty seats on flights for which there is actually a potential 

demand (Neuling, Riedel et al. 2004). 

Existing literatures on choice modeling for revenue management (RM) have mostly ignored 

temporal effects in individual decision making. Although static models enable analysts to 

address the dependence of demand on the set of products offered by the provider, they are unable 

to model forward looking agents, who would typically wait and see before making the final 

decision. There is an emerging research effort toward dynamic frameworks that account for 

inter-temporal variability in choice modeling. Existing research on inter-temporal price variation 

that considers forward-looking consumers includes Stokey (1979), Landsberger and Meilijson 

(1985), and Besanko and Winston (1990). These papers are based on the assumptions that 

customers are present in the market throughout the entire season, and that the seller’s inventory 

is practically unlimited. Customers purchase at most one unit during the season, and they 

optimally select the timing of their purchases so as to maximize individual surplus. Su (2007) 

studied a model of strategic customer by identifying four customer classes, different from each 

other in two dimensions: high versus low valuations and strategic (i.e., patient) versus myopic 

(impatient) behavior. The price path is assumed to be predefined by the seller, and after the 

specific pricing policy is announced, strategic consumers can weigh the benefits of waiting for a 

discount (if any is offered). The paper demonstrates that the joint heterogeneity in valuations and 

in the degree of patience is crucial in explaining the structure of optimal pricing policies.  

Behavior of ticket cancellation and exchange is clearly influenced by demand uncertainty over 

time. Stokey (1979) showed that offering a single price can be optimal when inter-temporal 

differentiation is feasible, but assumes that consumers have perfect information on the future 

evolutions of their valuations. In Png’s (1989), consumers face both uncertainty in their 

valuations as well as uncertainty about the capacity. Gale and Holmes (1992) examined advance 

purchase discounts where a monopoly firm offers two flights at different times and where 

consumers are assumed to not know their preferred flight in advance. In this study, advance 

purchase discounts are used to smooth the demand of the consumers with a low cost of time. 

Gallego and Phillips (2004) used a similar approach in their work on flexible products. Dana 

(1998) showed that advance purchase discounts may improve the revenues of price-taking firms 

when consumer demand is uncertain. In this case, firms in competitive markets can improve 

profits by offering advance purchase discounts. Shugan and Xie (2000) developed an inter-

temporal consumer choice model for advance purchase which distinguishes the act of purchasing 
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and consumption. The model accounts for buyer’s valuation of services that depends on buyer 

states at the time of consumption and assumes the product capacity to be unlimited. In a later 

paper, Xie and Shugan (2001) extended this analysis of advance selling to the finite-capacity 

case and introduced a refund option. Ringbom and Shy (2004) proposed a model where 

consumers have the same deterministic valuation (maximum willingness to pay) for a certain 

service of product but different probabilities of showing up; capacity is assumed to be infinite 

and prices are endogenously given; results show that by adjusting partial refunds it is possible to 

endogenize the participation rates. Aviv and Pazgal (2008) considered an optimal pricing 

problem of a fashion-like seasonal good in the presence of strategic customers (forward-looking 

characteristics) with a time-varying valuation pattern. Customers have partial information about 

the availability of the inventory and their arrival is assumed to be time dependent. The system is 

characterized by a leader follower game under Nash equilibrium where customers select the 

timing of their purchase so as to maximize individual surplus while the seller maximizes 

expected revenue. Gallego and Sahin (2010) developed a model of customer purchase decision 

with evolution of trip schedule valuations over time. This analysis considers partial refundable 

fare based on a call option approach; each customer updates his/her valuation over time and 

decides when to issue and when to exercise options in a multi-period temporal horizon.  

Meanwhile, a number of studies on demand uncertainty have focused on the supply chain 

management approach. To our knowledge, Spinler et al. (2002, 2003) are among the first in the 

operations management literature that incorporated consumer’s uncertainty in valuations into 

revenue management, and the first to study partially refundable fares. Other studies on uncertain 

valuations for traditional revenue management problems include Levin et al. (2009), Yu et al. 

(2008), and Koenigsberg et al. (2006). There is also an emerging literature that deals with 

strategic consumers who develop expectations on future prices and product availability based on 

the observed history of prices and availabilities (e.g. Besanko and Winston 1990, Gallego et al., 

2009, Liu and van Ryzin, 2005, Aviv and Pazgal, 2008).  

In the context of ticket cancellation and exchange model, a number of papers have been 

published in the past decade. Garrow and Koppelman (2004a) proposed an airline cancellation 

and exchange behavior model based on disaggregate passenger data; airline travelers’ no-show 

and standby behavior is modeled using a multinomial logit (MNL) model estimated on domestic 

US itineraries data. The approach enables the identification of rescheduling behavior based on 

passenger and itinerary characteristics and supports a broad range of managerial decisions. 

Variable used to identify passenger rescheduling behavior are traveler characteristics, familiarity 

to the air transportation system, availability of viable transportation alternatives, and trip 

characteristics. Garrow and Koppelman (2004b) extended their work by introducing a nested 

logit structure and demonstrated the benefit of directional itinerary information. The nested logit 

(NL) tree groups show, early standby, and late standby alternatives in one nest and no show 

alternative in another nest. The analysis emphasized the superiority of nested logit model 

structure over multinomial logit model and the importance of distinguishing between outbound 

and inbound itineraries. Iliescu et al. (2008) further expanded the work of Garrow and 

Koppelman (2004a, 2004b) by proposing a discrete time proportional odds (DTPO) model to 

predict the occurrence of ticket cancellation and exchange based on the Airline Reporting 

Corporation (ARC) data. The cancellation probability is defined as a conditional probability that 

a purchased ticket will be canceled in a specific time period given it survived up to that point 

(hazard probability). Results show that the intensity of cancellation is strongly influenced by the 
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time from the ticket purchase and the time before flight departure as well as by other covariates 

(departure day of week, market, group size, etc.). Specifically, higher cancellation is observed 

for recently purchased ticket and ticket which associated departure dates are near. Graham et al. 

(2010) adopted discrete time proportional odds (DTPO) model to investigate when and why 

travelers make changes to their airline itineraries. Analysis is based on a nine month period panel 

data of university employees in Atlanta, US. The analysis focused on tickets issued less than 60 

days before the outbound departure date. The use of panel data enabled the analysts to study how 

cancellation behavior differs by frequency of travel as well as by carrier. The deriving empirical 

analysis identifies the reasons why business travelers exchange their ticket, and concluded that 

differences exists between outbound and inbound itineraries, between exchange and cancellation 

rates for frequent and infrequent business travelers, across air carriers and timing when refund 

and exchange events occur. The results also indicate that the timing of cancellation exhibit a 

strong pattern, i.e., ticket changes are two to three time more likely to happen within the first 

week after purchase and are more likely to occur as the departure date approaches.   

In summary, while many attempts have been made to understand the impact of choice behavior 

in revenue management, the issue of passenger uncertainty over trip scheduling has not been 

extensively explored. Behavior of ticket cancellation and exchange is clearly influenced by the 

evolution of passenger certainty about trip making over time. Specifically, to date none of the 

existing studies allows for departure time specific exchange decision in the cancellation and 

exchange model while accounting for inter-temporal behavior of passengers. Thus, our study 

aims to fulfill this gap.  

In this paper, we propose a dynamic framework based on discrete choice models developed in 

the context of railway revenue management. Dynamic discrete choice models have been firstly 

developed in economics and applied to study a variety of problems that include fertility and child 

mortality Wolpin (1984), occupational choice Miller (1984), patent renewal Pakes (1986), and 

machine replacement Rust (1987). In dynamic discrete choice structural models, agents are 

forward looking and maximize expected inter-temporal payoffs; the consumers get to know the 

rapidly evolving nature of product attributes within a given period of time and different products 

are supposed to be available on the market. The timing of consumers' purchases is formalized as 

an optimal stopping problem where the agent (consumer) must decide on the optimal time of 

purchase (Rust, 1987).  

To the authors’ knowledge, this is the first attempt to incorporate dynamics in individual choices 

to revenue management modeling and in particular to formalize tickets’ exchange and cancel 

decisions for railway intercity trips. The railway operator in consideration offers fully refundable 

fare and provides flexibility in ticket exchange which makes ticket cancellation and exchange 

decision to be very crucial to the RM system. Passengers are incentivized to purchase ticket early 

and adjust their ticket later when they are more certain about trip schedules. The model accounts 

for passengers’ trip adjustment choice and explicitly specifies the probability of exchanging 

ticket as a function of the set of available exchange tickets. The choice set is constituted by all 

departure times offered by the railway operator between a specific origin destination pair. 

The remainder of the paper is organized as follows: in Section 2, we analyze the data used for 

our model focusing on cancellation and exchange behavior. In Section 3, we formulate a 

dynamic discrete choice model and we formalize the algorithm used for the dynamic 
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programming problem under study. Section 4 presents numerical results from a simulated 

experiment. Section 5 demonstrates the superiority of the method proposed for modeling 

exchange and cancel decisions based on real data. Finally, conclusions drawn from the empirical 

analysis and future research directions are outlined in Section 6. 
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2.0 DATA ANALYSIS 

The data set used for the analysis has been extracted from intercity railway ticket reservation 

records registered in March 2009. This data set contains 155,175 individual transactions 

expressed in terms of ticket purchase, cancellation, and exchange over time prior to departure. 

Ticket exchange decision is defined as the exchange of the original ticket for a new one and the 

payment of an additional cost depending on the operator’s exchange policy. In our case study, 

passengers are not charged with exchange fee, but have to pay the difference between the new 

and the old ticket fare. In the case of ticket exchange, passenger either obtains a new ticket right 

away or after several time periods (repurchase). Ticket cancellation is defined as the final 

cancellation of the ticket with the passenger obtaining ticket refund depending on the operator’s 

refund policy.  

Table 1 shows the descriptive statistics derived from the dataset in use. Ticket exchange and 

cancellation account for 18.22% and 29.75% of the sample respectively. Single exchange and no 

more than two exchanges account for 80.82% and 95.79% of the exchange ticket respectively 

(14.73% and 17.46% of the sample). We observe that only 2.26% of the sample make an 

exchange prior to ticket cancellation; thus in our model, we assume that passenger make ticket 

adjustment no more than once (either exchange or cancel). Based on this assumption, data are 

constructed to model the first exchange decision in case of multiple exchange, and model final 

cancellation in case passenger both exchange and cancel. We do not consider passenger who 

change origin/destination or reschedule departure day because the share of these population is 

relatively low accounting for 3.08% and 1.90% (0.91% + 0.99%) of the sample respectively. 

Consideration of changes in origin/destination and departure day decisions requires the definition 

of a choice set that is significantly different across passengers and no information is available to 

construct a realistic choice set for each passenger. This results in the focused sample population 

to be composed of entire sample (155,175) subtracted by passengers with origin/destination 

change and departure day change (a, b, and c in Table 1) which results in 147,457 individual 

ticket reservation records of the sample. 

Table 1: Data Overview. 

Ticket exchange 

No. 

reservation 

% of 

exchange % of total 

1. Total exchange  28,280 100.00% 18.22% 

1.1 Number of exchange 

   Exchange (one time) 22,857 80.82% 14.73% 

Exchange (one or two times) 27,088 95.79% 17.46% 

Exchange (more than 2 times) 1,193 4.22% 0.77% 

1.2 Type of exchange 

   Change OD (a) 4,773 16.88% 3.08% 

No change (either OD or departure) 7,001 24.76% 4.51% 
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Reschedule departure day (b) 1,406 4.97% 0.91% 

Reschedule departure time 13,565 47.97% 8.74% 

Reschedule departure day and time (c) 1,539 5.44% 0.99% 

Ticket Cancellation 

No. 

reservation 

% of 

cancel % of total 

2. Total final cancellation 46,158 100.00% 29.75% 

2.1 Final cancellation after exchanged 3,506 7.60% 2.26% 

Total (Northbound, March 2009, Coach 

Class) 155,175   100.00%  

Effective Sample (Total - (a) - (b) - (c)) 147,457   95.03%  

 

The problem is further simplified by considering only passengers who made weekday trips from 

south end terminal station to 3 major destinations (named STA1, STA2, and STA3), and 

purchased the ticket 15 days before departure which results into a time horizon of 16 days for 

each decision maker (from 15 days before departure until departure day). This results in 696 

valid individual passenger records for model estimation.  
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3.0 PROBLEM FORMULATION 

3.1 PASSENGER STOPPING PROBLEM 

We consider a passenger set 𝔗 = {1, … , 𝑀} where each passenger 𝑖 ∈ 𝔗 can be in one of the two 

possible states 𝑠𝑖𝑡 = {0,1} in time period 𝑡 ∈ {0,1, … , 𝑇}. Passenger is considered to be in the 

decision process when  𝑠𝑖𝑡 = 0  and out of the decision process when 𝑠𝑖𝑡 = 1. In each time 

period 𝑡, passenger 𝑖 in state 𝑠𝑖𝑡 = 0 has two options: 

1. To make change to the ticket (either exchange or cancel). Once decided to adjust the  

ticket, the passenger makes the choice of 𝑗 ∈ ℑ𝑡  which is composed of exchange 

(departure time specific exchange decision at time period 𝑡) and cancel alternatives and 

obtain a terminal period payoff 𝑢𝑖𝑗𝑡. The utility of exchange is primarily a function of 

fare difference between the original and the exchange ticket at time period 𝑡. The utility 

of ticket cancellation is primarily a function of trip characteristics, and the refund amount.   

2. To keep the original ticket and obtain a one-period payoff 𝑈𝑖𝑘𝑡, which is normalized to 

have a mean of zero before departure day and equal to 𝑐 on departure day. 

The two-step decision process assumes that, at each time period, the passenger decides whether 

to keep or change the ticket. The optimal time period in which passenger decides to change the 

ticket is denoted by 𝜏 , where the passenger chooses the ticket change alternative 𝑗𝑡
∗  that 

maximizes the utility from ℑ. The passenger decision is the optimal stopping problem at time 𝑡: 

 𝐷(𝑢𝑖1𝑡, … , 𝑢𝑖𝐽𝑡, 𝑈𝑖𝑘𝑡, 𝑡) = max
𝜏

{∑ 𝑈𝑖𝑘𝑡 + 𝐸 [max
𝑗∈ℑ

𝑢𝑖𝑗𝜏]

𝜏−1

𝑘=𝑡

} (1) 

Let 𝜐𝑖𝑡 = max
𝑗∈ℑ

𝑢𝑖𝑗𝑡 . We assume that 𝜐𝑖𝑡  is Gumbel distributed with a scale factor equals to 1. 

Based on the dynamic programming theory (Rust, 1994), the passenger’s decision can be 

transformed from into: 

 𝐷(𝜐𝑖𝑡, 𝑈𝑖𝑘𝑡) = max{𝜐𝑖𝑡, 𝑈𝑖𝑘𝑡 + 𝐸[𝐷(𝜐𝑖,𝑡+1)] } (2) 

The reservation utility is defined by function: 

 𝑊𝑖𝑡 = 𝑈𝑖𝑘𝑡 + 𝐸[𝐷(𝜐𝑖,𝑡+1)] (3) 

And consider the optimal policy: 

 {
𝜐𝑖𝑡  if  𝜐𝑖𝑡 ≥ 𝑊𝑖𝑡

𝑊𝑖𝑡 otherwise
 (4) 
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The problem can be simplified as: 

 𝐷(𝜐𝑖𝑡) = max (𝜐𝑖𝑡, 𝑊𝑖𝑡) (5) 

3.1.1 Keep Ticket Probability 

The passenger 𝑖 will keep the ticket at time 𝑡 when 𝑊𝑖𝑡 ≥  𝜐𝑖𝑡. Let 𝜋𝑖0𝑡 denotes the probability of 

keeping ticket until the next period, which can be written as: 

              𝜋𝑖0𝑡 = 𝑃[ 𝜐𝑖𝑡 ≤ 𝑊𝑖𝑡] = 𝑃[keep|𝑠𝑖𝑡 = 0] (6) 

            = 𝐹𝜐[𝑊𝑖𝑡,  𝜐𝑖𝑡] = 𝑒−𝑒−(𝑊𝑖𝑡−𝑟𝑖𝑡)
 (7) 

Where 𝑟𝑖𝑡 is the mode of the distribution of  𝜐𝑖𝑡 that is: 

 𝑟𝑖𝑡 = ln 𝐺(𝑒𝑉𝑖1𝑡 , … , 𝑒𝑉𝑖𝑗𝑡) (8) 

3.1.2 Change Ticket Probability 

The probability of ticket change is 𝑃[change|𝑠𝑖𝑡 = 0] = 1 − 𝜋𝑖0𝑡 and the choice specific ticket 

change probability is: 

 𝜋𝑖𝑗𝑡       = 𝑃[𝑈𝑖𝑗𝑡 ≥ 𝑈𝑖𝑙𝑡, ∀𝑙 ≠ 𝑗, 𝑢𝑖𝑡 ≥ 𝑊𝑖𝑡] (9) 

                                                    = 𝑃[𝑈𝑖𝑗𝑡 ≥ 𝑊𝑖𝑡|𝑈𝑖𝑗𝑡 ≥ 𝑈𝑖𝑙𝑡, ∀𝑙 ≠ 𝑗]𝑃[𝑈𝑖𝑗𝑡 ≥ 𝑈𝑖𝑙𝑡, 𝑙 ≠ 𝑗] (10) 

             = (1 − 𝜋𝑖0𝑡)𝑃[𝑈𝑖𝑗𝑡 ≥ 𝑈𝑖𝑙𝑡, 𝑙 ≠ 𝑗] (11) 

3.2 OBJECTIVE FUNCTION AND PARAMETERS TO ESTIMATE 

The parameter estimation is performed by maximizing the likelihood function: 

 ℒ(𝛽) = ∏ ∏ 𝑃𝑖𝑡

𝑇

𝑡=0

𝑁

𝑖=1

[decision] (12) 

The decision probability is presented as:  

 𝑃𝑖𝑡[decision] = 𝑃𝑖𝑡[decision, 𝑠𝑖𝑡 = 0 ] + 𝑃𝑖𝑡[decision, 𝑠𝑖𝑡 = 1] (13) 

                      = 𝑃𝑖𝑡[decision| 𝑠𝑖𝑡 = 0 ]𝑃[𝑠𝑖𝑡 = 0 ] + 𝑃𝑖𝑡[decision| 𝑠𝑖𝑡 = 1]𝑃[𝑠𝑖𝑡 = 1 ] (14) 

The state 𝑠𝑖𝑡 is observed in the data set, if the passenger has not changed the ticket, 𝑃[𝑠𝑖𝑡 = 0 ] =
1 and 𝑃[𝑠𝑖𝑡 = 1 ] = 0. Once the passenger changes the ticket, the passenger is considered to be 

out of the decision process, therefore 𝑃[𝑠𝑖𝑡 = 0 ] = 0 and [𝑠𝑖𝑡 = 1 ] = 1 . As a result, the 

complete likelihood function in this problem is: 
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ℒ(𝛽) = ∏ 𝑃𝑖𝑡[decision, 𝑠𝑖𝑡 = 0 ]

(𝑖,𝑡)∈𝑉

 
(15) 

Where 𝑉 = {(𝑖, 𝑡)|𝑖 ∈ {1, … , 𝑀}, 𝑡 ∈ {1, … , 𝑇} and 𝑠𝑖𝑡 = 0}. The decisions include keeping the 

ticket and ticket change specific choice. Thus 𝑃𝑖𝑡[decision, 𝑠𝑖𝑡 = 0 ] = {𝜋𝑖0𝑡, 𝜋𝑖𝑗𝑡}.  

3.3 DYNAMIC ESTIMATION PROCESS 

The estimation process is done with maximum likelihood estimation method. First 𝜋𝑖0𝑡 must be 

obtained in order to calculate 𝜋𝑖𝑗𝑡. The probability 𝜋𝑖0𝑡, depends on 𝑊𝑖𝑡 which can be calculated 

from : 𝑊𝑖𝑡 = 𝑈𝑖𝑘𝑡 + 𝐸[𝐷(𝜐𝑖,𝑡+1)], assuming that  𝑟𝑖𝑡 is the mode of the distribution of 𝜐𝑡. 

𝑊𝑖𝑡 is composed of two parts: the utility of the current ticket attributes (𝑈𝑖𝑘𝑡) and the expected 

utility in the next time period (𝐸[𝐷(𝜐𝑖,𝑡+1)]). At each time period, the passenger is assumed to 

have a perception about the future scenarios, which are characterized by the alternative attributes 

changing over time. The expectation utility accounts for the possible market conditions in the 

passenger’s perceived scenario; in our specification, the fare of each departure time specific 

exchange decision has been selected as independent variable in the utility specification. 

Passenger is assumed to have a perception of future attributes on a limited number of time 

periods, denoted by 𝑇. At time period 𝑡, the passenger faces two alternatives, keeping the ticket 

or changing the ticket. The passenger will continue the decision process into the period 𝑡 + 1 

only if he had decided to keep the ticket in time period 𝑡. Therefore, the decision process can be 

characterized by a scenario tree with a unique pattern (shown in Figure1). This scenario tree 

constitutes the base for the expected utility calculation. The following steps describe the 

procedure to calculate 𝜋𝑖0,0  and 𝐸[𝐷(𝜐𝑖1)] which will be indicated by 𝐸[𝐷1]  because all the 

expectations in the example are for individual 𝑖. 

The procedure for calculating the expected utility will be described in detail as follows: 

 First, we assume that the passenger has the expectation over a limited number of future 

time periods, which is limited to two in order to reduce the number of leaves in the 

scenario tree. At time period 𝑡 = 0 , the passenger can anticipate the future ticket 

characteristics (i.e. fare) from time period 𝑡 = 1 and 𝑡 = 2. The terminal time period 

expected utility 𝐸[𝐷3] = 0 because the passenger knows nothing for time period 3 when 

being at time period 0.  

 Calculate 𝐸[𝐷1]. In order to obtain 𝜋𝑖0,0 from equation (6), the reservation utility (𝑊𝑖0) is 

required. The reservation utility (𝑊𝑖0) can be obtained from equation (3) 𝑊𝑖0 = 𝑈𝑖𝑘0 +
𝐸[𝐷1]  which requires the calculation of 𝐸[𝐷1] . At time 0, the passenger has two 

alternatives for successive time 1, keep the ticket or change the ticket. The second term at 

the right hand side of the function 𝐸[𝐷1] = E{max[𝜐1, 𝑈𝑖𝑘1 + 𝐸[𝐷2]]}  represents the 

utility of keeping alternative; therefore when calculating 𝐸[𝐷2], it is necessary that the 

term corresponded to the left leave of the tree be obtained (indicated by dash line in 

Figure 1). The calculation 𝐸[𝐷2] = E{max[𝜐2, 𝑈𝑖𝑘2 + 𝐸[𝐷3]]} demands the same function 

to be calculated for time period 3 (𝐸[𝐷3]) which is assumed to be zero according to the 

above assumption. The process of calculating 𝐸[𝐷1] is recursive with known utility at the 
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end of the perspective horizon (assumed to two periods in this formulation). After 𝐸[𝐷1]  
is calculated, reservation utility at time 0 (𝑊𝑖0) can be obtained.  

 This calculation procedure can be repeated to calculate 𝜋𝑖0,1with the assumption that 

respondent can anticipate characteristics for time period 3 and 𝐸[𝐷4] = 0. 

The reason that a terminal value for the expected utility has to be fixed at zero is because it is 

difficult to predict a particular value for the individual’s perspective when future time period is 

far beyond his knowledge of information. This means that in the long term, the individual has not 

enough information to predict the future; passengers cannot anticipate the utility of keeping or 

cancelling the ticket. With this approach, after a limited number of time periods, information on 

future ticket fare attribute is just ignored.  

  

       

At t=0, 𝑊𝑖0 = 𝑈𝑖𝑘0 + 𝐸[𝐷1]    
  

     

t=0 𝐸[𝐷0] 

     

     

keep     change 

 𝐸[𝐷1] = E{max[𝜐1, 𝑈𝑖𝑘1 + 𝐸[𝐷2]]}   

  

  

    

   

t=1 𝐸[𝐷1] 

  

𝐸[𝐷1] 

   

   

keep     change 

     

   

  

  

  

      

 

t=2 𝐸[𝐷2] 

  

𝐸[𝐷2] 

     

 

keep     change 

       

 

  

  

  

       t=3 𝐸[𝐷3] 

  

𝐸[𝐷3] 

       

            

Figure 1: Scenario Tree. 

 



 

 

13 

 

4.0 EXPERIMENT WITH SIMULATED DATA 

Synthetic ticket reservation data over time periods are simulated to validate the proposed 

dynamic discrete choice formulation. The data is created assuming that the characteristics of 

choice behavior is known; by adopting this procedure it is possible to test the ability of the 

dynamic discrete choice model to recover the true value of the parameters used to generate the 

data and to reproduce observed choice of individuals over time. Comparisons with static models, 

in the form of multinomial logit, are also presented. 

4.1 DATA CONSTRUCTION 

The simulated data is partially simulated from the real individuals’ record, which characteristics 

are described in Section 2. Synthetic data assume that passengers have the same origin and 

destination as the real data, while individual characteristics, departure day of week, and departure 

time, vary from the real data. Concerning individual characteristics, the group size variable is 

generated from a uniform distribution and varies between 1 and 3 persons. Departure day of 

week is assumed to be uniformly distributed across the weekdays, while departure time is 

assumed to be uniformly distributed on discrete hour clock time between 5:00 AM and 7:00 PM. 

Ticket fare of the original departure time and other departure times within the same departure 

day are constructed for each day over the decision horizon based on historical data; the 

constructed fares vary by departure day of week and time of day. 

Each individual is supposed to provide responses over a 16 day time period starting from 15 days 

before departure until the departure day. A total of (16 × 696) observations are then generated. 

There are 17 alternatives in the choice set, the first 15 alternatives refer to departure time specific 

exchange decisions (5:00 AM to 7:00 PM), the 16th alternative is cancel, and the 17th alternative 

is keeping the ticket. An important assumption in the data construction process is that if at one 

period in time the passenger decides to make change to his ticket, then this passenger will no 

longer be part of the decision process in the next time period (he is out of the market). True value 

parameters have been used to determine individual choices. Synthetic observations are then used 

to estimate both the static multinomial logit (MNL) and the dynamic discrete choice model 

(DDCM). 
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4.2 MODEL SPECIFICATION  

The model specification considers 16 discrete time horizon defined by 𝑡 ∈ {0,1, … ,15} where 𝑡  

also represents the number of day from original ticket purchase. The first time period is the day 

when original ticket is purchased (𝑡 = 0), (day1). The last time period is departure day (𝑡 = 15), 

(day16). The utility specification is defined as follows: 

 

 

 

      𝑈𝑖5𝑡=𝛽𝑐𝑜𝑠𝑡(𝑓5𝑡 − 𝑓𝑏0) + 𝜀𝑖5𝑡 + 𝜀𝑖 

        … … … … … … … …. 

      𝑈𝑖𝑗𝑡=𝛽𝑐𝑜𝑠𝑡(𝑓𝑗𝑡 − 𝑓𝑏0) + 𝜀𝑖𝑗𝑡 + 𝜀𝑖              15 Exchange alternatives (5:00 – 19:00). 

        … … … … … … … … …. 

      𝑈𝑖19𝑡= 𝛽𝑐𝑜𝑠𝑡(𝑓19𝑡 − 𝑓𝑏0) + 𝜀𝑖19𝑡 + 𝜀𝑖  

      𝑈𝑖𝑐𝑡= 𝐴𝑆𝐶𝑐𝑛𝑙 + 𝛽𝑒𝑣𝑒𝑣 + 𝛽𝐹𝑟𝑖𝐹𝑟𝑖 + 𝛽𝑆𝑇𝐴3𝑆𝑇𝐴3 + 𝛽𝑟𝑒𝑓𝑓𝑏0 + 𝜀𝑖𝑐𝑡 + 𝜀𝑖 

      𝑈𝑖𝑘𝑡= {
𝑐 + 𝜀𝑖𝑘𝑡 + 𝜀𝑖   if 𝑡 = 15
𝜀𝑖𝑘𝑡 + 𝜀𝑖           if 𝑡 < 15

  

(16) 

The utility of individual 𝑖 on alternative 𝑗 is denoted by 𝑈𝑖𝑗𝑡. For ticket exchange decision, the 

index 𝑗 indicate 15 exchange departure times (5:00 AM to 7:00 PM). The utility of exchange 

(𝑈𝑖𝑗𝑡) includes exchange cost defined as the difference between the original fare (𝑓𝑏0) and the 

new fare (𝑓𝑗𝑡) at time 𝑡. The model allows passengers to exchange ticket for the same departure 

time as in the original ticket; transactions of this type are observed from the real data. This 

decision will result in passenger paying the difference between the original cost (𝑡 = 0) and the 

cost at time 𝑡. The utility of cancel (𝑈𝑖𝑐𝑡) includes alternative specific constant (ASC), refund, 

dummy of original departure in the evening (3:00-7:00 PM.), dummy of original departure on 

Friday, and dummy of STA3 destination. The utility of keep (𝑈𝑖𝑘𝑡) has two different 

specifications. In the last time period (𝑡 = 15) passengers deciding to keep the ticket obtain the 

utility which includes the constant term referring to utility of traveling with the original ticket. In 

other time periods (𝑡 < 15) the systematic term of the keep utility is normalized to zero. 𝜀𝑖𝑗𝑡 is 

the random error term for each alternative at a given time period. 𝜀𝑖 is the individual error term 

which is assumed to be constant across all observations produced by the same respondent. 

To evaluate the ability to recover the true value of the model, the root mean square deviation 

(RMSD) is adopted as measure of differences between the true values and the estimated 

coefficient values. The RMSD is defined as: 
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 𝑅𝑀𝑆𝐷(𝜃) = √𝐸[(�̂� − 𝜃)2] = √
∑ (𝜃𝑖 − 𝜃𝑖)2𝑛

𝑖=1

𝑛
 (17) 

Where 𝑛 is the number of parameters. Using the simulated data with the utility specification 

defined above two models are estimated: dynamic discrete choice model (DDCM) and static 

multinomial logit (MNL) model. In the static model, the attribute of the future ticket 

characteristic (fare) are not considered when making decision at each time period. The model is 

simply formulated as a traditional MNL model with 17 alternatives (15 exchange decisions, 1 

cancel, and 1 keep). The dynamic model with the algorithm defined in the formulation is coded 

in C language and make use of optimization tools available in AMLET (Another Mixed Logit 

Estimation Tool), (Bastin, 2011).The static model is estimated using ALOGIT (ALOGIT, 2007).  

The utilities specifications are assumed to be the same for the static and the dynamic model; the 

deriving estimation results are compared in Table 2. All parameters in both MNL and DDCM 

models are statistically significant at 5% significance level. The RMSD value obtained with the 

dynamic model is lower when compared to the MNL model (0.82 compared to 3.93); this 

indicates that the dynamic model outperforms MNL model in recovering the true value of the 

parameters. 

Table 2: Estimation Result: Simulated Data. 

  E
x
ch

a
n

g

e 

C
a
n

ce
l 

K
ee

p
 

True 

Value MNL   Dynamic (2-SL)   

          Est T-stat   Est T-stat   

ASC cancel 

 

x 

 

-5.00 -12.730 -14.2 * -5.434 6.7 * 

Orig Deptt 3-7 pm 

 

x 

 

2.50 1.392 5.2 * 3.927 8.1 * 

Depart Friday  

 

x 

 

-2.00 -1.456 -3.8 * -2.018 3.3 * 

STA3 destination 

 

x 

 

4.00 2.517 10.1 * 5.252 10.8 * 

Exchange cost  x 

  

-0.02 -0.040 -77.8 * -0.020 12.1 * 

Refund 

 

x 

 

0.03 0.032 8.4 * 0.030 5.5 * 

Keep (day 16) 

  

x -7.00 -6.477 -8.9 * -5.868 27.0 * 

Cancel day1 

 

x 

 

3.00 6.609 9.1 * 2.275 13.2 * 

Exchange day16 x 

  

1.50 -6.144 -8.4 * 2.343 8.5 * 

Early exchange x 

  

-2.00 -6.366 -41.4 * -2.598 13.6 * 

Log-likelihood (0)           -28,896     -2,908   

Log-likelihood 

(final) 

     

-17,875 

  

-852 

 Likelihood ratio 

index 

     

0.38 

  

0.70 

 RMSD 

     

3.93 

  

0.82 

 R-square wrt 0 

     

0.3814 

    No. individual           696         

No. observations           10,199         
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* Statistically significant at 5% significance level. 

 

4.3 MODEL VALIDATION 

The results obtained from the estimation are used to validate how well the models reproduce the 

observed simulated decisions (Table 3). 

Table 3: Validation Result: Simulated Data. 

Choice   Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 

Exchange Pred MNL 3 3 3 3 2 2 2 3 3 2 3 2 3 2 3 3 

  Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 

2 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 

Exchange Pred MNL 4 4 4 4 4 6 7 4 4 5 5 5 5 3 3 2 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 

3 No. Observed 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

Exchange Pred MNL 4 5 7 6 6 8 6 6 6 7 4 3 3 2 2 2 

  Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 

4 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 

Exchange Pred MNL 15 10 11 11 12 11 11 12 11 13 13 13 13 12 10 7 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

5 No. Observed 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 27 

Exchange Pred MNL 31 31 30 22 23 20 21 21 20 17 14 15 23 19 19 17 

  Pred DDCM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 20 

6 No. Observed 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 18 

Exchange Pred MNL 44 36 30 34 30 27 27 31 29 33 29 27 26 25 21 17 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 

7 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

Exchange Pred MNL 50 53 35 33 36 32 28 39 38 44 43 46 47 33 30 33 

  Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 

8 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 

Exchange Pred MNL 48 51 35 34 37 38 42 34 40 24 27 26 35 38 33 33 

 

Pred DDCM 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 22 

9 No. Observed 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

Exchange Pred MNL 44 46 37 37 38 32 45 37 38 43 40 39 37 35 29 22 

  Pred DDCM 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 29 

10 No. Observed 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 28 

Exchange Pred MNL 17 16 17 15 14 19 17 20 17 21 21 23 19 16 17 14 

 

Pred DDCM 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 30 

11 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 

Exchange Pred MNL 16 17 17 21 19 17 26 21 21 19 17 19 19 23 17 13 

  Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 19 
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Choice  Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

12 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 

Exchange Pred MNL 12 18 22 19 20 17 20 19 18 20 16 19 14 15 14 15 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 

13 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 

Exchange Pred MNL 23 27 38 43 37 32 36 29 31 39 32 29 28 28 25 22 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 

14 No. Observed 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43 

Exchange Pred MNL 59 77 69 79 67 109 64 61 66 56 58 73 47 50 51 41 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 42 

15 No. Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 76 

Exchange Pred MNL 183 151 132 122 135 113 127 137 137 110 132 104 108 107 113 113 

 

Pred DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 77 

16 No. Observed 54 0 1 0 0 0 0 1 0 0 0 0 0 0 0 94 

Cancel Pred MNL 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 67 

 

Pred DDCM 42 0 2 0 2 0 1 3 0 0 0 0 1 3 0 88 

17 No. Observed 638 637 636 635 634 634 633 632 632 632 632 632 632 632 632 148 

Keep Pred MNL 90 93 150 153 154 152 155 157 153 179 180 188 205 224 246 210 

 

Pred DDCM 653 637 634 636 632 633 631 629 632 631 632 630 631 629 632 172 

Total No. Observed 4 1 0 1 1 0 1 0 0 0 0 0 0 0 0 390 

Exchange Pred MNL 552 545 487 483 481 482 479 476 479 453 452 444 427 408 386 355 

(1-15) Pred DDCM 1 1 1 0 1 1 2 1 0 1 0 2 0 0 0 372 

  

Total 696 638 637 636 635 634 634 633 632 632 632 632 632 632 632 632 

 

The validation in Table 3 indicates that the major drawback of MNL model is the over-prediction 

of exchange decisions especially exchange decision choice 15 (exchange to 7 PM); which is 

characterized by low fare. MNL model predicts the cancel decision in the first time period (day1) 

precisely; however, its prediction on cancel decision in the last time period (day16) is not as 

good as the one produced by DDCM. More importantly, in the last time period (day16) with a 

high number of exchange decision, the DDCM model clearly outperforms MNL. We selected the 

first (day1) and last time period (day16) of cancel decision and exchange decisions to show in 

detail the prediction capability of the DDCM over the MNL (Figure 2). 
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Figure 2: Simulated Data Validation: Departure time specific exchange and cancel decision. 

Figure 3 to Figure 5 briefly summarize the predictions over different time periods (day) where 

exchange decision is aggregated over all departure times. 
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Figure 3: Validation of Exchange Decision: Simulated Data. 

 
Figure 4: Validation of Cancel Decision: Simulated Data. 

 
Figure 5: Validation of Keep Decision: Simulated Data. 

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

. 
o

f 
p

a
ss

en
g

er

Day

Exchange observed Exchange  MNL Exchange DDCM (2SL)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

. 
o

f 
p

a
ss

en
g

er

Day

Cancel observed Cancel MNL Cancel DDCM (2SL)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

. 
o

f 
p

a
ss

en
g

er

Day

Keep observed Keep  MNL Keep DDCM (2SL)



 

 

20 

 

The choice probability for each alternative observed and predicted together with a measure of 

errors for the simulated data experiment is reported in Table 4. The absolute error 𝐷 is used to 

represent measure of error which is defined as: 

 𝐷 = |𝑀𝑝𝑟𝑒𝑑 − 𝑀𝑜𝑏𝑠| (18) 

Where 𝐷 is error norm; 𝑀𝑝𝑟𝑒𝑑 is a vector of predicted choice probability, and 𝑀𝑜𝑏𝑠 is a vector of 

observed choice probability. The 𝐷  value obtained from the dynamic model is significantly 

smaller than the corresponding value in the MNL model (0.176 compared to 22.214) indicating a 

better prediction capability of the dynamic model over the MNL model. 

 

Table 4: Model Validation: Choice Probability of Simulated Data Experiment. 

Alternative Observed 

Predicted 

(Static) 

Predicted 

(Dynamic) 

Exchange day1 0.0057 0.7931 0.0014 

Exchange day2 0.0016 0.8542 0.0016 

Exchange day3 0.0000 0.7645 0.0016 

Exchange day4 0.0016 0.7594 0.0000 

Exchange day5 0.0016 0.7575 0.0016 

Exchange day6 0.0000 0.7603 0.0016 

Exchange day7 0.0016 0.7555 0.0032 

Exchange day8 0.0000 0.7520 0.0016 

Exchange day9 0.0000 0.7579 0.0000 

Exchange day10 0.0000 0.7168 0.0016 

Exchange day11 0.0000 0.7152 0.0000 

Exchange day12 0.0000 0.7025 0.0032 

Exchange day13 0.0000 0.6756 0.0000 

Exchange day14 0.0000 0.6456 0.0000 

Exchange day15 0.0000 0.6108 0.0000 

Exchange day16 0.6171 0.5617 0.5886 

Cancel day1 0.0776 0.0776 0.0603 

Cancel day2 0.0000 0.0000 0.0000 

Cancel day3 0.0016 0.0000 0.0031 

Cancel day4 0.0000 0.0000 0.0000 

Cancel day5 0.0000 0.0000 0.0031 

Cancel day6 0.0000 0.0000 0.0000 

Cancel day7 0.0000 0.0000 0.0016 

Cancel day8 0.0016 0.0000 0.0047 

Cancel day9 0.0000 0.0000 0.0000 

Cancel day10 0.0000 0.0000 0.0000 

Cancel day11 0.0000 0.0000 0.0000 

Cancel day12 0.0000 0.0000 0.0000 

Cancel day13 0.0000 0.0000 0.0016 

Cancel day14 0.0000 0.0000 0.0047 
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Cancel day15 0.0000 0.0000 0.0000 

Alternative Observed 

Predicted 

(Static) 

Predicted 

(Dynamic) 

Cancel day16 0.1487 0.1060 0.1392 

Keep day1 0.9167 0.1293 0.9382 

Keep day2 0.9984 0.1458 0.9984 

Keep day3 0.9984 0.2355 0.9953 

Keep day4 0.9984 0.2406 1.0000 

Keep day5 0.9984 0.2425 0.9953 

Keep day6 1.0000 0.2397 0.9984 

Keep day7 0.9984 0.2445 0.9953 

Keep day8 0.9984 0.2480 0.9937 

Keep day9 1.0000 0.2421 1.0000 

Keep day10 1.0000 0.2832 0.9984 

Keep day11 1.0000 0.2848 1.0000 

Keep day12 1.0000 0.2975 0.9968 

Keep day13 1.0000 0.3244 0.9984 

Keep day14 1.0000 0.3544 0.9953 

Keep day15 1.0000 0.3892 1.0000 

Keep day16 0.2342 0.3323 0.2722 

D   22.2140 0.1760 
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5.0 EXPERIMENT WITH REAL TICKET RESERVATION 

DATA 

5.1 DATA CONSTRUCTION 

Observations relative to ticket exchange and cancellation from 696 individuals were obtained 

from internet purchases of railway intercity tickets; the source of the data cannot be revealed 

here due to confidentiality issues. Based on the trip schedule of real data, ticket fare of the 

original departure time and other departure times within the same departure day are constructed 

for each day over the decision horizon based on historical data. In each time period, if the 

passenger decides to change or cancel the current ticket, then the same passenger will no longer 

be in the decision process in the next time period; all observations occurred in the period after 

ticket exchange are excluded from the dataset. This results into a total of 7,268 observed 

decisions valid for model estimation. 

5.2 MODEL SPECIFICATION  

The specification follows the same structure proposed in the simulated data experiment. The 

model specification considers 16 discrete time periods defined by 𝑡 ∈ {0,1, … ,15} where 𝑡 also 

represents the number of day from original ticket purchase. The first time period is the day when 

original ticket is purchased (𝑡 = 0), (day1). The last time period is departure day (𝑡 = 15), 

(day16) The utility specification is defined as follows: 

 

      𝑈𝑖5𝑡=𝛽𝑐𝑜𝑠𝑡(𝑓5𝑡 − 𝑓𝑏0) + 𝛽𝑑𝑓𝑖_𝑒𝑥𝑐𝑡 + 𝜀𝑖5𝑡 + 𝜀𝑖 

        … … … … … … … …. 

      𝑈𝑖𝑗𝑡=𝛽𝑐𝑜𝑠𝑡(𝑓𝑗𝑡 − 𝑓𝑏0) + 𝛽𝑑𝑓𝑖_𝑒𝑥𝑐𝑡 + 𝜀𝑖𝑗𝑡 + 𝜀𝑖            15 Exchange alternatives (5:00 – 19:00). 

        … … … … … … … … …. 

      𝑈𝑖19𝑡= 𝛽𝑐𝑜𝑠𝑡(𝑓19𝑡 − 𝑓𝑏0) + 𝛽𝑑𝑓𝑖_𝑒𝑥𝑐𝑡 + 𝜀𝑖19𝑡 + 𝜀𝑖  

      𝑈𝑖𝑐𝑡= 𝐴𝑆𝐶𝑐𝑛𝑙 + 𝛽𝑔𝑝𝑔𝑝 + 𝛽𝑚𝑟𝑚𝑟 + 𝛽𝑒𝑣𝑒𝑣 + 𝛽𝑀𝑜𝑛𝑀𝑜𝑛 + 𝛽𝐹𝑟𝑖𝐹𝑟𝑖 + 𝛽𝑆𝑇𝐴1𝑆𝑇𝐴1

+ 𝛽𝑆𝑇𝐴3𝑆𝑇𝐴3 + 𝛽𝑟𝑒𝑓𝑓𝑏0 + 𝛽𝑑𝑓𝑖_𝑐𝑛𝑙𝑡 + 𝜀𝑖𝑐𝑡 + 𝜀𝑖 

      𝑈𝑖𝑘𝑡= {
𝑐 + 𝜀𝑖𝑘𝑡 + 𝜀𝑖   if 𝑡 = 15
𝜀𝑖𝑘𝑡 + 𝜀𝑖           if 𝑡 < 15

  

(19) 

The utility of individual 𝑖 on alternative 𝑗 is denoted by 𝑈𝑖𝑗𝑡. For ticket exchange decision, the 

index 𝑗 indicate 15 exchange departure time (5:00 AM to 7:00 PM). The utility of exchange 

(𝑈𝑖𝑗𝑡) includes exchange cost which is defined as the difference between the original fare (𝑓𝑏0) 

and new fare (𝑓𝑗𝑡) at time 𝑡, and day from issue (𝑑𝑓𝑖) which is the number of day from original 

ticket purchase equal to 𝑡 where 𝑡 = 0 on the day of original purchase and 𝑡 = 15 on departure 

day. The utility of cancel (𝑈𝑖𝑐𝑡) includes alternative specific constant (ASC), refund, dummy of 
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group traveler, dummies of original departure in the morning (5:00-9:00 AM.) and evening 

(3:00-7:00 PM.), dummies of original departure on Monday and Friday, dummies of  STA1 and 

STA3 destination. The utility of keep (𝑈𝑖𝑘𝑡) is defined in two cases. In the last time period 
(𝑡 = 15) passenger deciding to keep the ticket obtain an utility that includes the constant term 

relative to the utility of traveling with the original ticket. In other time periods (𝑡 < 15) the 

systematic term of the keep utility is normalized to zero. 𝜀𝑖𝑗𝑡 is the random error term for each 

alternative at a given time period. 𝜀𝑖 is the individual error term which is assumed to be constant 

across all observations produced by the same respondent. 

5.3 ESTIMATION RESULT  

The results obtained from model estimation are shown in Table 5. Most of the variables are 

statistically significant at 5% confidence level. The results obtained from the dynamic model 

shows negative sign in a number of variables associated with cancel decision which are: group 

traveler (party size includes more than one passenger), evening departure (original departure 

time from 3:00-7:00 PM.), original departure on Friday, and STA1 destination. This indicates 

low tendency of passenger with these characteristics to cancel their ticket. On the other hand, 

passengers with morning departure (original departure time from 5:00-9:00 AM.), original 

departure on Monday, and STA3 destination have a positive sign for the corresponding structural 

coefficients, indicating that passengers with these characteristics have higher likelihood to cancel 

the ticket. In particular, passengers traveling early in the week and traveling alone (typically 

associated with business travelers) are more likely to cancel their ticket which is in line with the 

results of Iliescu (2008). 

The exchange cost and refund have the expected sign indicating disutility associated with paying 

additional cost to exchange ticket and the utility of receiving refund when ticket is canceled 

respectively. The variable of keeping the ticket on departure day (day16) shows negative sign 

which could be explained by the fact that the fare of the original ticket possessed by the 

passenger is higher compared to a ticket hypothetically exchanged to other departure times. 

Another reason could be that passengers intentionally want to exchange/cancel the ticket but 

could not find an alternative departure time which economically matches their schedule.  

The day from issues (number of days since the original ticket is purchased) has positive sign for 

the variable associated with exchange and cancel decision; this indicates that it is preferable for 

passengers to adjust their ticket later. This is line with expectations and consistent with results 

obtained by Iliescu (2008), who found that the odds of ticket change increase as the departure 

date approaches due to a strong effect of “last minute” change of plan. More specifically, the day 

from issue coefficient for the cancel decision has larger magnitude compared to the day from 

issue coefficient for the exchange decisions. This is intuitive based on this operator’s refund 

policy; passengers are fully refunded if the ticket is exchanged up to one hour before departure, 

while late tickets exchange are possible but limited by the uncertainty about seats availability.   

The dummy variables of cancel on the original purchase date (day1) and exchange on the 

departure day (day16) show large magnitude indicating that a high number of cancellation and 

exchange occurs on the day they purchase ticket and on the departure day respectively. These 

results are in line with Iliescu (2008) and Graham et al. (2010) which found that ticket changes 

are more likely to happen in recently purchased ticket (especially within the first week) and are 
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more likely to occur as the departure date approaches. Finally, the variable associated with early 

exchange (exchanging to departure time earlier than original ticket) shows negative sign which 

indicates that passengers gain less utility when making early exchange compared to later 

exchange (which is the base case). 

Table 5: Estimation Result: Real Data. 

  E
x
ch

a
n

g
e 

C
a
n

ce
l 

K
ee

p
 

MNL   Dynamic (2-SL)   

        Est T-stat   Est T-stat   

ASC cancel 

 

x 

 

-6.297 12.9 * -3.652 57.1 * 

>1 psg 

 

x 

 

-0.869 2.1 * -1.090 1.5   

Orig Deptt 5-9 am 

 

x 

 

0.143 0.8   0.639 1.2   

Orig Deptt 3-7 pm 

 

x 

 

-0.327 1.9   -0.760 1.4   

Depart Monday  

 

x 

 

0.556 1.8   2.740 3.0 * 

Depart Friday  

 

x 

 

-0.286 1.8   -0.451 1.0   

STA1 destination 

 

x 

 

-0.435 2.3 * -0.306 0.6   

STA3 destination 

 

x 

 

0.557 2.5 * 1.648 2.6 * 

Exchange cost  x 

  

-0.011 19.3 * -0.026 3.7 * 

Refund 

 

x 

 

0.014 6.0 * 0.042 9.6 * 

Keep (day 16) 

  

x 1.885 11.0 * -3.547 12.8 * 

Day from issue x 

  

-1.217 35.3 * 0.189 5.8 * 

Day from issue 

 

x 

 

0.163 5.9 * 0.266 35.4 * 

Cancel (day 1) 

 

x 

 

5.629 18.3 * 3.169 42.7 * 

Exchange (day 16) x 

  

17.050 30.5 

 

1.578 10.2 * 

Early exchange x 

  

-3.299 24.5 * -1.751 12.1 * 

Log-likelihood (0)         -20,592     -4,324   

Log-likelihood (final) 

   

-7,629 

  

-3,117 

 Likelihood ratio 

index 

    

0.63 

  

0.28 

 R-square wrt 0 

    

0.6295 

    No. individual         696         

No. observations         7,268         
* Statistically significant at 5% significance level. 

5.4 MODEL VALIDATION  

To test the prediction capabilities of the model proposed, the resulting coefficients of the model 

have been used to replicate the choice observed in the sample. Results are reported in Table 6. 
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Table 6: Validation Result: Real Data. 

Choice 

 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 No. Observed 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Exchange Pred MNL 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

2 No. Observed 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Exchange Pred MNL 6 3 1 1 0 0 0 0 0 0 0 0 0 0 0 1 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 No. Observed 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

Exchange Pred MNL 6 4 2 1 0 0 0 0 0 0 0 0 0 0 0 1 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 No. Observed 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 

Exchange Pred MNL 13 7 3 1 0 0 0 0 0 0 0 0 0 0 0 2 

 

Pred DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

5 No. Observed 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

Exchange Pred MNL 20 12 5 2 1 0 0 0 0 0 0 0 0 0 0 3 

 

Pred DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 No. Observed 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Exchange Pred MNL 24 14 6 2 1 0 0 0 0 0 0 0 0 0 0 3 

 

Pred DDCM 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

7 No. Observed 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 

Exchange Pred MNL 29 19 7 2 1 0 0 0 0 0 0 0 0 0 0 4 

 

Pred DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

8 No. Observed 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 9 

Exchange Pred MNL 29 19 7 3 1 0 0 0 0 0 0 0 0 0 0 4 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 No. Observed 3 1 0 0 0 0 0 2 0 0 0 0 0 3 0 9 

Exchange Pred MNL 29 18 8 3 1 0 0 0 0 0 0 0 0 0 0 4 

 

Pred DDCM 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 No. Observed 1 0 0 0 1 0 0 0 3 0 0 0 0 0 0 6 

Exchange Pred MNL 22 14 7 2 1 0 0 0 0 0 0 0 0 0 0 4 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 No. Observed 2 2 1 1 0 0 0 1 0 0 0 0 1 0 0 12 

Exchange Pred MNL 26 16 7 3 1 0 0 0 0 0 0 0 0 0 0 0 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

12 No. Observed 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 8 

Exchange Pred MNL 32 21 9 3 1 0 0 0 0 0 0 0 0 0 0 5 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

13 No. Observed 4 1 0 0 0 0 0 1 1 0 1 0 1 0 0 5 

Exchange Pred MNL 40 23 10 4 1 0 0 0 0 0 0 0 0 0 0 6 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Choice 

 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

14 No. Observed 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 3 

Exchange Pred MNL 62 34 13 4 1 0 0 0 0 0 0 0 0 0 0 8 

 

Pred DDCM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 No. Observed 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Exchange Pred MNL 95 154 194 213 221 218 219 214 213 200 203 190 183 175 167 36 

 

Pred DDCM 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

16 No. Observed 181 6 8 1 6 2 8 4 6 0 5 4 5 6 20 25 

Cancel Pred MNL 181 1 2 3 4 4 5 6 7 8 9 11 12 14 16 4 

 

Pred DDCM 85 0 0 0 0 0 0 0 0 0 0 0 0 2 0 20 

17 No. Observed 495 483 469 467 460 457 447 438 428 427 420 414 405 393 369 285 

Keep Pred MNL 77 135 201 224 233 235 233 227 219 221 215 220 219 216 210 283 

 

Pred DDCM 606 494 483 468 467 460 457 447 438 428 427 419 414 403 393 344 

Total No. Observed 20 6 6 1 1 1 2 5 4 1 2 2 4 6 4 59 

Exchange Pred MNL 438 359 280 243 230 221 219 215 213 200 203 190 183 175 167 80 

(1-15) Pred DDCM 5 1 0 1 0 0 0 0 0 0 0 1 0 0 0 5 

  

Total 696 495 483 469 467 460 457 447 438 428 427 420 414 405 393 369 

 

Figure 6 to Figure 8 briefly summarize the predictions over different time periods (days) where 

exchange decisions are aggregated for all exchange departure times. The validation results show 

that the DDCM slightly under-predicts cancellation and although it is not able to predict the 

cancellation on the first time period (day1) as well as MNL, it is capable of predicting 

cancellation on the last time period (day16) reasonably well. In term of exchange, DDCM 

slightly under-predicts the total number of exchange except for the first (day1) and the last time 

period (day16) which are characterized by a relatively high exchange rate; however, the MNL 

drastically over predicts exchange decisions throughout all time periods. The prediction of keep 

obtained from DDCM is reasonably close to the observed value while the MNL significantly 

under predicts the keep decision as a consequence of over prediction in exchange. 

 

Figure 6: Validation of Exchange Decision: Real Data. 
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Figure 7: Validation of Cancel Decision: Real Data. 

 

Figure 8: Validation of Keep Decision: Real Data. 
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The choice probability for each alternative observed and predicted together with measure of 

errors for the real data experiment is reported in Table 7. It shows that the 𝐷  value of the 

dynamic model is significantly smaller than the correspondent value obtained with the MNL 

model (1.194 compared to 15.179) indicating a much better prediction capability of the dynamic 

model over the MNL model. 

 

Table 7: Model Validation: Choice Probability of Real Data Experiment. 

Alternative Observed 

Predicted 

(Static) 

Predicted 

(Dynamic) 

Exchange day1 0.0287 0.6297 0.0072 

Exchange day2 0.0121 0.7244 0.0020 

Exchange day3 0.0124 0.5797 0.0000 

Exchange day4 0.0021 0.5171 0.0021 

Exchange day5 0.0021 0.4929 0.0000 

Exchange day6 0.0022 0.4804 0.0000 

Exchange day7 0.0044 0.4799 0.0000 

Exchange day8 0.0112 0.4799 0.0000 

Exchange day9 0.0091 0.4856 0.0000 

Exchange day10 0.0024 0.4662 0.0001 

Exchange day11 0.0047 0.4763 0.0000 

Exchange day12 0.0048 0.4521 0.0024 

Exchange day13 0.0097 0.4420 0.0000 

Exchange day14 0.0148 0.4314 0.0000 

Exchange day15 0.0102 0.4254 0.0000 

Exchange day16 0.1599 0.2220 0.0136 

Cancel day1 0.2601 0.2601 0.1221 

Cancel day2 0.0121 0.0026 0.0000 

Cancel day3 0.0166 0.0048 0.0000 

Cancel day4 0.0021 0.0064 0.0000 

Cancel day5 0.0128 0.0079 0.0000 

Cancel day6 0.0043 0.0093 0.0000 

Cancel day7 0.0175 0.0112 0.0000 

Cancel day8 0.0089 0.0130 0.0000 

Cancel day9 0.0137 0.0148 0.0000 

Cancel day10 0.0000 0.0182 0.0000 

Cancel day11 0.0117 0.0206 0.0000 

Cancel day12 0.0095 0.0252 0.0000 

Cancel day13 0.0121 0.0300 0.0000 

Cancel day14 0.0148 0.0351 0.0049 

Cancel day15 0.0509 0.0410 0.0000 

Cancel day16 0.0677 0.0111 0.0542 

Keep day1 0.7112 0.1102 0.8707 

Keep day2 0.9758 0.2729 0.9980 

Keep day3 0.9710 0.4155 1.0000 

Keep day4 0.9957 0.4765 0.9979 
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Alternative Observed 

Predicted 

(Static) 

Predicted 

(Dynamic) 

Keep day5 0.9850 0.4991 1.0000 

Keep day6 0.9935 0.5102 1.0000 

Keep day7 0.9781 0.5090 1.0000 

Keep day8 0.9799 0.5072 1.0000 

Keep day9 0.9772 0.4995 1.0000 

Keep day10 0.9976 0.5156 0.9999 

Keep day11 0.9836 0.5030 1.0000 

Keep day12 0.9857 0.5226 0.9976 

Keep day13 0.9783 0.5280 1.0000 

Keep day14 0.9704 0.5336 0.9951 

Keep day15 0.9389 0.5336 1.0000 

Keep day16 0.7723 0.7669 0.9322 

D   15.1790 1.1940 
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6.0 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This paper has proposed a dynamic discrete choice model for ticket cancellation and exchange in 

the context of railway ticket purchase for intercity trips. The methodological framework 

proposed considers forward looking agents that maximizes their inter-temporal payoffs when 

deciding about exchanging or cancelling their ticket. The classical formulation based on the 

optimal stopping problem derived from dynamic programming is preserved here, while an 

innovative and elegant scenario tree formulation is proposed to solve the issue of calculating the 

passengers’ expected utility over time. The model is estimated using maximum likelihood 

estimation, which seems particularly appropriated in this finite horizon problem. The analysis 

makes an important contribution in the context of discrete choice models for revenue 

management as it allows to account for temporal effects on individual decisions that are usually 

treated in a static context. The model has been successfully estimated using both simulated and 

real data; results shows that DDCM outperforms MNL in reproducing the initial values assumed 

in the simulated dataset and in reproducing the actual choices in both synthetic and real data.  

Several extensions of this work warrant attention. It would be desirable to incorporate the 

unobservable (or latent class) segments within the population using a discrete segmentation 

approach; latent class (LC) models in which classes are based on trip characteristics (i.e. as 

group size, departure time) appears to be well suited for this kind of analysis. The model can 

account for taste heterogeneity by incorporating mixed logit choice model (ML) thus allowing 

for different passenger choice preferences in a continuous segmentation framework. Finally the 

modeling approach applied here to railway revenue management could be applied to test other 

refund and exchange policies and in general to other problems for which it is relevant to model 

passenger decision over time.  
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