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EXECUTIVE SUMMARY 

Manual traffic control (MTC) is a key part of managing traffic during emergencies and planned 

special events. Despite its long history of use there has been little, if any, research on how to 

effectively model MTC.  MTC is commonly represented as a version actuated signal control and, 

while this method is useful, it has significant shortcomings because it does not adequately 

represent the variability of police officer control actions under field conditions.  In this paper, the 

results of recent research to develop an MTC model and integrate it into a traffic simulation 

system are presented.  Here, the process of MTC is represented by expressing police officers 

decision-making in terms of a system of discrete choice equations (logit models) that compute 

signal phase length and green-time allocation as a function of demand, directional priority, phase 

length, and gaps in the approach traffic streams. The MTC discrete choice model was validated 

using various datasets to show that it computes phase lengths and allocates green time within a 

95 percent level confidence when compared field observation. Among the general findings of 

this research was that manual traffic control is best suited for intersections immediately upstream 

of a bottleneck or for closely spaced, uncoordinated signals.  
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1.0 INTRODUCTION 

Traffic simulation is a valuable tool to plan, design and operate transportation systems. Among 

its many applications is to support the design and evaluation of traffic management plans for 

special events (festivals, parades, and sporting events) and emergencies (evacuations, traffic 

accidents, road closures). Through simulation, engineers are able to evaluate the impact of 

congestion mitigation alternatives and strategies.  

A common traffic management strategy for special events and emergency traffic is 

manual traffic control (MTC). MTC is an intersection control method in which trained personnel, 

typically police law enforcement officers, use intersection signals to facilitate the movement of 

traffic by allocating intersection right-of-way to approaching vehicles. It is needed because major 

events cause a surge in demand, which often overwhelms the available road capacity.  But, 

because the demand is also usually directionally imbalanced, it is thought the use of police, who 

can directly observe the demand conditions, is a better form of control than automated traffic 

signals. 

Police officers observe traffic conditions and allocate green time based a series of 

discrete choice decisions. MTC often results in significantly longer and variable cycle lengths to 

facilitate the movement of directionally imbalanced volumes. Variability arises within MTC is 

the result the stochastic nature of both the officer’s decision-making and traffic in general. For 

this reason, it has proven difficult to evaluate the impact of MTC on evacuation corridors. The 

goal of this research is to quantify the effect of manual traffic control on evacuation corridor 

operations and to develop a quantitative model able to describe the behavior of police officers 

directing traffic for special events and emergencies. Using observations of police officers 

directing special event traffic, a logit model capable of predicting the officer’s phase change 

decisions was developed. This model was then incorporated into a traffic simulation software 

VISSIM, 7.0 to model the green time allocation of the police officer. Finally, using a 

hypothetical grid network, the impact of MTC at key intersections within a corridor was 

evaluated.  

1.1 RESEARCH BACKGROUND 

Previous studies attempting to simulate manual traffic control have done so by assuming officers 

act like traffic signals, with constant cycle lengths and phase splits [1]; [2]; [3]. However, 

empirical observations show this is not the case. Rather, early research on the subject suggested 

that many of the advantages of manual traffic control come from not having constant cycle 

length and phase splits. Marsh [4], Eno [5], and Schab [6] found that the advantages of manual 

traffic control have been in an officer’s ability to extend green time when needed, truncate 

phases, and accommodate unbalanced and uneven traffic volumes.  Oversimplifying MTC in 

simulation models by assuming constant cycle length and phase splits could lead to an unfair 

comparison between alternative strategies.  

Recent research on manual traffic control has also used human-in-the-loop simulation to 

replicate police officers directing traffic. This technology allows for real-time user input into a 

traffic simulation model. So, Lee, and Park [7] developed a VISSIM simulation where 
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participants could change the phase length of a traffic signal similar to a police officer directing 

traffic. Ding, He and Wo [8] used a similar approach with only first responders as participants. 

Both of these research efforts found large variations in the performance of manual traffic control 

and concluded that with additional officer training, manual traffic control could be performed 

more effectively.  

NCHRP Synthesis 309 addressed all aspects of highway management for planned special 

events [9]. This document made frequent reference to the use of police officers for manned 

traffic control points. “The advantage of using staffed traffic posts over signalized control is the 

presence of authority and the ability to make dynamic changes to the traffic flow”. A survey 

conducted in NCHRP 309 showed that MTC of intersections for special events is a common 

traffic management technique used around the country. Therefore, any agency looking to 

develop a special event traffic management plan is encouraged to use MTC. Furthermore, these 

agencies are encouraged to use traffic simulation in the development of management plans. 

However, any event utilizing MTC currently would have no reliable way of simulating the 

process for a comparative analysis. 

The criteria for developing evacuation time estimates (ETE) for the area surrounding 

nuclear power plants are provided in NUREG/CR-7002 [10]. This document highlighted MTC 

stating, “In general, it may be assumed that manned traffic controlled intersections operate most 

efficiently” when compared to un-signalized, fixed-time signals and actuated signals. This 

document also supports the use of traffic simulation in the development of ETEs. It mandates 

that if MTC is proposed as a part of a traffic management plan, then the simulation model must 

simulate the effects of MTC. The document proposes modeling MTC as an actuated signal with a 

signal-timing plan that reflects more efficient operations (NRC, 2011). However, without full 

knowledge of MTC operations, simulating MTC as an actuated signal may not be realistic. 

Furthermore, no guidance was given on how to make the simulated actuated signal more 

efficient or how to simulate the actuated signal to produce results similar to that of MTC. 

A review of the literature has shown that currently there is no way to effectively simulate 

MTC in a traditional sense. The use of actuated controllers employs a repeating cycle length that 

is uncharacteristic of MTC. Human-in-the-loop simulation provides the most realistic approach 

to date but requires constant user input, can only simulate a single intersection at a time, and is 

time consuming. There is a need for a simulation tool that can replicate the primary control 

decisions of police officers conducting MTC in real-time and implement their actions to quantify 

the impact on evacuation corridors. 
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2.0 RESEARCH METHODOLOGY 

Broadly, the research methodology consisted of four primary tasks. The first task was the 

collection and processing of video footage of police officers directing traffic. The second task 

was the development of a discrete choice model capable of explaining right-of-way allocation 

decisions made by the police officers. The third task was programing the discrete choice model 

into the microscopic traffic simulator, VISSIM 7.0, to simulate police officers directing traffic. 

This was accomplished through Vehicle Actuated Programing (VAP), which “replaced” the 

intersection signal controller logic with the discrete choice model developed in the previous task. 

This task also included the calibration and validation of the traffic simulation model. The final 

task was to evaluate the MTC within an evacuation corridor. The following sections detail the 

methods and results of each of these tasks.  

 

2.1 DATA COLLECTION AND PROCESSING 

The data requirements for discrete choice modeling (logit model) required an extensive 

collection effort. Data was collected from four intersections after five college and professional 

football games in Baton Rouge, LA and Miami Gardens, FL. In both study areas, intersections 

were chosen because of their proximity to the football stadiums and their location on heavily 

utilized routes. The data collection effort spanned over four months starting in the Fall 2012. In 

total, video data from over 320 hours of special event traffic was collected, viewed and 

cataloged. From the video footage, a total of 26 hours and 27 minutes (less than 10% of the total 

footage collected) was of police officers actively directing traffic.  

In Baton Rouge, three intersections were selected for data collection during four 

Louisiana State University football games. These intersections were Stanford and Perkins, 

Nicholson and Roosevelt and Nicholson and Lee. In Miami Gardens, FL cameras were placed at 

the intersection of NW 183 St. and NW 27 Ave. near Sun Life Stadium for one football game.  

Through the data reduction process, the video footage was systematically categorized it 

into numeric observations. The end product of data reduction was a time-line, capturing the 

events (phase changes, phase length, lane groups, vehicle departures, etc.) that took place within 

the intersection. This process was completed in two-steps. The first step required manually 

recording lane groups, phase length and phase sequence for the periods immediately before, 

during, and immediately after the officer was directing traffic. During this time, observations of 

red-light running, emergency vehicle movements, and other abnormal road user behavior were 

also noted. 

The next step was to time-stamp individual vehicle departures, platoon gaps and 

intersection blockages. Vehicle departures were time-stamped manually. Temporary gaps in the 

traffic platoon which typically occur when vehicle platoons break-up due to poor coordination, 

lack of demand, or travel conditions between intersections were also cataloged. Additionally, 

durations when vehicles were stopped or prevented from proceeding through the intersection due 

to downstream congestion were noted. Using the coded data, a second-by-second timeline was 
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( 1 ) 

( 2 ) 

created to incorporate departures for all intersection movements, lane groups, phase length and 

phase sequence, and intersection blockages and gaps.  

 

2.2 DISCRETE CHOICE MODELING 

 

At signalized intersections police officers direct traffic from the controller box. Using a push-

button device within the controller cabinet, an officer can switch between signal phases. 

Fundamentally, an officer directing traffic using this method is faced with a binary discrete 

choice process, to change the signal during a time interval or let the current phase remain green. 

Important to note here, is that phase sequence, the order in which one phase leads to the next was 

not decided by the police officer. Once the officers pushes the button, the signal changes to the 

next default option. This is a function of the controller and its programing and not the officer. 

The controllers in both Baton Rouge and Miami Gardens functioned in this manner under MTC. 

To model the choice by the officer to push the button, binary logit modeling was used. Other 

discrete choice models were applicable for this purpose but since the simulation model must 

ultimately calculate the choice probabilities every time-step, it was assumed that a more complex 

choice model would increase the computational time during the simulation process. 

The logit model choice probability that an officer (n) would change phases (choose 

alternative i), was a function of the utility of changing phases ( ). This relationship is shown in 

Equation (1) [11]:  
 

 

 

 

 

The utility of changing phases in any time interval was dependent upon a vector of 

independent variables ( ) observed in the traffic stream and the degree to which these variables 

influence this decision (vector ). For example, if  was a variable determined to affect the 

officer’s decision-making, then  contributed to the utility of changing phases by a factor of , 

as observed in Equation 2. The parameter coefficient vector , was econometrically inferred 

from a sample of N observations using the maximum likelihood estimation procedure [11]. 
 

 

 

 

2.3 VARIABLE SELECTION 

 

The data collection and reduction process resulted in a second-by-second time-line of events, 

which took place in the traffic stream. This time-line was then used to develop the dependent and 

independent variables for the logit model analysis. The time interval used in this research was 

one second. As a result, the discrete choice represented by the logit model was between an 

officer changing phases over a one second interval (dependent variable y=1) and the officer not 

changing phases during this second (y=0). Prior to the generation of the independent variables, 
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the intersection clearance time (the yellow and all-red time, which transitions between signal 

phases) was removed from the timeline to not bias the model toward selecting the intervals.  

Fundamentally, there were three independent variables used in this research: “Time”, 

“Gap”, and “Phase”. The “Time” variable was the phase length duration, or how long a phase 

has received a green indication. The “Gap” variable accounted for periods of time in which no 

vehicles entered an intersection despite having a green indication (time-headways greater than 4-

seconds). These “gaps” were generally the result of the breaking down of vehicle platoons. The 

“Gap” variable took a value of one, if one of the intersection approaches had a “gap”; two, if two 

of the approaches had a “gap” during the same time interval and zero if no gap was present. The 

“Phase” variable was a set of four binary variables that indicated which phase was receiving the 

green indication. Each of these four variables represented a phase (northbound/southbound thru, 

northbound/southbound left, etc.). The four “Phase” variables were labeled according to the 

priority they received from the police officers. These are “Primary”, “Secondary, “Tertiary, and 

“Quaternary”.  

The Primary variable (Prim (1)), represented the phase that received the largest 

proportion of the green time allocated by the officer. For example, if the northbound/southbound 

thru phase received more green time than any other phase, this phase would be labeled as the 

“Primary” phase. This was done to compare “Primary” phases between intersections regardless 

of the intersections’ geometric characteristics.  As such, Secondary (Secon (2)), Tertiary (Ter 

(3)), and Quaternary (Qu (4)) represent the phases green time proportions. It was also 

hypothesized that the impact of time and the presence of gaps had on the officer’s decision 

making varied for each direction. These variables were tested for their interaction and included 

in the study. The variable representing the interaction of the “Priority” phase and “Time” was 

labeled Time (1). As such, the interaction between the “Gap” variable and the “Priority” phase 

was labeled Gap (1). The same labeling system was used for the interaction between 

“Secondary”, Tertiary” and “Quaternary” phase for both “Time” and Gap” (Time (2), Gap (2), 

etc.) The resulted indicated that interaction did occur and the contribution to the decision making 

process made by the “Time” and “Gap” varied, depending on which phase was green.  
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3.0 LOGIT MODEL RESULTS 

 

From these variables, a total of nine logit models were developed in this research, one for each 

intersection/event observation. The tables which display the logit model results are first 

presented then each of the variable types (“Priority”, “Time”, and “Gap” are discussed. Table 1 

shows the results of the four logit models estimated from the intersection of Nicholson and 

Roosevelt, in Baton Rouge, LA, from four separate special events (LSU football games). Also 

developed from Baton Rouge Data, Table 2 and Table 3 show the model results from Nicholson 

and Lee, and Stanford and Perkins for two special events, respectively. Table 4 show the results 

from SW 183 St. and SW 27 Ave. in Miami Gardens, FL from one speicle event.  

These tables show the variable coefficients (coef), the standard error (St.Er) of these 

coefficients, and their P-value (P>|z|), which test the statistical significance of the variables. P-

vales less than or equal to 0.05 were determined to contribute to the officer’s decision making 

[14]. Also shown in the tables are the goodness-of-fit measures (GoF) used to evaluate the 

accuracy of the model i.e. how well the model predictions match the observed choices made by 

the police officers. The Goodness-of-fit was quantified using three metrics: the pseudo R-

squared ( ) value, the Hosmer-Lemeshow chi-square statistic (χ²) and the area under the 

receiver operator curve (ROC). For reference, the GoF line in the tables also displays the log 

likelihood (LL) of the maximum likelihood parameter estimation and the number of observations 

(OBS) the model was built from. 
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Table 1: Nicholson and Roosevelt Model Results 

1-1: Nicholson and Roosevelt, Observation Event on 10/13/12 

  Prim (1) Second (2) Ter (3) Time (1) Time (2) Time (3) Gap (1) Gap (2) Gap (3) 

Coef -5.34 -2.01 0 0.01 0.02 0.07 2.81 1.23 2.02 

St.Er 1.1075 0.4856 0.0000 0.0015 0.0035 0.0075 44.90 0.1786 0.0622 

P>|z| 0.00 0.02 1.00 0.00 0.01 0.17 0.00 0.00 0.00 

GoF ρ² = 0.2774 χ² = 0.4866 ROC = 0.864 LL = -316.97 Obs. = 7534 

1-2: Nicholson and Roosevelt, Observation Event on 11/03/12 

  Prim (1) Second (2) Ter (3) Time (1) Time (2) Time (3) Gap (1) Gap (2) Gap (3) 

Coef -2.23 0.41 0 0.01 0 -0.04 1.03 2.12 2.2 

St.Er 2.1572 1.0122 0.0000 0.0022 0.0028 0.0032 31.50 0.1838 0.2177 

P>|z| 0.30 0.84 1.00 0.00 0.68 0.01 0.00 0.00 0.04 

GoF ρ² = 0.2229 χ² = 0.8067 ROC = 0.8546 LL = -378.39 Obs. = 6385 

1-3:Intersection Nicholson and Roosevelt, Observation Event on 11/10/12 

  Prim (1) Second (2) Ter (3) Time (1) Time (2) Time (3) Gap (1) Gap (2) Gap (3) 

Coef -7.56 -2.42 0 0.02 0.04 0.49 3.28 1.61 1.05 

St.Er 1.6306 0.7652 0.0000 0.0049 0.0088 0.0344 28.60 0.3765 0.0962 

P>|z| 0.00 0.09 1.00 0.00 0.03 0.03 0.00 0.02 0.09 

GoF ρ² = 0.2774 χ² = 0.4518 ROC = 0.9346 LL = -153.27 Obs. = 3141 

1-3: Intersection Nicholson and Roosevelt, Observation Event on 11/17/12 

  Prim (1) Second (2) Ter (3) Time (1) Time (2) Time (3) Gap (1) Gap (2) Gap (3) 

Coef -4.35 -1.32 0 0.02 0.03 1.19 1.05 1.41 0.01 

St.Er 1.8263 0.6531 0.0000 0.0041 0.0060 0.0660 60.90 0.2016 0.0887 

P>|z| 0.02 0.31 1.00 0.00 0.03 0.02 0.01 0.00 0.98 

GoF ρ² = 0.2870 χ² = 0.4747 ROC = 0.8858 LL = -168.00 Obs. = 3134 

 
Table 2: Nicholson and Lee Model Results 

2-1: Nicholson and Lee, Observation Event on 11/03/12 

  Prim (1) Secon (2) Ter (3) Time (1) Time (2) Time (3) Gap (1) Gap (2) Gap (3) 

Coef -2.45 -0.42 0 0.02 0.01 0.04 0.47 0.31 1.32 

St.Er 0.6991 0.4542 0.00 0.0030 0.0033 0.0061 21.3000 0.2899 0.1085 

P>|z| 0.00 0.51 1.00 0.00 0.00 0.03 0.00 0.44 0.00 

GoF ρ² = 1448  χ² = 0.1075 ROC = 0.8276 LL = -417.81 Obs = 6898 

2-2: Nicholson and Lee, Observation Event 11/10/12 

  Prim (1) Secon (2) Ter (3) Time (1) Time (2) Time (3) Gap (1) Gap (2) Gap (3) 

Coef 0.34 2.82 0 0.01 0.01 0.28 -0.18 -0.24 1.35 

St.Er 1.6213 0.8306 0.0000 0.0030 0.0036 0.0207 23.8000 0.2046 0.0971 

P>|z| 0.83 0.06 1.00 0.00 0.20 0.00 0.01 0.51 0.00 

GoF ρ² = 0.1901  χ² = 0.2345 ROC = 0.8173 LL = -201.02 Obs = 4581 
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Table 3: Stanford and Perkins Model Results 

3-1: Stanford and Perkins, Observation Event 11/10/12 

  Pr (1) Se (2) Te (3) Qu (4) T (1) T (2) T (3) T (4) G (1) G (2) G (3) G (4) 

Coef -8.06 -3.1 -1.61 0.00 0.01 0.03 -0.03 0.11 2.66 1.51 2.4 0.95 

St.Er 1.888 0.598 0.388 0.00 0.004 0.006 0.010 0.024 41.1 0.224 0.388 0.264 

P>|z| 0.00 0.01 0.11 1.00 0.00 0.04 0.30 0.13 0.00 0.00 0.02 0.25 

GoF ρ² = 0.2244  χ² = 0.3796 ROC = 0.89 LL = -158.98 Obs = 3486 

3-2: Stanford & Perkins, Observation Event 11/17/12 

  Pr (1) Se (2) Te (3) Qu (4) T (1) T (2) T (3) T (4) G (1) G (2) G (3) G (4) 

Coef -3.91 1.08 -30.99 0.00 0.02 -0.01 0.03 0.06 2.04 3.25 17.46 1.93 

St.Er 2.355 1.231 0.000 0.00 0.006 0.009 0.008 0.022 30.6 0.405 0.238 0.327 

P>|z| 0.10 0.59 0.00 1.00 0.00 0.39 0.07 0.26 0.00 0.00 0.00 0.02 

GoF ρ² = 0.3662  χ² = 0.98 ROC = 0.9575 LL = -141.98 Obs = 3987 

 

Table 4: SW 183 St. and SW 27 Ave. Model Results 

4-1: SW 183 & SW 27 Ave, Observation Event on 01/07/13 

  Pr (1) Se (2) Te (3) Qu (4) T (1) T (2) T (3) T (4) G (1) G (2) G (3) G (4) 

Coef -5.56 -2.44 -1.52 0.00 0.03 -0.02 -0.02 -0.05 1.48 2.21 1.7 1.9 

St.Er 0.804 0.330 0.260 0.00 0.005 0.006 0.009 0.010 20.2 0.176 0.160 0.122 

P>|z| 0.00 0.00 0.01 1.00 0.00 0.21 0.29 0.07 0.00 0.00 0.00 0.00 

GoF ρ² = 0.2214  χ² = 0.752 ROC = 0.8739 LL = -565.08 Obs = 6541 

 

3.1 PHASE VARIABLES 

Broadly, the preference shown by the officers to a particular direction this was related to 

approach volume. In general, the coefficient values for the “Priority” variables are negative and 

most of them are statistically different than zero (p-values less than 0.05). The negative sign of 

the coefficient indicates the officers’ reluctance to changing phases when this particular phase is 

receiving a green indication. The higher the magnitude of the negative coefficient, the larger the 

preference was shown to that phase by the officer. This indicates that the officer assigned an 

ordinal priority (primary, secondary, tertiary, etc.) to each phase of the intersection, likely based 

on demand. For example, the “Primary” (Pri (1)) direction has a negative coefficient value with 

the highest magnitude. This suggests that the officer was less likely to change phases from this 

phase when compared to the others i.e. this was the officers “favorite” phase.  

In general, the magnitude of the coefficient was less for the Secondary direction and even 

less for the Tertiary direction. For intersections with only three phases, no priority was given to 

the Tertiary direction (the officer’s least “favorite” phase). The same was true for four phase 

intersections and the Quaternary direction (being the officer’s least “favorite” out of the four 

possible phases). This was intuitive because the logit model can only estimate the relative 

difference in the priorities. If the officer favored one direction most, by default the officer must 
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not favor one of the directions at all. The logit model determined this independently and assigned 

a coefficient value to this variable of zero. 

3.2 TIME VARIABLES 

The “Time” variable represents the impact of phase duration on the phase change decision. From 

the tables it is evident that the importance of Time is weighted differently depending on which 

phase is receiving a green indication. In general, the impact of the Time variable is positive, 

suggesting that as phase duration increases, so too does the probability the officer will change 

phases. In addition, the magnitude of the coefficient was inversely proportional to the 

contribution of the variable, i.e. the larger the coefficient value, the shorter the phase duration. 

From the figure, relatively small coefficient values are observed for the “Priamry” direction 

(Time (1)), suggesting these phases are longer in duration when compared to other phases. For 

the “Tertiary” direction for three phase intersections (Nicholson & Lee and Nicholson & 

Roosevelt), the “Time” coefficients were much higher than the other two phases. It is likely that 

officers, wanting to limit this low demand phase, allowed a green indication for a much smaller 

proportion of time. This phenomenon was also observable in the video footage.  

3.3 GAP VARIABLES 

In general, the coefficient values for the “Gap” variables were positive and significantly different 

than zero. This suggests that the “Gap” variable did in fact contribute the phase change decision 

and shows that when gaps were present, the officers were more likely to change phases. This 

indicates the officers directing traffic wanted to avoid these gaps in the flow of traffic, because 

they waste green time, decrease vehicle flow rate, and take away usable time to move cross-

street traffic. 

 

Looking at tables as a whole, there appears to be an interplay between “Time” and “Gap” 

variables. As one of these variables becomes larger and more statistically significant (smaller P-

values), the other tends to decrease and/or become less significant (higher P-values). In general, 

the duration of green time (phase length) made little difference to the officers for high priority 

directions. As such, the presence of gaps in the traffic took on a more relevant role. While this 

was not necessary the case in all observations, it is a general trend and makes logical sense. 

Furthermore, the logit models do include, at times variables that are insignificant (P-values 

greater than 0.05). These variables were included because it was desirable to have the same 

independent variables between models. This is also intuitive in that officers would likely rely on 

similar events to make their right-of-way allocation decisions. The definitive significance of 

these variables, as quantified by the P-value, is undoubtable related to the data collection and 

process methodology used. In this sense, it is more important to look for general trends in the 

data and logit models then any one, individual parameter or model. 

3.4 GOODNESS-OF-FIT 

In general, the model fit was in the “good” to “outstanding” range, suggesting that the manner in 

which the officers made phase changes decisions was consistent throughout the observation 

period. However, the models estimated for intersection of the Nicholson and Lee did dip into the 
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“acceptable” range [12], suggesting the officers at this intersection were less consistent with the 

allocation of signal green time when compared to the other intersections.  
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4.0 SIMULATION MODELING RESULTS 

The predictive logit models quantified the phase change decisions of the police officers that were 

observed in the field.  These models were then integrated into a microscopic simulation software, 

VISSIM 5.3 for the purpose of simulating the officer’s decision making [13].  The traffic 

simulation was conducted in three steps. The first step was to program the geometric design and 

special event traffic demand for each observation into the simulation software. The second step 

was to program the logit models, developed in the previous chapter, into VISSIM to act as the 

signal controller. The final step was to calibrate and validate the simulation model to verify the 

performance of the proposed methodology. 

4.1 GEOMETRIC DESIGN AND DEMAND MODELING 

The coding of the simulation model required the geometric design of the intersections and the 

vehicle demand as model inputs. The geometric design of the four study intersections was 

programmed into VISSIM 5.3 using open source high-resolution satellite images provided by 

Google™. The accuracy of these measurements was also verified during site visits. Using the 

traffic count and turning movement information from the intersection event time-lines, the 

intersection discharge flow rate observed in the videos was aggregated into 15-minute flow rates 

and programed into the simulation.  

4.2 LOGIT MODEL PROGRAMING 

The integration of the logit models into VISSIM was accomplished using Vehicle Actuated 

Programming (VAP). The VAP allowed for a real-time exchange of information between the 

simulation software and a VAP program file, which contained the logit models (PTV, 2007). The 

VAP received the intersection detector information to create the independent variables used in 

the logit model. From these variables it was possible to estimate the probability that the observed 

police officer, when placed in a similar situation, would change phases.  

Through the VAP interface, the phase change probability was calculated every simulation 

time-step (1-second). These probabilities were then compared to a threshold value. If the 

probability of changing phases was higher than or equal to the threshold value, the VAP notified 

the signal controller inside the VISSIM model to change phases and proceed to the next time 

step. If the threshold value was not reached, the VAP allowed VISSIM to proceed with the next 

time-step without a phase change.  

The threshold value was assumed to be a random variable from a uniform distribution. 

By randomly changing the threshold value, phase to phase, it was possible to more accurately 

represent the variability of manual traffic control, which was observed in the field. At the end of 

each phase, the threshold value for the next phase was calculated using Equation 6. The 

threshold value ( ) of phase p, was computed by adding and subtracting a pseudo-random 

number to a static threshold value ( ). The value of the static threshold was chosen empirically 

from the data collection video. For example, if 30 phase changes were observed in the video, the 

static threshold ( ) was set to the value of the 31st highest choice probability estimated by the 
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logit model. This ensured that, on average, 30 phase changes would likely occur during the same 

time period, permitting the simulation and observed intersections to have approximately the 

same number of phase changes.  

The upper and lower bound of the random number was confined by the calibration 

variable . This allowed the degree to which the threshold value varied to be calibrated to match 

the observations in the field. This was done by adjusting this variable up or down until the 

standard-deviation for the simulated phase lengths was equal to the standard deviation observed 

in the videos. The calibration variable  was multiplied by a pseudo-random number between 

zero and one. This value was calculated using a linear congruential random number generator 

(Wilson, 2009). This formulation of the pseudo-random number generated also required a seed 

value to calculate the initial random variable. The value of the seed number varied for each 

simulation.  
 

 

Where, 

 is the threshold value for phase p 

 is the static cut-point value 

is the calibration parameter 

 is a random number generated in the previous/initial time step 

 is 1,597, 

 is 51,749, 

 is 244,944. 

4.3 CALIBRATION 

The goal of the calibration process was to have the simulation output match the field 

measurements with statistical certitude. The calibration process was important because data that 

could not be observed in the video footage but was necessary for the simulation model to 

produce the correct results, was inferred from making incremental changes to the input 

parameters. There were three parameters that needed to be estimated through the calibration 

process that were unique to each simulated intersection, the logit model coefficients ( ), the 

variance of the cut-point ( ), and the approach demand. 

The calibration of these three parameters was conducted in parallel because each of these 

parameters was interdependent. For example, by adjusting the logit model coefficients, the signal 

timing would change, altering the intersection throughput. An added complexity to this was the 

stochastic nature of the simulation runs. As a result, multiple simulation runs were required to 

estimate if the changes observed in the simulation model were a result of calibrating the relevant 

parameters or the stochastic nature of the simulation model.  

Once calibrated, an analysis was conducted to determine the number of simulation runs 

required to estimate reliable results. This analysis used the average cycle length to estimate the 

number of simulation runs required. It was determined that anywhere between three to nine 

simulation runs were required for each model to ensure that the average cycle length was 

consistent between runs. Therefore, to assure consistent results, each event was simulated ten 

times and the results averaged. 

( 6 ) 
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4.4 SIGNAL TIMING CALIBRATION  

The estimated logit model coefficients provided a range of values within the 95% confidence 

interval. The values of the coefficients that result in the correct green time allocation can fall 

anywhere within this range. Therefore, the coefficient values for each variable used in the logit 

model was modified within the range of the 95% confidence interval until the average simulated 

phase length match the field observations. Adjusting these values affected the mean value of the 

simulated signal. However, to adjust the variance of this mean, the calibration variable ( ) had 

to be estimated through an iterative calibration process until the standard deviation of each phase 

length, approximately matched the observed standard deviation.  

The signal timing calibration results for each observation event are shown in Figure 1. 

This figure shows the observed average phase length and the simulated average phase length and 

their respective standard error. To compare the observed phase length and standard deviation 

from the video footage to the simulation model, a two-sample student t-test and f-test was 

conducted, respectively. All observations failed to reject the null hypothesis, that the observed 

and simulated phase length and standard deviation of the phase length were equal. Therefore, the 

simulation model was assumed to replicate the observed actions. This can be seen in the figure 

by comparing the error bars. 
 

 

Figure 1: Signal Timing Calibration 
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4.5 VALIDATION 

The goal of the simulation validation process was to evaluate the consistency of simulated police 

officer control with those observed in the field.  Validation was undertaken using model transfer, 

whereby the officer actions logit model at one intersection was used to simulate the actions at 

another intersection.  In effect, this process would be like moving an officer directing traffic 

from one intersection to another in the study.  This was accomplished by transferring the 

calibrated VAP files from one intersection to another. Validation, for the purposes of this 

research, was achieved when the transferred model produced statistically similar results, both 

temporally and spatially, with the observations made in the field.  

For the purposes of validation, the intersections were broken up into two datasets: calibration and 

validation. The calibration dataset represents the models that were transferred. The validation 

dataset represents the data on which the calibration parameters were being transferred to.  

The intersection of Nicholson and Lee was validated by transfer the model estimated on 

11/03/12 to the data collected on 11/10/12. Likewise, the validation of Stanford and Perkins was 

conducted by transferring the model estimated on 11/10/12 onto the data collected on 11/17/12. 

Since, only one data collection day was available for the intersection of NW 183 St. and NW 27 

Ave. this intersection was validated using the model for Stanford and Perkins on 11/10/12. The 

intersection of Nicholson and Roosevelt was validated by combining the data collected on 

10/13/12, 11/03/12, and 11/10/12, and testing this combined model onto data collected on 

11/17/12.  

Figure 2 illustrates the traffic signal timing results for the validation dataset. Present in 

the figure are the average phase duration and the standard deviation of this value, represented by 

error bars. Error bars which overlap indicate that the simulated validation results and the 

observed signal timing were statistical similar (failure to reject the null hypothesis that these 

values are equal). The analysis from a two-sample, two-tailed student t-test failed to reject the 

null hypotheses for all but one observations. Suggesting the validation simulation preformed in a 

similar fashion, compared to the observed signal timings. The single exception was seen for the 

tertiary direction at the intersection of Nicholson and Roosevelt and was likely do to an 

extraordinarily small standard deviation observed during in the validation dataset. F-testing 

conducted on the variance of these values also showed them to be statistically similar (failure to 

reject the null hypothesis that these values are equal) for every observation with the exception 

noted prior.  Therefore, in general, the validation model was successful at replicating the 

observed signal timings. 
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Figure 2: Signal Timing Validation 
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5.0 SIMULATED CORRIDOR NETWORK 

A hypothetical urban grid network, originally developed by El-Metwally and Murray-Tuite [16], 

was used to evaluate the application of MTC for evacuating corridors. The network consisted of 

a dense inner evacuation area and a less dense outer safe area. This network included 41 

intersections (25 within the evacuation area and 16 in the safe area), eight evacuation origin 

zones, and 20 evacuation destination zones. Figure 1 depicts the evacuation network. The 

evacuation intersections are labeled 1-25 and are shaded gray. The outer intersections are labeled 

26-41. The origin zones, labeled O1-O8 and the destination zones, labeled D1-D20 are also 

displayed. The network is symmetric in both the North-South and East-West directions. Within 

the figure, callouts identify the location of the critical intersections to be evaluated (Center, 

Inside, Corner, Edge). These four intersections were systematically replaced with the 

unconventional control strategies and evaluated based on delay time. 
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Figure 3: Evacuation Network (Intersections, Origins, & Destinations) 

 

All the roads within the network are four lane (two lanes in each direction) and each 

intersection is signalized with four approach directions or legs. The speed limit of each road is 35 

mph. Intersections within the evacuation area (1-25) have a shared through and right turn lane, a 

through lane, and a left-hand turn pocket on the major East-West approach. These inner 

intersections are spaced 0.5 miles apart and are shown in Figure 4. The outer intersections (26-

41) consist of one shared through and right lane, and one left turn lane for all approach legs. The 

outer intersections are spaced further apart, ranging between 1.0 and 2.0 miles apart. The outer 

intersection’s geometry is shown in Figure 5. 
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Figure 4: Inner Intersections (1-25) 

 

 
Figure 5: Outer Intersections (26-41) 

5.1 EVACUATION SCENARIOS 

Six evacuation demand scenarios were adapted from [16] to evaluate the intersection control 

strategies. Each scenario assumes the dense urban area containing intersections 1-25, requires an 

immediate no-notice evacuation. Evacuation origins are modeled as parking lots located at origin 

zones O1-O8. Evacuation destinations are modeled as parking lots located at destination zones 

D1-D20. The demand loading time for each scenario is 1 hour and evacuees are routed using 

VISSIM’s dynamic traffic assignment method based on stochastic user equilibrium [22]. This 
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traffic assignment method has been used in several previous evacuation studies [16]; [17]; [18]; 

and [19]. 

In general, there were two evacuation demands (medium and high) and three directional 

distributions, where evacuees were routed in a particular direction. This resulted in six unique 

evacuation scenarios (Scenario A – Scenario F). The medium demand scenario was developed to 

target a link volume to capacity ratio (v/c) of 0.8 to 0.9 and resulted in a total of 14,400 vehicles. 

The high demand scenario targeted a v/c ratio of 0.9-1.0 and resulted in a total evacuation 

demand of 19,200 vehicles. 

 

Scenario A – This scenario evacuates a medium demand (14,400 vehicles) that is evenly 

distributed between destination zones D1-D20. 

 

Scenario B – Evacuates a high demand (19,400 vehicles) and is also evenly distributed between 

the destination zones. 

 

Scenario C – Uses a medium demand and assumes the evacuation threat is located to the North 

of the city, resulting in the closure of destinations located to the North (D2-D6). The evacuees 

are therefore, evenly distributed to the remaining 15 destination zones. 

 

Scenario D – Uses a high demand but is otherwise identical to Scenario C. 

 

Scenario E – Uses a medium demand and assumes the evacuation threat is located to the East of 

the city and as such, simulates a closure of destinations D7-D11. The evacuees are evenly routed 

to the remaining 15 destinations. 

 

Scenario F – Uses a high demand but is otherwise identical to Scenario E. 

5.2 ACTUATED CONTROL 

The actuated signal control used for this research is a Ring Barrier Controller with lead-lead, 

protected/permissive left turn movements [16]. The signal cycle length is 86 seconds, the yellow 

time is four seconds, and the all-red time is three seconds. The actuated controller, as 

programmed in VISSIM 7.0, is shown in Figure 6. The actuated controller serves as the research 

control. It is assumed that this would be the default control method used during an evacuation. 

All other intersections in the network were programmed in the same fashion as displayed in 

Figure 6.   
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Figure 6: Actuated Controller Timing 

5.3 CORRIDOR NETWORK RESULTS 

Table 5 through Table 8 show the average simulated delay time for each scenario and 

control strategy. Also shown in these tables are the percent improvement (if any) which may be 

attributable to MTC. In general, as demand increased or became more concentrated in one 

direction, average delay time increased. This was an expected finding and indicates the 

evacuation network is near capacity. By increasing or concentrating evacuees in a single 

direction, queues build up near the evacuation destinations and propagates into the rest of the 

network, causing excessive delay. The table also indicates that changing the traffic control 

measure of a single, key intersection can have a significant effect on the overall average delay 

time (as much as 13%). This finding is consistent with the evacuation literature [16]; [20]; [21], 

however, the large variation between strategies, was profound. This shows that providing an 

improvement to even one intersection within a network can substantially improve evacuation 

performance. Another expected finding was that some unconventional control measures resulted 

in higher average delay time. This suggest that deploying a control strategy when unwarranted 

for the evacuation scenario can increase delay time within the network. To help prevent this, the 

following recommendations are proposed based on the findings of this research as a “rule-of-

thumb” when implementing unconventional traffic control strategies: 
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Table 5: Center Intersection Delay Time     

Center Intersection 

Scenario: Actuated: MTC: (Minor) MTC: (Major) 

S-A 608 563  (7.4%) 587 

S-B 970 900  (7.22%) 955 

S-C 880 856  (2.73%) 856  (2.73%) 

S-D 1404 1230  (12.39%) 1300 

S-E 859 871 840  (2.21%) 

S-F 1427 1409 1335  (6.45%) 

 

Table 6: Inside Intersection Delay Time 
Inside Intersection 

Scenario: Actuated: MTC: (Minor) MTC: (Major) 

S-A 608 667 623 

S-B 970 1110 956  (1.44%) 

S-C 880 984 948 

S-D 1404 1489 1454 

S-E 859 915 906 

S-F 1427 1512 1425  (0.14%) 

 

Table 7: Corner Intersection Delay Time     

Corner Intersection 

Scenario: Actuated: MTC: (Minor) MTC: (Major) 

S-A 608 616 603  (0.82%) 

S-B 970 985 956  (1.44%) 

S-C 880 900 886 

S-D 1404 1369 1299  (7.48%) 

S-E 859 862 919 

S-F 1427 1386  (2.87%) 1506 
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Table 8: Edge Intersection Delay Time 
Edge Intersection 

Scenario: Actuated: MTC: (Minor) MTC: (Major) 

S-A 608 627 642 

S-B 970 1015 993 

S-C 880 879  (0.11%) 964 

S-D 1404 1443 1364  (2.85%) 

S-E 859 876 947 

S-F 1427 1452 1593 

 

 

Actuated Controller – The results suggest that an actuated controller performed well when 

intersection demand was moderate and more or less, evenly distributed among the four approach 

directions. In practice, actuated controllers are implemented without the supervision of a police 

officer as an authority figure. One of the most fundamental findings of this research was that 

actuated signal control can serve as a good default strategy as it provides a reasonable 

compromise between capacity and mobility. Allowing a reasonable level of service while not 

restricting moments through forced turnings. However, action should be taken when 

overwhelming demand from one or more directions causes queues to spillback and block 

driveways, entrance ramps, or other intersections. In this sense, actuated control can be thought 

of as the best intersection control strategy, until it becomes apparent the signal is incapable 

servicing the demand. Only then should authorities take action through the implementation of 

MTC or other tactics to address demand. 

 

Manual Traffic Control – This intersection control strategy performed similar to an actuated 

controller, however, it was able to accommodate imbalanced demand to a greater extent. While 

both MTC and the actuated controller were able to handle diverse turning movements, only MTC 

can do so at exceedingly high volumes. Another important finding was that MTC outperformed 

all other intersection control strategies when downstream queues blocked the intersection. In 

other words, when congestion (from either a downstream bottleneck or intersection) propagates 

upstream and into the intersection, MTC should be deployed to alleviate the problem. However, 

for coordinated networks, the likelihood of this occurring decreases and therefore, limits the 

application of MTC to intersections immediately upstream of a bottleneck. However, there are 

also other intrinsic benefits to MTC, in that it puts “boots-on-the-ground” to observe conditions, 

respond to problems, and project the presence of authority during times of crisis. Its ultimate 

drawback however, is that it requires a police officer. During an emergency, police personnel are 

in high demand and the benefit gained by MTC must be weighed against competing priorities. 
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6.0 CONCLUSION  

 

This research presented a methodology for simulating MTC which combined discrete choice 

modeling and traffic simulation to realistically represent the primary traffic control functions 

performed by police officers in the field. Using the method developed from this research, the 

MTC model can be adapted to simulate MTC at other intersections. With a relatively small 

sample size of officer observations and following the calibration procedure outlined in this paper, 

the MTC model can be adapted to simulate a wide range of intersection geometry and phasing to 

be tailored fitted to the modeler’s needs.  

 The proposed approach to simulating MTC signifies a vast improvement over the state-

of-the-practice, which uses a modified actuated controller to represent MTC (NRC, 2011). This 

research also recognizes that human-in-the-loop simulation is still the most accurate and realistic 

approach to simulating MTC. However, its limitations leave practitioners without a means of 

simulating multiple intersections simultaneously and autonomously at faster than real-time or the 

ability to conduct multiple simulation runs for statistical analysis [7]; [8].  

From a choice modeling standpoint, the research findings suggested police officers in 

Baton Rouge, LA and Miami Gardens, FL, tended to direct traffic in a similar fashion; extending 

green time for high demand directions while attempting to avoid long gaps or waste in the traffic 

stream.  This was expected and is quite consistent with the general concept of a traffic signal. 

The research also found that Phase, Time and Gap variables estimated by the various logit 

models had statistically similar values at a 95% confidence interval irrespective of the data 

collection day or location. While some level of similarity was expected, this degree of 

consistency was remarkable and indicates that when officers are placed in similar situation they 

are likely to make the same primary control decisions. This was important because it suggests 

that a properly trained and experienced police officer in Baton Rouge, LA would be just as 

effective directing traffic in Miami Gardens FL, and vice-versa.  

 From a simulation modeling standpoint, the manual traffic control model was shown to 

be statistically similar to the observed police controlled intersections with regard to phase length, 

standard deviation of phase length and intersection throughput. This was the goal of the 

calibration process and was an expected outcome. These results were validated on a separate 

dataset, which were also shown to be consistent. With this validity established, the model can be 

applied to simulate “what if” scenarios. Although the model cannot predict the precise effect of 

manual traffic control, it can be used to compute reliable estimates of its likely effect. Another 

application of the model would be to evaluate the effect of policy changes to manual traffic 

control. For example, if a policy was put in place that mandated a maximum cycle length of five 

minutes, the model could be modified to reflect this and estimate the likely impact on traffic.  

In general, the results of the research showed that MTC, when implemented properly can 

reduce average evacuee delay time, significantly. However, equally important to note is that 

MTC can have the opposite effect if not properly planned and executed. Among the research 

findings was that actuated controller should be used for moderate demand levels that is 

approximately balanced between the approach directions. Manual traffic control is costly in 
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terms personnel resources but it is best suited for intersections immediately upstream of a 

bottleneck or for closely spaced, uncoordinated signalized intersections.  
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