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Exclusive Summary 

This research addresses the eco-system optimal dynamic traffic assignment (ESODTA) problem 

which aims to find system optimal eco-routing or green routing flows that minimize total vehicular 

emission in a congested network. We propose a generic agent-based ESODTA model and dissect 

the link travel times and speeds obtained by three mesoscopic traffic simulation methods to 

highlight the importance for a dynamic network loading (DNL) model to effectively generate high-

fidelity vehicle trajectories and time-dependent speeds for multi-scale emission analysis. The 

relationship between link emission and delay is also analyzed. Based on a modified point-queue 

model, an expanded space-time network is constructed to formulate the ESODTA with constant 

bottleneck discharge capacities. The resulting linear integer model of the ESODTA is solved by a 

Lagrangian relaxation-based algorithm. To address the more general ESODTA with time-

dependent discharge rates in a congested network, we propose a column generation-based 

algorithm, which consists of a mesoscopic DNL model and a gradient projection-based descent 

direction method for updating time-dependent vehicular path assignments. The mesoscopic DNL 

model tightly integrates Newell’s simplified kinematic wave and car-following models to generate 

time-dependent and location-dependent vehicular speed profile and evaluate vehicle emissions 

from cumulative vehicle counts. We derive a formula of marginal emission which encompasses 

the marginal delay as a special case, and develop an algorithm for evaluating path marginal 

emissions in a congested network. 
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1. Motivation and Objective 

Highway vehicles have been the primary focus of environment protection and transportation 

agencies to reduce greenhouse gas emissions, since they account for 72 percent of total 

transportation emission (Greene and Schafer, 2003).  Among various measures that have been 

considered for potential vehicular emission reduction (such as energy efficiency improvements, 

low-carbon alternative fuels, increasing the operating efficiency of the transportation system, and 

reducing travel), eco-routing or green routing in route guidance provision is receiving increasing 

attention from the field of green transportation. The idea of green routing is to help drivers make 

greener choices about their routes by providing the most eco-friendly route in terms of minimum 

emissions. In a recent laboratory experiment conducted at the University of California at Berkeley, 

subjects were found to be willing to adjust their route choice behaviour to reduce emissions, 

exhibiting an average willingness to pay for emissions reduction, or value of green, of 15 cents per 

pound of CO2 saved (Gaker et al., 2010; Gaker et al., 2011).   

Directing an individual vehicle to a green route can reduce its eco-cost or emission to the 

environment. However, without an effective system-wide coordination, independent drivers acting 

non-cooperatively would affect and even worsen traffic conditions and emissions. Instead, system 

optimal green routing or eco-routing policies that result in a minimal total system emission may 

be of a greater interest to public-sector environmental protection and traffic management agencies.  

The minimal total system emission serves as a benchmark to evaluate the benefits of practical 

traffic emission reduction measures. Moreover, the resulting green routing policies provide 

valuable insights for designing those measures. Therefore, this research intends to find time-

dependent system optimal green routing policies that minimize the network-wide vehicular 

emission, which is termed as the Eco-System Optimal DTA (ESODTA) problem. 
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Classical system optimal dynamic traffic assignment (SODTA) models aims to direct all 

travelers to paths so as to minimize overall system travel time or cost (e.g., Ghali and Smith, 1995; 

Peeta and Mahmassani 1995; Peeta and Ziliaskopoulos, 2001). A rich body of literature has 

devoted to the models and algorithms of the SODTA, and static traffic assignment (STA) models 

with environmental considerations have been found in a number of past studies (Szeto et al., 2012). 

Only until recently have the environment-related objectives and constraints been considered in the 

dynamic traffic assignment (DTA) context, as a few researchers started to recognize the need for 

incorporating the effect of traffic dynamics on estimating vehicular emissions so as to thoroughly 

consider the full set of interacting factors (e.g. Abdul Aziz and Ukkusuri, 2012; Zhou et al., 2015).  

As the development of ESODTA is still in the infant stage, a number of critical but challenging 

issues need to be addressed to enable ESODTA in congested networks.  

(i) Exploring the relationship (or difference) between conventional traffic performance 

measures (such as travel time, speed, and delay) and emission is fundamental to the development 

of ESODTA models, but the properties of the emission generated by vehicles traversing a link 

were not rigorously analyzed in existing studies.  

(ii) It is essential for the dynamic network loading (DNL) model of ESODTA to generate high-

fidelity vehicular trajectories and time-dependent speeds so that fine-grained emission estimations 

can be obtained for multi-scale emission analyses, whereas most of the DNL models underlying 

classical DTA models concern mainly on the link travel times (i.e., the time between the entrance 

and exit times of a vehicle).  

(iii) Congestion effects on vehicular emissions have to be explicitly and effectively taken into 

account in ESODTA models. Generally, the time in queue is a more appropriate traffic 

performance measure than the delay when evaluating vehicular emissions and energy consumption 

in congested networks (Lawson et al., 1997). Thus, it is important for the traffic flow model 

adopted in the underlying DNL model to explicitly describe vehicles moving in the queue. 

Although microscopic traffic flow models are desirable for analyzing vehicle trajectories in 

congested conditions, microscopic traffic simulation can be computationally intensive and 

typically requires a wide range of detailed geometric data and driving behavior parameters, which 

can be difficult to calibrate, especially for the purpose of producing high-fidelity emissions 

estimates.  

(iv) Link (or path) marginal emission, the change in emission due to an additional unit of inflow, 

is critical to the solution algorithms of ESODTA. Although marginal travel time (or delay) has 

been extensively studied in the literature, none of the existing studies has investigated marginal 

emission in a congested network. In addition to developing efficient approaches to evaluate link 

and path marginal emissions, it is important to discuss the relationship between marginal emission 

and marginal delay. 

With the aim of expanding the boundary of SODTA from travel time-based models to 

emission-based models (i.e., ESODTA), this research addresses the above methodological 

challenges in enabling SODTA in region-wide emission applications.  
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2. Literature Review  

 

2.1 Travel Time-based and Eco-cost-based Traffic Assignment Models 

Following the pioneering work of Merchant and Nemhauser (1978), various approaches have been 

proposed in the past decades to formulate and solve the travel time-oriented system optimal 

dynamic traffic assignment problem in ideal or general networks, such as mathematical 

programming (e.g., Merchant and Nemhauser, 1978; Carey, 1987; Ziliaskopoulos, 2000), optimal 

or convex control (e.g., Friesz et al., 1989; Lafortune et al. 1993; Wie et al., 1994), simulation 

model (Ghali and Smith, 1995; Peeta and Mahmassani, 1995), game theory (Garcia et al., 2000), 

graphic method (Munoz and Laval, 2005; Shen and Zhang, 2009) and variational inequality (Shen 

et al., 2007).  

As extensions of the user equilibrium and system optimum principles, eco-cost-based, or 

emission-based, assignment principles have been adopted in a number of STA models. For 

instance, Benedek and Rilett (1998) presented the emission optimal principle which describes that 

travellers chose paths so as to minimize the total network emission, rather than total travel time. 

They also discussed an extension of the user equilibrium principle, the environmental equity 

principle, in which travellers are assigned in such a way that the amounts of emission on all 

selected routes are the same. Another line of research was to employ the multi-objective or multi-

criterion approaches in traffic assignment models. For example, a multi-criterion system optimum 

model was proposed by Tzeng and Chen (1993), where the system optimum objective is the sum 

of total travel time for road users and air pollution for non-users. Nagurney et al. (1998, 2002) 

presented a multi-class user equilibrium traffic assignment model in which each class of users was 

assumed to select a route with the least weighted sum of travel time, travel cost and emissions. 

Zhang et al. (2010) developed a system optimal STA model with the objective being the weighted 

sum of travel time and emissions. They introduced a cell-based modelling approach for emission 

concentrations so that either the average or maximum emissions in a network can be considered in 

the optimization process. A comprehensive review of network equilibrium approaches addressing 

environmental concerns (e.g., emissions and noise) can be found in Szeto et al. (2012).  

Despite of the aforementioned numerous studies of STA with environmental considerations, 

very few DTA models have been developed for environment-related applications. Recently, Aziz 

and Ukkusuri (2012) integrated emission-based objective into the traditional travel time-based 

DTA framework, and developed a SODTA model with dual objectives. They formulated the 

problem as a nonlinear quadratic program which is readily solved by CPLEX. Zhou et al. (2015) 

presented a DTA model and its solution algorithm for a number of emerging emissions and fuel 

consumption related applications that require both effective microscopic and macroscopic traffic 

stream representations. 

 

2.2 Microscopic and Macroscopic Traffic Flow Models for Emission Estimation 

In order to capture the impact of traffic congestions to the energy use and emissions output across 

different spatial scales (e.g., regions, corridors, segments, and intersections) and various temporal 

resolutions (e.g., second-by-second, peak hours, and entire day), it is essential for underlying 
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traffic flow models to be able to capture traffic dynamics and describe congestion phenomena (e.g., 

queue formation, spillback, and dissipation). Microscopic traffic simulation models have been 

widely used to generate instantaneous speed and acceleration data required by emission models on 

a vehicle-by-vehicle and second-by-second basis (e.g., Bai et al., 2007; Boriboonsomsin and Barth, 

2008; Mandavilli et al., 2008; Panis et al., 2006). However, microscopic traffic simulation is 

computationally expensive and typically requires a wide range of detailed geometric data and 

driving behavior parameters, which are difficult to be calibrated. Mesoscopic traffic flow modeling 

approach may be a more viable alternative, in order to strike a balance between the model and 

computational complexities and the emission resolution. 

In their pioneering works, Lighthill and Whitham (1955) and Richards (1956) (LWR) proposed 

the kinematic wave theory, which rigorously describes traffic flow dynamics by integrating flow 

conservation constraints, traffic flow models, and partial differential equations (PDEs). Based on 

a triangular flow density relation, two finite deference-based numerical schemes were proposed to 

solve the first order kinematic wave problem: (i) by extending deterministic queuing theory, 

Newell's simplified model (Newell, 1993a, 1993b, 1993c) keeps track of shock waves and queue 

propagation using cumulative flow counts on links; (ii) Daganzo’s Cell Transmission Model (CTM; 

Daganzo, 1994, 1995a) descritizes a link into many homogenous segments (i.e. cells), and adopts 

a “supply-demand” or “sending-receiving” framework to model flow dynamics between cells.  

Abdul Aziz and Ukkusuri (2012) adopted the CTM as the DNL model underlying their 

SODTA model and derived link emissions based on the average speed inside a cell at a time 

interval (e.g. 60 seconds). Note that the average cell-speed approach may not effectively estimate 

time-dependent emissions, which are highly sensitive to second-by-second speed variations across 

different locations. In their work of modeling delay and emission for signalised intersections, Zhu 

et al. (2013) studied dynamic traffic models that can produce the speed profile, including the car-

following model, the point-queue model, the shockwave model, and the CTM, and applied them 

for both delay and emissions estimation.  

Classical point-queue models assume that the link travel time consists of two parts: free flow 

travel time and delay. Delay is a typical measure of the impact of congestion on travelers’ time. 

However, for evaluating the congestion effect on vehicular emission and energy consumption, the 

more appropriate measure is the amount of time actually spent in queue (waiting time or time in 

queue), which is usually greater than the delay. To effectively measure the time and distance spent 

by vehicles in a queue, Lawson et al. (1997) proposed using the input-output (or queueing) diagram 

to determine the spatial and temporal extents of queue upstream of a bottleneck. They derived the 

relationship between delay and waiting time in queue and constructed the curve depicting the 

cumulative number of vehicles to have reached the back of the queue as a function of time.  

Addressing the need to consistently incorporating different resolutions of traffic descriptions 

in a traffic flow model, Leclercq (2007) proposed a hybrid LWR model combining both 

macroscopic and microscopic traffic descriptions and defining simple interfaces to translate the 

boundary conditions when changing the traffic description. Recently, Zhou et al. (2015) proposed 

a mesoscopic DNL model that seamlessly integrates Newell’s simplified kinematic wave model 
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(a macroscopic model) and simplified car-following model (a microscopic model) into a unified 

framework, to evaluate vehicle emission/fuel consumption impact of different traffic management 

strategies. The advantages of the mesoscopic approach in computational efficiency and in 

effectively describing free-flow and congested traffic states make it appealing for cross-resolution 

and multi-scale emission modelling in DTA applications.  

 

2.3 Numerical Solution Methods for System Optimal Traffic Assignment Models 

Both exact and heuristic methods have been developed in the literature to solve the SODTA 

problem on ideal networks or general networks with multiple O-D pairs. Exact methods were 

mainly applied to solve the link-based SODTA problem formulated as mathematical programming 

or optimal control problems. For instance, Merchant and Nemhauser (1978) solved a piecewise 

linear version of their model by a one-pass simplex method. Wie et al. (1994) developed an 

augmented Lagrangian method in conjunction with the conjugate gradient method to solve the 

discrete time optimal control formulation of the problem. On the other hand, heuristics based on 

some predefined averaging schemes (e.g., Magnanti and Perakis, 1997), such as the method of 

successive averages (MSA), have been used for solving path-based SODTA problems (Peeta and 

Mahmassani, 1995; Shen et al., 2007). The drawback of using MSA is that it uses an across-the-

board step size for updating path assignments, so the degree to which the path flows deviate from 

optimality conditions is not taken into account for different OD pairs and departure intervals. This 

may lead to a slow convergence or even failure to converge for some problem instances. (e.g., 

Mounce and Smith, 2007). To improve the convergence and the solution quality, Sbayti et al. 

(2007) proposed an efficient MSA-based implementation technique that uses a sorting technique 

in updating vehicle assignments based on a selected path travel attribute (e.g. travel time). Lu et 

al. (2009) developed a path-swapping method which was shown to outperform the MSA on several 

large network tests.  

The link marginal delay (or travel time), which represents the change in delay due to an 

additional unit of link inflow, is critical to the solution algorithms of SODTA. Ghali and Smith 

(1995) presented an analytical approach to evaluate link marginal delays on a congested link, based 

on link cumulative flow curves. Peeta and Mahmassani, (1995) developed a numerical method 

based on mesoscopic traffic simulation to evaluate link and path marginal travel times. Shen et al. 

(2007) showed that it is necessary to explicitly trace the propagation of path flow perturbation in 

evaluating path marginal travel times and proposed an evaluation method of path marginal delays 

(Qian and Zhang, 2011). Lu et al. (2013) further examined the partial derivatives of link flow and 

density and path travel time with respect to an additional unit of perturbation flow. While link and 

path marginal delays were investigated in the context of SODTA, to the authors’ current 

knowledge, the study on the link and path marginal emissions were non-existent. 

3. Agent-based ESODTA Model 

The notations used to present the generic agent-based ESODTA model are defined as follows. 

Indices: 

𝜏  Index of departure time interval   
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𝑤  Index of OD pair   

𝑝  Index of path of time-dependent OD pair (𝑤, 𝜏) 

𝑖, 𝑗, 𝑘 Node index in physical network 

𝑙, (𝑖, 𝑗) Index of link 𝑙 = (𝑖, 𝑗), 𝑙 =  1, 2, … , 𝐿   

𝑡  Index of simulation time interval 

𝑓  Index of agent (vehicle) with its departure time 𝜏, OD pair 𝑤, and path 𝑝; 𝑓 =

𝑓(𝑤, 𝜏, 𝑝) 

 

Sets: 

𝑁 Set of nodes in the physical network 

𝐸 Set of road links in the physical network 

𝐹 Set of agents (vehicles) 

𝑃(𝑤, 𝜏) Path set of OD pair 𝑤 and departure time interval 𝜏 

 

Parameters: 

𝑑(𝑤, 𝜏) Number of vehicle of OD pair 𝑤 and departure time interval 𝜏   

𝐝  Vector of time-dependent demands of all OD pairs 

𝑣𝐹(𝑙)  Free flow speed on link 𝑙, which is also the speed limit on link 𝑙   

𝑣𝑄(𝑙, 𝑡)  Queueing speed (or speed in queue) on link 𝑙 at time interval 𝑡 

 

Variables: 

𝑟(𝑤, 𝜏, 𝑝)   Number of vehicles on path 𝑝 of OD pair 𝑤 and departure time 𝜏 

𝑞(𝑙, 𝑡)  Time-dependent link flow of link 𝑙 at time interval 𝑡  

𝐪     Vector of link flows 

𝑇𝑇(𝑓, 𝑙, 𝑡)   Agent 𝑓’s time-dependent travel time on link 𝑙 at time interval 𝑡  

𝐓𝐓     Vector of agents’ path travel times 

𝐸𝐶(𝑓)  Total path emission or eco-cost of agent 𝑓   

𝐸𝐶(𝑓, 𝑙)  Emission or eco-cost of agent 𝑓 on link 𝑙    

𝐸𝐶(𝑓, 𝑙, 𝑣(𝑡))  Instantaneous emission of agent 𝑓 with (time-dependent) speed 𝑣 on link 𝑙 

at time interval 𝑡 

𝐸𝐶(𝑓, 𝑙, 𝑡′, 𝑡′′)  Emission of agent 𝑓 on link 𝑙 with entering time 𝑡′ and leaving time 𝑡′′ 

𝐄𝐂   Vector of path emission cost of all agents 

𝑇𝐸   Total system emission cost 

 

3.1 Model Formulation 

Consider a road network 𝐺 = (𝑁, 𝐴) with a set of nodes 𝑁 and a set of links 𝐸. Each link is 

denoted as a directed link 𝑙 = (𝑖, 𝑗) from upstream node 𝑖 to downstream node 𝑗. In the ESODTA, 

all (green) travellers are assumed to behave cooperatively in their route choices to minimize the 

total emission. For simplicity and with no loss of generality, three basic assumptions are made for 

this model: (i) departure time choices are not considered and time-dependent origin-destination 
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(OD) travel desires are assumed to be given; (ii) link attributes, such as free flow travel time, 

bottleneck discharge rate, density-flow relationship, are given to perform a dynamic network 

loading process and generate time-dependent vehicular trajectories; (iii) the emission cost function 

is given to estimate vehicular emissions. With these assumptions, the proposed ESODTA aims to 

determine the time-varying agent (path) flows which minimize the total network emission.  

The agent-based ESODTA is presented as follows   

Min𝐫∈𝛺  𝑇𝐸 = ∑ 𝐸𝐶(𝑓)𝑓  (1) 

Subject to [𝐪, 𝐓𝐓, 𝐄𝐂] = DNLE(𝐝) (2) 

𝐸𝐶(𝑓) = ∑ 𝐸𝐶(𝑓, 𝑙)𝑙∈𝑝𝑓
   (3) 

∑ 𝑟(𝑤, 𝜏, 𝑝)𝑝∈𝑃(𝑤,𝜏) = 𝑑(𝑤, 𝜏),   ∀𝑤, 𝜏 (4) 

𝑟(𝑤, 𝜏, 𝑝) ≥  0,     ∀𝑤, 𝜏, 𝑝 ∈ 𝑃(𝑤, 𝜏)  (5) 

 

The objective function, Eq.(1), minimizes the network-wide vehicular emission. Constrain (2) 

states that, given the time-dependent OD demand vector 𝐝, the estimated path emissions of all 

agents, 𝐄𝐂, is obtained by a dynamic network loading (DNL) model for emission estimation, 

DNLE(𝐝). Constrain (3) describes that the time-varying path emission 𝐸𝐶(𝑓) of agent/vehicle 𝑓 

is assumed to be the sum of the emissions on its constituent links. Constraint (4) is the demand 

flow balance constraint for each OD pair 𝑤 and each departure time interval 𝜏. Constraint (5) 

requires non-negative path flows. Note that the above formulation is a generic ESODTA model in 

which different emission cost functions, 𝐸𝐶(𝑓, 𝑙), and DNL models, DNLE(𝐝), can be embedded 

for multi-scale emission optimization applications. 

 

 3.2 Dynamic Network Loading Model for Emission Estimation 

To enable multi-scale emission optimization applications, the ESODTA model relies on an 

effective DNL model (DNLE(𝐝)) for obtaining high-resolution emission estimations. Essentially, 

given the network (link and node) data and time-dependent OD demands, the DNL model 

generates a set of vehicles along with their attributes (e.g., OD, departure time, type and age) that 

are loaded to the network, and performs traffic simulation to evaluate time-dependent link speed 

and acceleration/deceleration profiles, which are used in the emission estimation function for 

computing emission costs. The major difference between the DNLE(𝐝) model for the ESODTA 

and classical DNL models for general DTA applications is that the former is used to generate 

detailed vehicle trajectories and time-dependent link speeds, whereas the latter’s major outputs are 

link travel times and (aggregated) flows. As the context of DTA is extended from travel time-

based models to emission or eco-cost based applications, it is necessary for the DNLE(𝐝) model 

to output high-fidelity vehicle trajectories and time-dependent speeds for estimating vehicular 

emissions.  

Technically, both microscopic and mesoscopic traffic flow models can be embedded in 

DNLE(𝐝) to construct detailed vehicle trajectories and time-dependent speed profiles for emission 

estimation. Microscopic models have been widely used to generate vehicle emissions estimates by 

evaluating driving speed and acceleration characteristics/profiles on a vehicle-by-vehicle and 



12 

second-by-second basis (e.g., Ahn et al., 2002; Nam et al., 2002; Stathopoulos and Noland, 2003). 

Although microscopic traffic flow models, such as cellular automatic (CA) and car following 

models, are desirable for analyzing vehicular delays in congested conditions, microscopic 

simulation can be computationally intensive and typically requires a wide range of detailed 

geometric data and driving behavior parameters, which can be difficult to calibrate, especially for 

the purpose of producing high-fidelity emissions estimates. To strike a balance between the model 

and computational complexities and the emission resolution, this research adopts the mesoscopic 

modeling approach. 

Fig. 1 depicts the trajectories of a vehicle on a link generated by three different methods based 

on mesoscopic traffic simulation that can be applied to obtain time-dependent travel times. The 

link index 𝑙 is omitted for clarity. Assume that there is an agent entering the link at time 𝑡1 and 

leaving the link at time 𝑡4. The agent’s trajectories described by the three methods are as follows. 

With Method 1 (point-queue model), the agent moves at a free flow speed 𝑣𝐹 until reaching the 

downstream node at time 𝑡3 , and then stops at this node until the capacity is available for 

discharging this agent at time 𝑡4 (e.g., point-queue model). With Method 2 (average cell-speed 

model), the agent moves at an average speed 𝑣̅ through the link (e.g., Aziz and Ukkusuri, 2012). 

With Method 3 (modified point-queue model), the agent moves at a free flow speed 𝑣𝐹  until 

reaches the back of the queue at time 𝑡2, and then at a slower speed 𝑣𝑄 before the bottleneck (e.g., 

Lawson et al., 1997). Table 1 summaries the travel times and travel speeds obtained by the three 

methods under free flow and congested conditions. Although the three methods output the same 

link travel time for the agent, the other four measures and the vehicle trajectory differ significantly 

in the three methods. Of particular concern are the waiting time (or time in queue) and speed in 

queue of the vehicle, which are critical for estimating emissions. The average speed obtained using 

the first method cannot truly reflect the speed changes of vehicles, leading to inaccurate estimates 

of emission in general. The second method based on the point-queue model is able to approximate 

the delay of the vehicle at the bottleneck, but the time and speed in queue are not effectively 

represented by this method, which will underestimate the agent’s emission on the link. On the 

other hand, Method 3 explicitly takes into account the physical queue in describing the vehicle 

trajectory under congested condition, hence resulting in a more reasonable estimate of emission 

for the vehicle.  

Typically, the queueing speed 𝑣𝑄 is related to the bottleneck discharge capacity. Assume that 

the discharge capacity is constant and there is no queue-spillback effect, then the queuing speed is 

constant, which can be obtained by the flow-speed relationship curve. Consequently, the vehicular 

emission on this link is a linear function of the delay. This important property of link emission will 

be rigorously derived in Section 4. Moreover, based on Method 3, this study constructs the 

expanded space-time network to model the ESODTA.  

If there are signal control strategies or incidents on the link, the link capacity and the queuing 

speed will be time-dependent. Spillback occurs when the street block is so congested that it has no 

space for any entering traffic. Under these two conditions, the link or bottleneck discharge capacity 

and queuing speed will be time-dependent, and the vehicular emission estimation will be much 
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more complex, compared to the case with a constant discharge capacity. To deal with the more 

general but complex ESODTA problem with time-dependent link capacities, this study adopts the 

DNLE(𝐝) model, which was developed by Zhou et al. (2015), in a column generation-based 

solution algorithm presented in Section 5.  

 

t1

t3

t2 time

space

vF

vQ

t4

v

 
Fig.1 Three mesoscopic methods for obtaining an agent’s trajectory 

 

Table 1 Travel speeds and travel times obtained by the three methods under free flow and 

congestion 

 
Free flow 

speed 

Free flow 

travel time 

Speed in 

queue 

Waiting 

time (time in 

queue) 

Total travel 

time 

Method 1 𝑣𝐹 𝑡3 − 𝑡1 0 𝑡4 − 𝑡3 𝑡4 − 𝑡1 

Method 2 𝑣̅ 𝑡4 − 𝑡1 𝑣̅ 0 𝑡4 − 𝑡1 

Method 3 𝑣𝐹 𝑡2 − 𝑡1 𝑣𝑄 𝑡4 − 𝑡2 𝑡4 − 𝑡1 

 

 3.3 Emission Estimation and Emission Cost Function  
The link emission cost represents the impacts of a vector of vehicular emissions (such as air 

pollutants: CO, NO and HC and greenhouse gases CO2) on the environment and depends typically 

on the speed-based emission profile in a time-space cell. The total emission of agent f through link 

𝑙, 𝐸𝐶(𝑓, 𝑙, 𝑡′, 𝑡′′), is an integration of the instantaneous emission cost 𝐸𝐶(𝑓, 𝑙, 𝑣(𝑡)) during the 

entrance time 𝑡′ and the exit time 𝑡′′.  

        𝐸𝐶(𝑓, 𝑙, 𝑡′, 𝑡′′) = ∫ 𝐸𝐶(𝑓, 𝑙, 𝑣(𝑡))𝑑𝑡
𝑡′′

𝑡′
.   (6) 

Typically, vehicular emission is a function of vehicle speed and acceleration, while correction 

factors can also be applied to the function to take into account different vehicle types, roadway 

characteristics, driving patterns and weather conditions. 

The emission costs per unit time of vehicles traveling in free flow speed and congested speed 

can be determined using a speed-based emission model (e.g., Szeto et al., 2012). For instance, the 

MOVES model (U.S. EPA, 2009) calculates the vehicle emission rates based on two factors: 

emission source (vehicle characteristics) and vehicle operating mode, where the latter is 
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represented as vehicle specific power (VSP). The VSP is a function of vehicle speed, acceleration, 

and road grade, which account for kinetic energy, rolling resistance, aerodynamic drag, and gravity. 

An example of the VSP, given by U.S. EPA (2009), is as follows.  

𝑉𝑆𝑃(𝑣, 𝑎) =
𝐴⋅𝑣+𝐵⋅𝑣2+𝐶⋅𝑣3+𝑚⋅𝑣⋅𝑎

𝑚
   (7) 

where 𝑣, 𝑎, 𝑚 are the speed, acceleration and weight of vehicle 𝑓, respectively, and 𝐴 is the rolling 

term, 𝐵 the rotating term, and 𝐶 the drag term. Then, 𝑉𝑆𝑃 and 𝑣 jointly determine the operating 

mode through a two-dimensional lookup function. The emission rate of a vehicle can be obtained 

as a function of the operating mode, vehicle type, link characteristics (e.g., grade) and other 

relevant factors. For example, Stein and Walker (2003) followed similar methodology to estimate 

regression models that correlate speed and CO emission from MOBILE 6.2. The CO emission rate 

(gm. of CO per vehicle per second) at the speed 𝑣 (miles per hour) can be expressed as,  

𝐸(𝑣) =  −0.064 +  0.0056𝑣 +  0.00026 (𝑣 −  50)2   (8) 

According to U.S. EPA, among the primary air pollutants, the top contributor that requires an 

air-quality standard is carbon monoxide (CO) (EPA, 2000). Further, air quality data for 2008 

reported by the EPA identifies metropolitan areas exceeding the CO emission thresholds set by 

National Ambient Air Quality Standards (NAAQS) (Zhang et al., 2010; Hallmark et al., 2000). 

Thus, CO emission from on-road vehicles is a major issue that requires attention in transportation 

planning. 

 

4. A Linear Integer Programming Model for the ESODTA 

This section presents a linear integer programming model for the ESODTA with constant 

bottleneck discharge rates. We first discuss an important property of link emission for this case 

and describe the expanded space-time network, based on which the linear integer programming 

model for the ESODTA is developed. Then, we present the Lagrangian relaxation-based solution 

algorithm for solving the model.  

 

4.1 Property of Link Emission 

According to Newell’s kinetic wave and car-following theory (Newell, 1993, 2002), a vehicle 

drives at its free flow speed 𝑣𝐹 under uncongested conditions. When a bottleneck forms at the end 

of the link, for keeping safe, the vehicle will decelerate to a slower speed 𝑣𝑄 at the location 𝑑𝑄 

(the back of the queue) and follow with the leading car. The time-space diagram, shown in Fig. 2, 

depicts a typical vehicle trajectory on a link with a single bottleneck at the downstream end. The 

solid line depicts the actual trajectory of vehicle 𝑓 on link 𝑙, while the dotted line represents the 

desired trajectory of the vehicle through the bottleneck.  
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Fig. 2 Vehicle trajectory on a link with a bottleneck (adopted from Lawson et al., 1997)  
 

The vehicle enters the link at time 𝑡1, reaches the back of the queue (represented by the dashed 

curve) at time 𝑡2, desires to leave the link at time 𝑡3, and eventually leaves the link at time 𝑡4 due 

to capacity restriction. Here, we denote the travel time under free flow speed as 𝑡𝐹 = 𝑡2 − 𝑡1, the 

travel time under queueing speed (i.e., time in queue) as 𝑡𝑄 = 𝑡4 − 𝑡2; the free flow travel time 

𝐹𝐹𝑇𝑇 = 𝑡3 − t1, and delay 𝑡𝑤 = 𝑡4 − t3. The total travel time 𝑇𝑇 on link 𝑙 can be described as 

follows: 

        𝑇𝑇 = 𝐹𝐹𝑇𝑇 + 𝑡𝑤 = 𝑡𝐹 + 𝑡𝑄.  (9) 

It is obvious that the time in queue 𝑡𝑄 is greater than the delay 𝑡𝑤, because vehicles traveling 

at free-flow speed would naturally reach the back of the queue (which has physical length) before 

they would have reached the bottleneck with free flow travel time 𝐹𝐹𝑇𝑇 (without any obstruction). 

Fig. 2 shows that the delay varies with the distance traveled in the vertical queue 𝑑𝑄, as 𝑑𝑄 = 𝑡𝑄 ⋅

𝑣𝑄 = 𝑣𝐹 ⋅ (𝑡𝑄 − 𝑡𝑤), and the time in queue 𝑡𝑄 can be derived as follows: 

        𝑡𝑄 =
𝑡𝑤⋅𝑣𝐹

𝑣𝐹−𝑣𝑄
.  (10) 

Eq.(10) indicates that the time in the (physical) queue 𝑡𝑄 is a fixed multiple of the delay 𝑡𝑤 

(Lawson et al., 1997). According to Eq.(9) and Eq.(10), the free flow travel time can also be 

derived as follows: 

        𝑡𝐹 = 𝐹𝐹𝑇𝑇 −
𝑡𝑤⋅𝑣𝑄

𝑣𝐹−𝑣𝑄
.  (11) 

With the assumption of constant discharge capacity, both 𝑣𝐹  and 𝑣𝑄  are constant. The link 

emission of agent 𝑓 entering and exiting link 𝑙 at times 𝑡1 and 𝑡4, respectively, consists of two 

parts: the emission when traveling at the free-flow speed 𝑣𝐹 and the emission when traveling at 

the queueing speed 𝑣𝑄, as follows. 

        𝐸𝐶(𝑓, 𝑙, 𝑡1, 𝑡4) = 𝐸𝐶(𝑓, 𝑙, 𝑣𝐹) ⋅ 𝑡𝐹 + 𝐸𝐶(𝑓, 𝑙, 𝑣𝑄) ⋅ 𝑡𝑄.  (12) 
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For clarity, the agent, link and time indices are omitted from the notations here. That is, 𝐸𝐶𝐹 =

𝐸𝐶(𝑓, 𝑙, 𝑣𝐹) , and 𝐸𝐶𝑄 = 𝐸𝐶(𝑓, 𝑙, 𝑣𝑄), then Eq.(12) can be re-written as Eq.(13). 

        𝐸𝐶 = 𝐸𝐶𝐹 ⋅ 𝑡𝐹 + 𝐸𝐶𝑄 ⋅ 𝑡𝑄.  (13) 

 

Proposition 1: With a constant discharge rate, the vehicular emission can be expressed as a linear 

combination of the free-flow travel time 𝐹𝐹𝑇𝑇, the emission at free-flow speed 𝐸𝐶𝐹 and the delay 

𝑡𝑤. 

Proof: 

The total link emission 𝐸𝐶 = 𝐸𝐶𝐹 ⋅ 𝑡𝐹 + 𝐸𝐶𝑄 ⋅ 𝑡𝑄 , and according to Eqs.(10)-(13), we can 

obtain the total link emission as follows: 

        𝐸𝐶 = (𝐹𝐹𝑇𝑇 −
𝑡𝑤⋅𝑣𝑄

𝑣𝐹−𝑣𝑄
) ⋅ 𝐸𝐶𝐹 + (

𝑡𝑤⋅𝑣𝐹

𝑣𝐹−𝑣𝑄
) ⋅ 𝐸𝐶𝑄.  (14) 

Assume that 𝜆 =
𝐸𝐶𝑄

𝐸𝐶𝐹
> 1, then total link emission can be re-written as a linear function of the 

delay 𝑡𝑤. 

        𝐸𝐶 =  𝐸𝐶𝐹 ⋅ (𝐹𝐹𝑇𝑇 + 𝑡𝑤 ⋅
𝜆⋅𝑣𝐹−𝑣𝑄

𝑣𝐹−𝑣𝑄
)  (15) 

This completes the proof.  

It is also important to note that if 𝐸𝐶𝐹 = 1 and 𝜆 = 1 (i.e., 𝐸𝐶𝑄 = 𝐸𝐶𝐹), then 
𝜆⋅𝑣𝐹−𝑣𝑄

𝑣𝐹−𝑣𝑄
= 1, and 

we can obtain that the link travel time is a special case of the link emission. 

𝐸𝐶 =  𝐸𝐶𝐹 ⋅ (𝐹𝐹𝑇𝑇 + 𝑡𝑤 ⋅
𝑣𝐹−𝑣𝑄

𝑣𝐹−𝑣𝑄
) = 𝐹𝐹𝑇𝑇 + 𝑡𝑤 = 𝑇𝑇.  (16) 

 

4.2 Expanded Space-time Network 

Additional notations used in presenting the expanded space-time network and the ESODTA model 

with constant bottleneck discharge rates are defined as follows. 

Sets: 

𝑉 Set of vertices in the expanded space-time network 

𝐴 Set of arcs in expanded space-time network 

 

Parameters:  

𝑂(𝑓) Origin node of agent 𝑓 

𝐷(𝑓) Destination node of agent 𝑓 

𝐷𝑇(𝑓) Departure time of agent 𝑓 

𝐴𝑇(𝑓) Given assumed arrival time of agent 𝑓, and it is a given large value  

𝑠𝑖,𝑗 Free-flow travel time of link (𝑖, 𝑗), which is an integer multiplier of one time interval 

𝑡𝑖,𝑗 Travel time (free flow or congested travel time) of arc (𝑖, 𝑗)  

𝐸𝐶𝐹(𝑙) Unit emission cost under constant free flow speed 𝑣𝐹(𝑙) on link 𝑙  

𝐸𝐶𝑄(𝑙) Unit emission cost under constant queueing speed 𝑣𝑄(𝑙) on link 𝑙  

𝐸𝐶𝑖,𝑗,𝑡,𝑡′ Emission cost of an agent traveling on arc (𝑖, 𝑗) with entrance time 𝑡 and exit time 𝑡′  
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𝐶𝑎𝑝𝑖,𝑗 Outflow capacity of arc (𝑖, 𝑗)  

𝐿𝑒𝑛𝑖,𝑗 Length of arc (𝑖, 𝑗) 

𝑘𝑖,𝑗
𝑗𝑎𝑚

 Jam density of arc (𝑖, 𝑗) 

 

Variables:  

𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

   Binary decision variable indicating whether agent 𝑓 travels on arc (𝑖, 𝑗) with entrance time 

𝑡 and exit time 𝑡′ (𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

 =1), or not (𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

 =0).  

The expanded space-time network is constructed based on the modified point-queue model 

(i.e., Method 3 in Section 3.2) for the ESODTA with constant bottleneck discharge rates. Consider 

a space-time network, where 𝑉 is the set of vertices and 𝐴 is the set of arcs. Note that the physical 

network is represented by nodes and links, while vertices and arcs are defined to present the 

expanded space-time network in this paper. A vertex in the expanded network represents a physical 

node or virtual waiting node 𝑖 at time 𝑡 (or a node-time pair (𝑖, 𝑡)). The space-time network is 

expanded by adding a virtual waiting node 𝑗′ on physical link (𝑖, 𝑗). In addition, the corresponding 

node-time pairs (𝑗′, 𝑡) for that virtual waiting node 𝑗′ at all time intervals 𝑡 = 1,2, … , 𝑇 are added 

to the expanded network. Note that if 𝑗 is a destination node, it is not necessary to add the virtual 

waiting node 𝑗′, because the destination node 𝑗 can be used as a waiting node. Moreover, if a node 

is the origin for one agent and the destination for other agents, we need to divide this node to two 

nodes to ensure that a destination node is not an origin node and vice versa. As a result, the problem 

becomes a single origin to single destination problem for each agent. With the addition of a virtual 

waiting node 𝑗′, link (𝑖, 𝑗) is divided into two sections: (𝑖, 𝑗′) and (𝑗′, 𝑗). The first section represents 

a vehicle moves at the free flow speed, while the second section is used to discharge that vehicle 

from the bottleneck after waiting at the virtual node 𝑗′ for the available capacity. There are two 

types of arc connecting the vertices in the expanded space-time network. 

Traveling arcs: A traveling arc represents the vehicle moves on a link (𝑖, 𝑗) from time 𝑡 to time 

𝑡′. There are two cases. In the first case, a traveling arc connects vertex (𝑖, 𝑡) (i.e., physical node 𝑖 

at time 𝑡 ) to vertex (𝑗′, 𝑡 + 𝑠𝑖,𝑗 − 1)  (i.e., virtual node 𝑗′  at time 𝑡 + 𝑠𝑖,𝑗 − 1), representing a 

vehicle moves at the free flow speed on link (𝑖, 𝑗). The arc travel time is 𝑠𝑖,𝑗 − 1 and arc capacity 

is 𝐶𝑎𝑝𝑖,𝑗. In the second case, a traveling arc is incident from vertex (𝑗′, 𝑡) (i.e., virtual node 𝑗′ at 

time 𝑡) and incident to vertex (𝑗, 𝑡 + 1) (i.e., physical node 𝑗 at time 𝑡 + 1), representing a vehicle 

discharges from the bottleneck on link (𝑖, 𝑗). The arc travel time is 1 and arc capacity is 𝐶𝑎𝑝𝑖,𝑗. 

Waiting arcs: A waiting arc represents the vehicle waits at a virtual waiting node 𝑗′ (i.e., the 

queue) for a time interval; that is, this arc is incident from vertex (𝑗′, 𝑡) and incident to vertex 

(𝑗′, 𝑡 + 1). The arc travel time is 1 and arc capacity is set as a large constant, 𝑀.  

For each agent 𝑓, we can find its source vertex (𝑂(𝑓), 𝐷𝑇(𝑓)) corresponding to the origin node 

𝑂(𝑓) and the departure time 𝐷𝑇(𝑓) in the extended space-time network, and its sink vertex can be 

obtained by assuming a large arrive time 𝐴𝑇(𝑓) at the destination node 𝐷(𝑓). Moreover, the costs 

on the waiting arcs of destination nodes are set as 0.  
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Fig. 3(a) depicts a simple physical network with three nodes, two links, and two OD pairs: (1, 

2) and (2, 3). Note that since node 2 represents simultaneously the origin of the first OD pair and 

the destination of the second OD pair, this node is divided into node 2 and node 4, as shown in Fig. 

3(b), and hence the first OD pair becomes (1, 4). The travel time and capacity of link (2, 4) are 1 

and a large constant 𝑀, respectively. Then we add one virtual node 2′ on link (1, 2) as a waiting 

node, as shown in Fig. 3(c). Fig. 4 displays the corresponding expanded space-time network. 
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Fig. 4 The expanded space-time network corresponding to the network depicted in Fig. 3(b) 
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 4.3 ESODTA Mathematical Formulation 
Based on the expanded space-time network, the ESODTA problem with constant bottleneck 

discharge rates (ESODTA-constant discharge rates) can be formulated as follows. 

Minimize 𝑍 = ∑ ∑ 𝐸𝐶𝑖,𝑗,𝑡,𝑡′ × 𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)𝑓       (17) 

Subject to  

∑ 𝑥𝑖,𝑗,𝑡−𝑡𝑖,𝑗,𝑡
𝑓

(𝑖,𝑗,𝑡−𝑡𝑖,𝑗,𝑡)∈𝐴 − ∑ 𝑥𝑗,𝑘,𝑡,𝑡+𝑠𝑗,𝑘

𝑓
(𝑗,𝑘,𝑡,𝑡+𝑡𝑗,𝑘)∈𝐴 = {

−1 ∀𝑓 ∈ 𝐹, 𝑗 = 𝑂(𝑓) 𝑎𝑛𝑑 𝑡 = 𝐷𝑇(𝑓)

1 ∀𝑓 ∈ 𝐹, 𝑗 = 𝐷(𝑓) 𝑎𝑛𝑑 𝑡 = 𝑇
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

(18) 

                        ∑ 𝑥𝑖,𝑗,𝑡,𝑡+𝑡𝑖,𝑗

𝑓
𝑓∈𝐹 ≤ 𝐶𝑎𝑝𝑖,𝑗, ∀(𝑖, 𝑗, 𝑡, 𝑡 + 𝑡𝑖,𝑗) ∈ 𝐴, 𝑡 = 1,2, … , 𝑇    (19)  

                        𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

= {0,1}  (20) 

In the above formulation, the objective is to minimize the total vehicular emission shown as 

Eq.(17). The flow balance constraints are presented as Eq.(18). Eq.(19) describes the outflow 

capacity constraints on traveling arcs. The constraints shown as Eq.(20) requires all of the decision 

variables are binary.  

The emission costs 𝐸𝐶𝑖,𝑗,𝑡,𝑡′ in the objective function are discussed as follows. According to 

Proposition 1 in Section 4.1, the link emission cost is a function of the delay 𝑡𝑤(𝑖, 𝑗) on link (𝑖, 𝑗):  

        𝐸𝐶(𝑖, 𝑗) = 𝐸𝐶𝐹(𝑖, 𝑗) × (𝑠𝑖,𝑗 + 𝑡𝑤(𝑖, 𝑗) ×
𝜆×𝑣𝐹−𝑣𝑄

𝑣𝐹−𝑣𝑄
) = 𝑎(𝑖, 𝑗) + 𝛽(𝑖, 𝑗) × 𝑡𝑤(𝑖, 𝑗)   (21) 

where 𝑎(𝑖, 𝑗) = 𝐸𝐶𝐹(𝑖, 𝑗) × 𝑠𝑖,𝑗  is the free-flow emission cost on link (𝑖, 𝑗) , and 𝛽(𝑖, 𝑗) =

𝐸𝐶𝐹(𝑖, 𝑗) ×
𝜆×𝑣𝐹𝑖,𝑗−𝑣𝑄𝑖,𝑗

𝑣𝐹𝑖,𝑗
−𝑣𝑄𝑖,𝑗

 is the queueing emission cost on the waiting arc of link (𝑖, 𝑗) for one time 

interval. Thus, according to the design of the expanded space-time network, the link emission of 

one vehicle at time 𝑡 consists of three parts: (i) the emissions at free-flow speed on the traveling 

arc before reaching the virtual waiting node or bottleneck, where the emission cost is 

𝐸𝐶𝑖,𝑗′,𝑡,𝑡+𝑠𝑖,𝑗−1 = 𝐸𝐶𝐹(𝑖, 𝑗) × (𝑠𝑖,𝑗 − 1) ; (ii) the emission at queueing speed on waiting arcs 

(waiting at the virtual node) for 𝑡𝑤(𝑖, 𝑗) time intervals, where the emission cost of one waiting arc 

is 𝐸𝐶𝑗′,𝑗′,𝑡,𝑡+1 = 𝛽(𝑖, 𝑗); (iii)  the emission at free-flow speed on the traveling arc after discharging 

from the virtual waiting node, where the emission cost is 𝐸𝐶𝑗′,𝑗,𝑡,𝑡+1 = 𝐸𝐶𝐹(𝑖, 𝑗).  

 

4.4 Lagrangian Relaxation-based Solution Algorithm 

This subsection presents the Lagrangian relaxation-based algorithm for solving the ESODTA 

model with constant bottleneck discharge rates. In this algorithm, the capacity constraints, shown 

in Eq.(19), are dualized to the objective function with the multipliers 𝜇𝑖,𝑗,𝑡,𝑡′, ∀(𝑖, 𝑗, 𝑡, 𝑡′), as follows.  

        Min 𝑍𝐿𝑅 = ∑ ∑ (𝐸𝐶𝑖,𝑗,𝑡,𝑡′ + 𝜇𝑖,𝑗,𝑡,𝑡′) × 𝑥𝑖,𝑗,𝑡,𝑡′
𝑓

(𝑖,𝑗,𝑡,𝑡′)𝑓 − ∑ 𝜇𝑖,𝑗,𝑡,𝑡′(𝑖,𝑗,𝑡,𝑡′) × 𝐶𝑎𝑝𝑖,𝑗  (21) 

Then, the relaxation problem is to find the time-dependent least-cost path problem for each 

agent in the expanded space-time network. The Lagrangian relaxation-based algorithm is 

described as follows: 

Step 1: Initialization. Let iteration 𝑛 = 1, initialize the multipliers 𝜇𝑖,𝑗,𝑡,𝑡′
𝑛 = 0. 
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Step 2: Solve the relaxation problem for each agent as the time-dependent least-cost path 

problem. 

Step 3: Update the Lagrangian multipliers as follows:  

The step-size updating is based on the method of successive averages (MSA): 𝛾𝑛 =
1

𝑛+1
  

            𝜇𝑖,𝑗
𝑛+1(𝑡) = max {0, 𝜇𝑖,𝑗

𝑛 (𝑡) + 𝛾𝑛 × (∑ 𝑥𝑖,𝑗,𝑡,𝑡+𝑠𝑖,𝑗

𝑓
𝑓 − 𝐶𝑎𝑝𝑖,𝑗

𝑂𝑢𝑡)} (22) 

Step 4: Check termination condition: if 𝑛 < 𝑁, then 𝑛 = 𝑛 + 1 and return to step 2. Otherwise, 

stop the algorithm. 

5. ESODTA with Time-dependent Bottleneck Capacities 

The ESODTA model, presented in Section 4.2, assumes constant bottleneck discharge rates, but 

bottleneck capacities are generally time-dependent in the presence of signal controls at 

intersections or incidents on links, which result in time-dependent queueing speeds. Moreover, if 

a downstream link is so congested that the queue spills back to the current link, then there is no 

space for entering traffic. When link or bottleneck capacities and queuing speeds are time-

dependent, the vehicular emission estimation will be much more complex, compared to the case 

with constant discharge capacities. To tackle this difficulty, this research adopts the dynamic 

network loading model, DNLE(𝐝) developed by Zhou et al., 2015, to estimate link and path 

emissions when bottleneck capacities are time-dependent. The DNLE(𝐝)  combines both 

macroscopic and microscopic traffic descriptions based on Newell’s simplified kinematic wave 

model and simplified car-following model. Specifically, Newell’s simplified kinematic wave 

model is employed in the dynamic mesoscopic traffic simulation package, DTALite, which outputs 

link arrival and departure times for each vehicle. Given the link arrival and departure times of 

individual vehicles, we adopt Newell’s simplified linear car following model (Newell, 2002) to 

reconstruct the detailed vehicle trajectories which can be used to derive second-by-second vehicle 

speeds and accelerations. Then, the time-dependent speeds and accelerations are input to the 

MOVES model to generate vehicular emissions (see the description in Section 3.3).  

The column generation-based ESODTA algorithm embeds (i) the above-mentioned DNLE(𝐝) 

to evaluate link and path emissions for the set of agents with assigned paths and (ii) the gradient 

projection-based method to update the path assignment of the agents. Additional notations used in 

this section are defined as follows.  

Sets or vectors: 

𝑃𝑚(𝑤, 𝜏) Set of paths in iteration 𝑚 for the agents of OD pair 𝑤 and departure time 𝜏  

𝑃𝑚 Set of paths in iteration 𝑚 for all of the agents in the network; 𝑃𝑚 = {𝑃𝑚(𝑤, 𝜏), ∀𝑤, 𝜏} 

 

Indices:  

𝑛 index of inner loop iterations in the column generation-based algorithm 

𝑚 index of outer loop iterations in the column generation-based algorithm 

 

Parameters:  

𝑀𝑚𝑎𝑥 Maximum number of outer loop iterations 
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𝑁𝑚𝑎𝑥 Maximum number of inner loop iterations 

 

Variables:  

𝑟(𝑤, 𝜏, 𝑝)𝑛    Number of agents on path 𝑝 of OD pair 𝑤 and departure time 𝜏 in iteration 𝑛  

𝒓𝑛         The path flow vectors (a feasible solution) in iteration 𝑛;  𝒓𝑛 = {𝑟(𝑤, 𝜏, 𝑝)𝑛, ∀𝑤, 𝜏, 𝑝} 

𝐸𝐶(𝑤, 𝜏, 𝑝)𝑛  Total emission of the agents on path 𝑝 of OD pair 𝑤 and departure time 𝜏 in 

iteration 𝑛  

𝑇𝐸𝑤
𝜏 (𝒓𝑛)       Total emission of the agents of OD pair 𝑤 and departure time 𝜏, evaluated at the 

feasible solution 𝒓𝑛  

𝑇𝐸(𝒓𝑛)         Total system emission, evaluated at the feasible solution 𝒓𝑛   

 

5.1 Solution Algorithm 
 

5.1.1 Column Generation-based Algorithmic Framework   

The column generation-based algorithm generates time-dependent least marginal emission paths 

as needed in the outer loop and solves a reduced (or restricted) ESODTA problem in the inner loop 

(e.g., Lu et al., 2009). The column generation-based approach operates as follows (see Fig. 5). In 

each outer loop iteration 𝑚 , the time-dependent least-cost path algorithm, developed by 

Ziliaskopoulos and Mahmassani (1993), is applied to find the time-dependent least marginal 

emission path for each O-D pair and each departure time interval. New paths, if any, are added to 

augment the current subset of feasible paths, 𝑃𝑚 , in iteration 𝑚 . A gradient projection-based 

descent direction method, presented in Section 5.1.2, is then used to solve the reduced ESODTA 

problem defined on 𝑃𝑚. The algorithm terminates and outputs time-varying path flows obtained in 

the current iteration, if there is not any new path found or a preset convergence criterion is satisfied.  

The gradient projection-based descent direction method proceeds iteratively and forms the inner 

loop in the column generation-based algorithmic framework. In each inner loop iteration 𝑛, the 

updated path flows 𝒓𝑛  and the corresponding total system emission 𝑇𝐸(𝒓𝑛) and link marginal 

emissions are evaluated by the DNLE(𝐝) model. If the difference between the objective values in 

two successive iterations (i.e., 𝑇𝐸(𝒓𝑛) − 𝑇𝐸(𝒓𝑛−1)) is less than a preset threshold or a preset 

convergence criterion (e.g., 𝑛 = 𝑁𝑚𝑎𝑥) is satisfied, the inner loop terminates and the algorithm 

returns to the outer loop.  
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Fig. 5 Flow chart of the column generation-based ESODTA algorithm 

 

 5.1.2 Gradient Projection-based Descent Direction Method 

The reduced ESODTA problem, defined by a subset of feasible paths 𝑃𝑚 in outer loop iteration 𝑚, 

is solved by the gradient projection-based descent direction method in the inner loop to obtain 

least-emission path flows on the existing paths. With a feasible solution 𝒓𝑛 in inner loop iteration 

𝑛, the method adopts a search direction along the feasible descent direction based on the gradient, 

∇𝑇𝐸(𝒓𝑛):  

        𝒓𝑛+1 = 𝑃𝑟𝑜𝑗Ω[𝒓𝑛 − 𝑠𝑛 × ∇𝑇𝐸(𝒓𝑛)], (23) 
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where 𝑠𝑛(0, 1) is the step size in inner loop iteration 𝑛. 𝑃𝑟𝑜𝑗Ω[𝑢] denotes the unique projection 

of path flow vector 𝑢 onto the feasible space Ω and is defined as the unique solution of the problem: 

Min𝑦∈Ω||𝑢 − 𝑣||. Accordingly, the new iterate 𝒓𝑛+1 is obtained by updating the current iterate 𝒓𝑛 

along the direction −∇𝑇𝐸(𝒓𝑛) with a move size 𝑠𝑛.  

To facilitate solving the ESODTA problem on large networks with multiple O-D pairs, the 

proposed method decomposes the original problem into many sub-problems, each of which 

corresponds to a (𝑤, 𝜏) pair, by assuming that cross-network marginal effects are negligible (e.g., 

Zhang et al., 2009). Let 𝑝∗ be the referenced least marginal emission path of a (𝑤, 𝜏) pair. Given 

a feasible solution 𝒓𝑛 , the flow balance conservation constraints Eq.(4) can be rearranged as 

follows:   

        𝑟(𝑤, 𝜏, 𝑝∗)𝑛 = 𝑑(𝑤, 𝜏) − ∑ 𝑟(𝑤, 𝜏, 𝑝)𝑛
𝑝∈𝑃(𝑤,𝜏)\𝑝∗ , ∀𝑤, 𝜏.    (24) 

Then, with this rearrangement, the objective function corresponding to a pair (w, ) can be 

written as follows:  

        𝑇𝐸𝑤
𝜏 (𝒓𝑛) = ∑ 𝑟(𝑤, 𝜏, 𝑝)𝑛 × 𝐸𝐶(𝑤, 𝜏, 𝑝)𝑛

𝑝∈𝑃(𝑤,𝜏)\𝑝∗ + 𝑟(𝑤, 𝜏, 𝑝∗)𝑛 × 𝐸𝐶(𝑤, 𝜏, 𝑝∗)𝑛 

                       = ∑ 𝑟(𝑤, 𝜏, 𝑝)𝑛[𝐸𝐶(𝑤, 𝜏, 𝑝)𝑛 − 𝐸𝐶(𝑤, 𝜏, 𝑝∗)𝑛]𝑝∈𝑃(𝑤,𝜏)\𝑝∗ + 𝑑(𝑤, 𝜏) ×

𝐸𝐶(𝑤, 𝜏, 𝑝∗)𝑛.  (25) 

The first-order partial derivative of 𝑇𝐸𝑤
𝜏 (𝒓𝑛) with respect to a particular path flow 𝑟(𝑤, 𝜏, 𝑝) 

is  

        𝛻𝑇𝐸𝑤
𝜏 (𝒓𝑛) = 𝜕𝑇𝐸𝑤

𝜏 (𝒓𝑛) 𝜕𝑟(𝑤, 𝜏, 𝑝)⁄  

            = 𝐸𝐶(𝑤, 𝜏, 𝑝)𝑛 − 𝐸𝐶(𝑤, 𝜏, 𝑝∗)𝑛 + ∑ [𝑟(𝑤, 𝜏, 𝑝′)𝑛 (𝜂
𝑤𝑝′
𝜏,𝑛 − 𝜂𝑤𝑝∗

𝜏,𝑛 )]𝑝′∈𝑃(𝑤,𝜏)\𝑝∗ +

𝑑(𝑤, 𝜏) × 𝜂𝑤𝑝∗
𝜏,𝑛

.  (26) 

where 𝜂𝑤𝑝
𝜏,𝑛 = 𝜕𝐸𝐶(𝑤, 𝜏, 𝑝)𝑛 𝜕𝑟(𝑤, 𝜏, 𝑝)⁄  denotes the path marginal emission which represents the 

change in path emission due to an additional unit of the path inflow, 𝑟(𝑤, 𝜏, 𝑝). Note that if within-

path-set marginal effects are also ignored, then 

        𝛻𝑇𝐸𝑤
𝜏 (𝒓𝑛) = 𝐸𝐶(𝑤, 𝜏, 𝑝)𝑛 − 𝐸𝐶(𝑤, 𝜏, 𝑝∗)𝑛 + 𝑟(𝑤, 𝜏, 𝑝)𝑛[𝜂𝑤𝑝

𝜏,𝑛 − 𝜂𝑤𝑝∗
𝜏,𝑛 ] + 𝑑(𝑤, 𝜏) ×

𝜂𝑤𝑝∗
𝜏,𝑛

.  (27) 

Regarding the step size sn, this study adopts a scheme of mixed step sizes as follows. 

        𝑠𝑛 = 1/𝑚, if 𝑛 = 0; 𝑠𝑛 = 1, otherwise.  (28) 

Recall that m is the (outer loop) iteration counter. The decreasing step size 𝑠𝑛 = 1/𝑚 follows the 

MSA. Based on Eqs.(23), (26), and (28), the gradient projection-based descent direction method 

derives the following path flow updating scheme in the inner loop of the algorithmic framework.  

        𝑟(𝑤, 𝜏, 𝑝)𝑛+1 = Max{0, 𝑟(𝑤, 𝜏, 𝑝)𝑛 − 𝑠𝑛 × 𝛻𝑇𝐸𝑤
𝜏 (𝒓𝑛)}, pP(w, )\p*,   (29) 

        𝑟(𝑤, 𝜏, 𝑝∗)𝑛+1 = 𝑑(𝑤, 𝜏) − ∑ 𝑟(𝑤, 𝜏, 𝑝)𝑛+1
𝑝∈𝑃(𝑤,𝜏)\𝑝∗ .  

 

5.2 Marginal Emission Evaluation 

The gradient projection-based method requires evaluation of path marginal emissions, 

𝜂𝑤𝑝
𝜏 , ∀𝑤, 𝜏, 𝑝, and their constituent link emissions 𝑚𝐸𝐶(𝑙, 𝑡), ∀𝑙, 𝑡. This subsection presents the 
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evaluation of link and path marginal emissions. We define the additional notations used in this 

section as follows. 

𝑤                  Backward wave speed 

𝑘𝑗𝑎𝑚             Jam density 

𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)    Length of link 𝑙 

𝑛𝑙𝑎𝑛𝑒𝑠(𝑙)    Number of lanes on link 𝑙  

𝐴(𝑙, 𝑡)          Cumulative number of vehicles that have arrived at link 𝑙 at time 𝑡   

𝑉(𝑙, 𝑡)          Cumulative number of vehicles that have waited at the vertical queue of link 𝑙 at time 

𝑡  

𝐷(𝑙, 𝑡)          Cumulative number of vehicles that have departed from link 𝑙 at time 𝑡 

𝑞𝑚𝑎𝑥(𝑙, 𝑡)    Maximum flow rate on link 𝑙 at time 𝑡   

𝑐𝑎𝑝𝑖𝑛(𝑙, 𝑡)   Inflow capacity of link 𝑙 at time 𝑡   

𝑐𝑎𝑝𝑜𝑢𝑡(𝑙, 𝑡) Outflow capacity of link 𝑙 at time 𝑡  

𝐹𝐹𝑇𝑇(𝑙)      Free-flow travel time on link 𝑙; i.e., 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)/𝑣𝑓  

𝐵𝑊𝑇𝑇(𝑙)    Backward wave travel time on link 𝑙; i.e., 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)/𝑤   

 

 5.2.1 Link Marginal Emissions for One Vehicle 
This research derives the link marginal emission due to an additional vehicle arriving at link 𝑙 at 

time 𝑡 , based on the cumulative arrival and departure curves. The link marginal emission is 

referred to as the change in the emission on the link at time 𝑡 due to an additional unit of link 

inflow. We also illustrate the relationship between link marginal travel time (or delay) 𝑚𝑇𝑇(𝑙, 𝑡) 

and link marginal emission 𝑚𝐸𝐶(𝑙, 𝑡).  

 

Fig. 6 Illustration of link marginal travel time on a congested link 

Fig. 6 depicts the cumulative arrival 𝐴(𝑙, 𝑡), virtual arrival 𝑉(𝑙, 𝑡), and departure curves 𝐷(𝑙, 𝑡) for 

a congested link 𝑙. The (outflow) capacity of the link is 𝑐(𝑙). The queue starts at 𝑡𝑙
𝑞𝑠

 and dissipates 

at 𝑡𝑙
𝐵 on the link. Let 𝑡𝑙

′, 𝑡𝑙
′′, and 𝑡𝑙

′′′ be the times when an additional vehicle (𝑛1) arriving at link 𝑙, 

joining in the queue of the bottleneck, and leaving the link, respectively. According to Ghali and 

Smith (1995), the link marginal delay (or travel time) due to the additional vehicle is equal to the 

gray area (i.e., 𝑚𝑇𝑇(𝑙, 𝑡𝑙
′) = 𝑡𝑙

𝐵 − 𝑡𝑙
′ ). On the other hand, if this additional vehicle does not 
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encounter a queue, the link marginal delay equals 𝐹𝐹𝑇𝑇(𝑙).  They also showed that the vehicles 

arriving between 𝑡𝑙
′  and 𝑡𝑙

𝐴  experience the additional delay 1/𝑐(𝑙) , because it takes 1/𝑐(𝑙) to 

discharge this perturbation vehicle. In our notation, this means that the change in the delay ∆𝑡𝑤 =

1/𝑐(𝑙). The link marginal delay at time 𝑡𝑙
′ can be derived from Fig. 6 as follows.  

             𝑚𝑇𝑇(𝑙, 𝑡𝑙
′) = 𝑡𝑙

𝐵 − 𝑡𝑙
′ = (𝑛2 − 𝑛1)

1

𝑐(𝑙)
.  (30) 

Let ∆𝐸𝐶(𝑙, 𝑡)  be the change in emission for one vehicle entering the link behind the unit 

perturbation vehicle. The following proposition derives the link marginal emission and states its 

relationship with link marginal travel time. 

 

Proposition 2: The link marginal emission is 𝑚𝐸𝐶(𝑙, 𝑡) = (𝑛2 − 𝑛1)∆𝐸𝐶(𝑙, 𝑡) and a multiple of 

the link marginal travel time (or marginal delay): 𝑚𝐸𝐶(𝑙, 𝑡) = 𝛾(𝑙) × 𝑚𝑇𝑇(𝑙, 𝑡).  

Proof: 

Since the change in delay is the sum of the change in the time spent in queue and the change 

in the actual free flow travel time (i.e., ∆𝑡𝑤(𝑙, 𝑡) = ∆𝑡𝑄(𝑙, 𝑡) + ∆𝑡𝐹(𝑙, 𝑡)) and  ∆𝑡𝑤(𝑙, 𝑡) = 1/𝑐(𝑙),  

             ∆𝑡𝐹(𝑙, 𝑡) =
1

𝑐(𝑙)
− ∆𝑡𝑄(𝑙, 𝑡),    (31) 

According to Eq.(10), the change in the time spent in queue, ∆𝑡𝑄(𝑙, 𝑡), is a fixed multiple of the 

change in the delay, ∆𝑡𝑤(𝑙, 𝑡):  

             ∆𝑡𝑄(𝑙, 𝑡) =
∆𝑡𝑤(𝑙,𝑡)

1−
𝑣𝑄(𝑙)

𝑣𝐹(𝑙)

=
1/𝑐(𝑙)

1−
𝑣𝑄(𝑙)

𝑣𝐹(𝑙)

.  (32) 

Then, according to Eq.(12), the change in emission for one vehicle entering the link behind the 

unit perturbation vehicle is as follows.  

             ∆𝐸𝐶(𝑙, 𝑡) = ∆𝑡𝑄(𝑙, 𝑡)𝐸𝐶(𝑣𝑄(𝑙)) + ∆𝑡𝐹(𝑙, 𝑡)𝐸𝐶(𝑣𝐹(𝑙)) 

                    =
1

𝑐(𝑙)
[

1

1−
𝑣𝑄(𝑙)

𝑣𝐹(𝑙)

𝐸𝐶(𝑣𝑄(𝑙)) + (1 −
1

1−
𝑣𝑄(𝑙)

𝑣𝐹(𝑙)

)𝐸𝐶(𝑣𝐹(𝑙))].  (33) 

 

Based on Eq.(30), the link marginal emission can be derived as follows.  

             𝑚𝐸𝐶(𝑙, 𝑡) = (𝑛2 − 𝑛1)∆𝐸𝐶(𝑙, 𝑡).   (34) 

Let 𝛾(𝑙) = [
1

1−
𝑣𝑄(𝑙)

𝑣𝐹(𝑙)

𝐸𝐶(𝑣𝑄(𝑙)) + (1 −
1

1−
𝑣𝑄(𝑙)

𝑣𝐹(𝑙)

)𝐸𝐶(𝑣𝐹(𝑙))] . Then, 𝑚𝐸𝐶(𝑙, 𝑡) = (𝑛2 − 𝑛1)
𝛾(𝑙)

𝑐(𝑙)
=

𝛾(𝑙) × 𝑚𝑇𝑇(𝑙, 𝑡).  

This completes the proof. 

 

5.2.2 Evaluation of Path Marginal Emissions 

Evaluating path marginal emissions in dynamic and congested traffic networks requires explicitly 

tracing the perturbation propagation of an additional unit of inflow along a path. This issue has 

also been recognized by Shen et al. (2007), Qian and Zhang (2011) and Lu et al. (2013) on 

evaluating path marginal delays (or travel times).  
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Consider a freeway or an arterial segment with two sequential links, without merges and 

diverges, link 𝑙 and link 𝑙+1. Under congested conditions, there are three basic cases of interest, 

when the additional unit of vehicle arrives at this segment at time 𝑡𝑙
′ (= 𝜏, the departure time). 

(i) There is a bottleneck on the downstream link 𝑙+1 and the queue on link 𝑙+1 does not spill 

back to link 𝑙; link 𝑙 is in free-flow condition while link 𝑙+1 is partially congested (Fig. 7(a)). 

(ii) There is a bottleneck on each of the two links, and the two bottlenecks are independent 

(e.g., link 𝑙+1 is sufficiently long so that the queue in the downstream does not spill back to the 

upstream). This is in fact the case in which both links are partially congested (Fig. 7(b)). 

(iii) There is a bottleneck on the downstream link 𝑙+1 and the queue on link 𝑙+1 spills back to 

link 𝑙; that is, link 𝑙 is partially congested while link 𝑙 is fully congested (Fig. 8). 

 
Fig. 7 Path marginal emission analysis without queue spillback 

In case (i), the first link is not impacted by that additional vehicle, while the second link’s 

impacted regime is from 𝑡𝑙+1
′  to 𝑡𝑙+1,3 − 𝐹𝐹𝑇𝑇(𝑙 + 1). In case (ii), the first link has an impacted 

regime spanning a time period from 𝑡𝑙
′ to 𝑡𝑙+1

′ − 𝐹𝐹𝑇𝑇(𝑙), and the second link’s impacted regime 

is from 𝑡𝑙+1
′  to 𝑡𝑙+1,3 − 𝐹𝐹𝑇𝑇(𝑙 + 1). Note that in case (ii), 𝑡𝑙+1

′ = 𝑡𝑙,3; that is, the perturbation 

propagates to link 𝑙+1 when the queue on link 𝑙 vanishes at time 𝑡𝑙,3.  

In case (iii), if the additional vehicle does not encounter the queue on link 𝑙 (Fig. 8(a)), then 

the link marginal emission on this link is zero. The perturbation then moves to link 𝑙+1 with an 

impacted period from 𝑡𝑙+1
′  to 𝑡𝑙+1,1. After detecting the next nearest event timestamp, 𝑡𝑛𝑒 = 𝑡𝑙+1,1, 

which corresponds to a queue spillback event, we need to trace back to link 𝑙 to take time period 

[𝑡𝑙+1,1 − 𝐹𝐹𝑇𝑇(𝑙), 𝑡𝑙+1,2 − 𝐹𝐹𝑇𝑇(𝑙)] into consideration. Finally, we move to link 𝑙+1 to cover the 

last impacted regime from 𝑡𝑙+1,2  to 𝑡𝑙+1,3 − 𝐹𝐹𝑇𝑇(𝑙 + 1) . Thus, the proposed algorithm for 

evaluating path marginal emissions needs to incorporate a backtracking mechanism, in order to 

explicitly consider the difference pieces of the impacted regime over multiple links.  

If the additional vehicle encounters the queue on link 𝑙 (Fig. 8(b)), the first link’s impacted 

regime spans a time period from 𝑡𝑙
′ to 𝑡𝑙,3, and the second link’s impacted regime is from 𝑡𝑙,3 to 
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𝑡𝑙+1,3. Again, the perturbation can enter link 𝑙+1 at time 𝑡𝑙+1,2 only when the queue on link 𝑙 

vanishes at time 𝑡𝑙,3. 

 
Fig. 8 Path marginal emission analysis with queue spillback from downstream link 

Based on the above analysis for the impacted regimes on two consecutive links due to an 

additional vehicle, this research proposes the method for evaluating the path marginal emission of 

a path 𝑝 ∈ 𝑃(𝑤, 𝜏)  with multiple links 𝑙 = 1, … , 𝐿 . The path marginal emission due to an 

additional vehicle consists of the path emission of that vehicle and additional emissions generated 

by impacted vehicles. Starting from the first link 𝑙=1 and given departure time , the proposed 

algorithm, presented in Algorithm 1, keeps accumulating path marginal emission by adding the 

link marginal emission obtained using Algorithm 2 for each impacted period and traces the 

perturbation propagation based on the next nearest event timestamp which is used to guide the 

evaluation procedure advancing to next link (or impacted period) or returning to last link in the 

queue spillback case.  

 

Algorithm 1: Evaluation of the path marginal emission for a triplet (𝑝, 𝑤, 𝜏) 

Initialize 𝑡′ = 𝜏, 𝑙 = 1, and 𝜂𝑤𝑝
𝜏 = 𝑒𝑐𝑤𝑝

𝜏 , where 𝑒𝑐𝑤𝑝
𝜏  denotes the emission of path 𝑝 ∈ 𝑃(𝑤, 𝜏).  

Do while link index 𝒍 ≤ 𝑳 (𝑳 is the number of links) 

Step 1: Obtain the next (nearest) event timestamp, 𝑡𝑛𝑒. The next event may correspond to 

the end time of congestion (i.e., 𝑡3), the beginning of queue spillback (i.e., 𝑡1) or 𝑡𝑛𝑒 =

𝑡′ + 𝐹𝐹𝑇𝑇(𝑙) (under uncongested conditions).  

Step 2: Evaluate link marginal emission, 𝜂𝑙(𝑡′, 𝑡𝑛𝑒), using Algorithm 2 (presented in Section 

5.2.3). 

Step 3: Accumulate the path marginal emission  𝜂𝑤𝑝
𝜏 = 𝜂𝑤𝑝

𝜏 + 𝜂𝑙(𝑡′, 𝑡𝑛𝑒). 

Step 4: Move to the next link, and update the starting time, 𝑡′, of next analysis period. If next 

event timestamp 𝑡𝑛𝑒 corresponds to the end time of congestion or is in a uncongested time 

period, then 𝑡′ = 𝑡𝑛𝑒 + 𝐹𝐹𝑇𝑇(𝑙) and 𝑙 = 𝑙 + 1; otherwise (𝑡𝑛𝑒  corresponds to a queue 

spillback case) 𝑙 = 𝑙 − 1 and 𝑡′ = 𝑡𝑛𝑒 − 𝐹𝐹𝑇𝑇(𝑙).  
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Evaluation of link marginal emission needs to determine the change in link emission due to an 

additional vehicle. Fig. 9 depicts the space-time cumulative flow count diagram, with given 

cumulative arrival and departure count profiles, 𝐴(𝑙, 𝑡) and 𝐷(𝑙, 𝑡), as the boundary conditions. 

Assume that an additional vehicle 𝑗𝑎 arrives at the upstream end of link 𝑙 at time 𝑡′, enters the 

congested regime at 𝑡′′ , and finally departs from the downstream end of the link at time 𝑡′′′ . 

Vehicle 𝑗𝑎 should reach the stop bar at time 𝑡∗ = 𝑡′ + 𝐹𝐹𝑇𝑇(𝑙), if it does not encounter a queue. 

Let 𝑗′ be the vehicle in the existing vehicle set that enters the link right before time 𝑡′. Based on 

the FIFO principle, the impact of the additional vehicle occurs on vehicles 𝑗′ + 1, 𝑗′ + 2, …, 𝑗3, 

arriving behind 𝑗′, where 𝑗3 is the vehicle leaving the link right before time 𝑡3 (when the queue 

vanishes) or the last impacted vehicle. Also, there is no impact on those vehicles reaching the stop 

bar after time 𝑡3  as they do not encounter a queue. Thus, evaluating link marginal emissions 

focuses on traffic state changes inside the polyhedron 𝑡′′, 𝑡′′′, 𝑡3, 𝑡2 and 𝑡1, as shown in Fig. 9. 

Superscripts – and + are used in the figure and the following discussion to represent prior and 

posterior traffic states for the perturbation. For example, 𝑁−(𝑥, 𝑡) and 𝑁+(𝑥, 𝑡) correspond to the 

cumulative flow counts at position 𝑥 and time 𝑡 before and after the perturbation flow arrives, 

respectively.  

 
Fig. 9 Illustration of the polygon in which traffic state changes need to be analyzed for 

evaluating link marginal emission due to an additional vehicle arriving at time 𝑡′  

    The cumulative arrival counts after the arrival of an additional vehicle at time 𝑡′ are determined 

as follows:   

       𝐴+(𝑙, 𝑡) = min(𝐴𝑚𝑎𝑥(𝑙, 𝑡), 𝐴−(𝑙, 𝑡) + 1) , ∀𝑡 ≥ 𝑡′,   (35) 

where 𝐴𝑚𝑎𝑥(𝑙, 𝑡) is defined by the following queue spillback constraint (Zhou et al., 2015):  

        𝐴𝑚𝑎𝑥(𝑙, 𝑡) = 𝐷(𝑙, 𝑡 − 𝐵𝑊𝑇𝑇) + 𝑘𝑗𝑎𝑚(𝑙) × 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) × 𝑛𝑙𝑎𝑛𝑒𝑠(𝑙). (36) 

Due to the outflow capacity constraint, the cumulative departure counts at the downstream end of 

the link remains unchanged before the end of congestion, 𝑡3.   

        𝐷+(𝑙, 𝑡) = 𝐷−(𝑙, 𝑡), ∀𝑡0 ≤ 𝑡 ≤ 𝑡3.  (37) 

Right after 𝑡3, the last vehicle in the vertical queue will be discharged. Hence,  

        𝐷+(𝑙, 𝑡) = 𝐷−(𝑙, 𝑡) + 1, ∀𝑡 ≥ 𝑡3. (38) 
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Eq.(37) implies that the additional vehicle 𝑗𝑎  needs to take the original departure time slot of 

vehicle 𝑗′ + 1, due to the FIFO constraint. Then, a vehicle 𝑗 entering the link after time 𝑡′ (i.e., an 

impacted vehicle) will take the original departure time slot of its follower 𝑗 + 1; that is, the 

departure time of vehicle 𝑗 (denoted as 𝐷𝑒𝑝+(𝑗)) is pushed forward as follows:  

        𝐷𝑒𝑝+(𝑗) = 𝐷𝑒𝑝−(𝑗 + 1), 𝑗 = 𝑗′ + 1, 𝑗′ + 2, … , 𝑗3. (39) 

The left portion of Figure 10 depicts a sample vehicle trajectory diagram before adding an 

additional vehicle 𝑗𝑎 at time 𝑡′. In the right portion of the figure, vehicle 𝑗𝑎 first drives at free-flow 

speed on the link and then its position is controlled by the position of lead vehicle 𝑗=1 due to the 

backward wave propagation. Finally, it has to follow vehicle 𝑗=2’s original trajectory, which is 

also controlled by vehicle 𝑗=1’s positions through backward wave, and then 𝑗𝑎 takes the departure 

time slot of vehicle 𝑗=2.  

 
Fig. 10 Illustration of vehicle trajectory changes after the arrival of vehicle 𝑗𝑎 at time 𝑡′ 

(The dash red lines represent the backward wave controlling a follower vehicle’s position.) 

To numerically evaluate link marginal emission due to an additional vehicle, one can use 

Newell’s simplified car-following model to reconstruct vehicle trajectories with a perturbation 

vehicle arriving at time 𝑡′ , and then compare the total link emission before and after the 

perturbation. However, link marginal emission values are required at numerous perturbation 

arrival times, repeating this process for each different perturbation arrival time 𝑡′  ( 𝑡0 −

𝐹𝐹𝑇𝑇(𝑙) ≤ 𝑡′ ≤ 𝑡3 − 𝐹𝐹𝑇𝑇(𝑙)) could be extremely computationally expensive.  

 

5.2.3 Traffic State Changes in Space-time Cells  

To avoid evaluating link marginal emission for each possible perturbation arrival time on a 

congested link, this research proposes an approximation method that is able to efficiently 

determine traffic state changes due to an additional vehicle. The idea begins with analyzing how 

traffic states in a space-time cell are affected by the perturbation at different vehicle arrival times, 

where a space-time cell (𝑥, 𝑡) is defined over space between position 𝑥 and 𝑥 + ∆𝑋 and over time 

between time 𝑡 and 𝑡 + ∆𝑇, as illustrated in Fig. 11.  The discussion below focuses on the traffic 

state change in 𝑁(𝑥, 𝑡) in each space-time cell of a link.  
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Fig. 11 Illustration of traffic state analysis in a space-time cell 

To determine the cumulative flow count in any space-time cell (𝑥, 𝑡) of a link, the proposed 

approximation method for determining link marginal emission adopts Newell's three-detector 

principle (Newell, 1993a):  

        𝑁(𝑥, 𝑡) = 𝑚𝑖𝑛 {𝐴 (𝑙, 𝑡 −
𝑥

𝑉𝑓
) , 𝐷 (𝑙, 𝑡 −

𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
) + 𝑘𝑗𝑎𝑚(𝑙) × [𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) − 𝑥] ×

𝑛𝑙𝑎𝑛𝑒𝑠(𝑙)},  (40) 

where 𝑥 is the distance from the upstream end of link 𝑙 under consideration.  

 

Proposition 3: Consider two different perturbation arrival times 𝑡𝑎 and  𝑡𝑏 at link 𝑙 for the unit 

perturbation flow, where 𝑡0 ≤ 𝑡𝑎 < 𝑡𝑏 < 𝑡 − 𝑥/𝑣𝑓 (see Fig. 11). The changes in 

traffic density and volume in a cell (𝑥, 𝑡)  corresponding to the two different 

perturbation arrival times are the same.  

Proof:  

Denote 𝑁𝑎
+(𝑥, 𝑡) and 𝑁𝑏

+(𝑥, 𝑡) as the posterior cumulative counts at space-time position (𝑥, 𝑡) due 

to an additional vehicle entering link 𝑙  at 𝑡𝑎  and 𝑡𝑏 , respectively. According to Eq.(35), the 

posterior cumulative arrival counts at time 𝑡 − 𝑥/𝑣𝑓 are the same for both arrival times 𝑡𝑎 and 𝑡𝑏.   

        𝐴𝑎
+ (𝑙, 𝑡 −

𝑥

𝑉𝑓
) = 𝐴𝑏

+ (𝑙, 𝑡 −
𝑥

𝑉𝑓
) = 𝐴− (𝑙, 𝑡 −

𝑥

𝑉𝑓
) + 1. (41) 

According to Eq.(37), the posterior cumulative departure counts at time 𝑡 −
𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
 are also the 

same for both perturbation arrival times.  

        𝐷𝑎
+ (𝑙, 𝑡 −

𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
) = 𝐷𝑏

+ (𝑙, 𝑡 −
𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
) = 𝐷− (𝑙, 𝑡 −

𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
)  (42) 

Thus, we can obtain the same cumulative flow count at (x, t) under different perturbation arrival 

times, according to Newell's three detector principle in Eq.(40).  

        𝑁𝑎
+(𝑥, 𝑡) = 𝑁𝑏

+(𝑥, 𝑡) = 

        𝑚𝑖𝑛 {𝐴− (𝑙, 𝑡 −
𝑥

𝑉𝑓
) + 1, 𝐷− (𝑙, 𝑡 −

𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
) + 𝑘𝑗𝑎𝑚(𝑙) × [𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) − 𝑥] × 𝑛𝑙𝑎𝑛𝑒𝑠(𝑙)}.

 (43) 
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We can further derive that 𝑁𝑎
+(𝑥 + 𝛥𝑋, 𝑡) = 𝑁𝑏

+(𝑥 + 𝛥𝑋, 𝑡) , so the density of cell (𝑥, 𝑡)  is 

independent of different perturbation arrival times.  

        𝑘(𝑥, 𝑡) =  
1

𝛥𝑋×𝑛𝑙𝑎𝑛𝑒𝑠(𝑙)
[𝑁(𝑥 + 𝛥𝑋, 𝑡) − 𝑁(𝑥, 𝑡)]. (44) 

We can also obtain the same flow rate between time 𝑡 and 𝑡 + ∆𝑇 under different perturbation 

arrival times.  

        𝑞(𝑥, 𝑡) =  
1

𝛥𝑇
[𝑁(𝑥 + 𝛥𝑇, 𝑡) − 𝑁(𝑥, 𝑡)]. (45) 

This completes the proof.  

Let 𝐴𝑟𝑟(𝑗) and 𝐷𝑒𝑝(𝑗) be the arrival time and departure time of vehicle 𝑗 on link 𝑙. In light 

of Proposition 3, the posterior trajectories of an impacted vehicle 𝑗  (i.e., 𝑡′ ≤ 𝐴𝑟𝑟(𝑗) ≤ 𝑡3 −

𝐹𝐹𝑇𝑇(𝑙)) on link 𝑙 due to an additional vehicle arriving at different times 𝑡𝑎 and 𝑡𝑏 are the same, 

which is denoted as 𝑥𝑎
+(𝑗, 𝑡) = 𝑥𝑏

+(𝑗, 𝑡), 𝐴𝑟𝑟(𝑗) ≤ 𝑡 ≤ 𝐷𝑒𝑝(𝑗) . Because the emission of an 

impacted vehicle 𝑗 on link 𝑙 is determined based on the second-by-second vehicle trajectory or 

position 𝑥+(𝑗, 𝑡) on link 𝑙, its posterior link emissions due to the unit perturbation flow arriving at 

time 𝑡𝑎 and 𝑡𝑏 are the same, which is denoted as 𝐸𝐶𝑎
+(𝑗) = 𝐸𝐶𝑏

+(𝑗).  

This proposition greatly facilitates evaluating link marginal emission for different 

perturbation arrival times on a link. The proposed method simply reconstructs trajectories of all 

impacted vehicles due to an additional vehicle entering a link right after the time 𝑡′ = 𝑡0 −

𝐹𝐹𝑇𝑇(𝑙) (where 𝑡0 is the time when the queue starts on that link) and computes corresponding 

vehicle emissions on that link. These reconstructed trajectories and vehicle emissions can be re-

used for evaluating posterior link emissions of impacted vehicles (i.e., 𝑡′ ≤ 𝐴𝑟𝑟(𝑗) ≤ 𝑡3 −

𝐹𝐹𝑇𝑇(𝑙)) at different link arrival times 𝑡′ between 𝑡0 − 𝐹𝐹𝑇𝑇(𝑙) and 𝑡3 − 𝐹𝐹𝑇𝑇(𝑙).  

The proposed method is presented in Algorithm 2, which consists of two stages. The first 

stage, including Steps 1 to 3, is to reconstruct impacted vehicle trajectories and obtain the emission 

changes due the unit perturbation flow arriving at time 𝑡′ = 𝑡0 − 𝐹𝐹𝑇𝑇(𝑙). The second stage, Step 

4, determines the link marginal emissions for different perturbation arrival times in a specific time 

period between 𝑡′  and 𝑡𝑛𝑒 , where 𝑡𝑛𝑒  is defined as the next (nearest) event timestamp which 

corresponds to the beginning of queue spillback (i.e., 𝑡1) or the end time of congestion (i.e., 𝑡3 −

𝐹𝐹𝑇𝑇(𝑙)), as shown in Fig. 9.  

 

Algorithm 2: Evaluation of link marginal emission on link 𝑙 between time 𝑡′ and 𝑡𝑛𝑒   

Step 1: Reconstruct trajectory according to Newell’s simplified car-following model (Zhou et al., 

2015) and calculate prior emission for each impacted vehicle, 𝐸𝐶−(𝑗), 𝑗 = 𝑗0, 𝑗0 + 1, … , 𝑗3 , 

where 𝑗0 denotes the vehicle arriving right after time 𝑡0 − 𝐹𝐹𝑇𝑇(𝑙) and 𝑗3 is the vehicle 

arriving link 𝑙 right before time 𝑡3 − 𝐹𝐹𝑇𝑇(𝑙).  

Step 2: Insert an additional vehicle right after 𝑡0 − 𝐹𝐹𝑇𝑇(𝑙). This vehicle takes the original 

departure time slot of vehicle 𝑗0, Dep(j0), and pushes forward the departure times of all 

impacted vehicles; that is 𝐷𝑒𝑝+(𝑗) = 𝐷𝑒𝑝−(𝑗 + 1) for 𝑗 = 𝑗0, 𝑗0 + 1, … , 𝑗3 (i.e., Eq.(39)). 

Then, adopt Newell’s simplified car-following model (Zhou et al., 2015) to reconstruct 
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vehicle trajectory and calculate the posterior emission 𝐸𝐶+(𝑗) for each impacted vehicle 

𝑗 = 𝑗0, 𝑗0 + 1, … , 𝑗3. 

Step 3: Calculate the emission change for each impacted vehicle 𝑗 as ∆𝐸𝐶(𝑗) = 𝐸𝐶+(𝑗) − 𝐸𝐶−(𝑗), 

for 𝑗 = 𝑗0, 𝑗0 + 1, … , 𝑗3.  

Step 4: For the given perturbation arrival time t' and next event time stamp 𝑡𝑛𝑒, find the vehicle 

index 𝑗′ + 1 with arrival time right after 𝑡′ and 𝑗𝑛𝑒 with arrival time right before 𝑡𝑛𝑒. The 

link marginal emission of impacted vehicles can be approximated as  

            𝑚𝐸𝐶(𝑡′, 𝑡𝑛𝑒) = ∑ ∆𝐸𝐶(𝑗)𝑗𝑛𝑒

𝑗=𝑗′+1   (46) 

Note that Steps 1 to 3 of Algorithm 2 are pre-processing steps that are called only once for 

evaluating link marginal emission of a link, while Step 4 is executed for each different 𝑡′ and 𝑡𝑛𝑒.  

Recall that, in Ghali and Smith’s (1995) approach (see section 5.2.1), the link marginal delay 

𝑚𝑇𝑇 = 𝑡3 − 𝑡′. Considering link travel delay as the counterpart of link emission in our research, 

the link marginal delay can be derived using Eq.(46) as well. Specifically, for each impacted 

vehicle, its additional travel delay is ∆𝑡𝑤(𝑗) = 1/𝑐𝑎𝑝𝑜𝑢𝑡, as it has to wait one more headway to 

be discharged from the vertical queue. In the case of constant 𝑐𝑎𝑝𝑜𝑢𝑡, it is easy to obtain that the 

number of vehicles arriving at the vertical queue after time 𝑡′ and before 𝑡3 is (𝑡3 − 𝑡′) × 𝑐𝑎𝑝𝑜𝑢𝑡. 

Thus, the corresponding link marginal delay turns out to be   

        𝜂𝑙(𝑡′, 𝑡3) = ∑ ∆𝑡𝑤(𝑗)𝑗3

𝑗=𝑗′+1 = (𝑡3 − 𝑡′) × 𝑐𝑎𝑝𝑜𝑢𝑡 ×
1

𝑐𝑎𝑝𝑜𝑢𝑡 = 𝑡3 − 𝑡′, (47) 

which is consistent with the result obtained by Algorithm 2.  

 

5.2.4 Before and After Impact Analysis 

The subsection presents a thorough examination on how the traffic state in terms of cumulative 

counts in different space-time regimes is impacted due to an additional vehicle. In the following 

analysis, the space-time diagram is decomposed into three regimes (see Fig. 12). For narrative 

convenience, let 𝐷̂(𝑥, 𝑡) = 𝐷 (𝑙, 𝑡 −
𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)−𝑥

𝑤
) + 𝑘𝑗𝑎𝑚(𝑙) × [𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) − 𝑥] × 𝑛𝑙𝑎𝑛𝑒𝑠(𝑙). 
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Fig. 12 Three different regimes regarding traffic state change due to an additional vehicle 

 

(1) Congestion regime where 𝑁−(𝑥, 𝑡) = 𝐷−(𝑥, 𝑡) 

In the congestion regime, according to Eq.(35),  
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        𝐴+ (𝑙, 𝑡 −
𝑥

𝑣𝑓
) = min (𝐴𝑚𝑎𝑥 (𝑙, 𝑡 −

𝑥

𝑣𝑓
) , 𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1) >  𝐴−(𝑙, 𝑡 −

𝑥

𝑣𝑓
) ≥ 𝐷̂−(𝑥, 𝑡) =

𝐷̂+(𝑥, 𝑡)   (48) 

Then, based on Newell’s three-detector principle in Eq.(40), we can derive that 𝑁+(𝑥, 𝑡) =

min {𝐴+ (𝑙, 𝑡 −
𝑥

𝑣𝑓
) , 𝐷̂+(𝑥, 𝑡)} = 𝑁−(𝑥, 𝑡). Thus, for a space-time position (𝑥, 𝑡) in the congestion 

regime where 𝑁−(𝑥, 𝑡) = 𝐷−(𝑥, 𝑡), the cumulative count is the same before and after the arrival 

of an additional vehicle; that is, 𝑁+(𝑥, 𝑡) = 𝑁−(𝑥, 𝑡). In other words, the traffic state in this 

congested regime is controlled by the unchanged backward wave, so the increase in the cumulative 

arrival count does not make the forward wave become the “winner” in the minimization 

relationship in Eq.(40); the arrival of an additional vehicle does not change the congested state. 

Accordingly, if all the four corner points of a time-space cell belong to the congestion regime, the 

density and flow in that cell do not change due to an additional vehicle.  

(2) Unaffected free-flow regime where 𝑁−(𝑥, 𝑡) = 𝐴−(𝑙, 𝑡 −
𝑥

𝑣𝑓
)   and 𝐴−(𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1 <

𝐷̂−(𝑥, 𝑡)   

The condition, 𝐴−(𝑙, 𝑡 −
𝑥

𝑣𝑓
) + 1 < 𝐷̂−(𝑥, 𝑡), is used to distinguish the unaffected free-flow 

regime from the impacted free-flow regime. In the formal case, 

        𝐴+ (𝑙, 𝑡 −
𝑥

𝑣𝑓
) = 𝐴−(𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1 < 𝐷̂−(𝑥, 𝑡) = 𝐷̂+(𝑥, 𝑡). (49) 

Thus, the original cumulative arrival count is low enough so that an increase by one vehicle does 

not change the free-flow traffic state at position (x, t), where the forward wave still dominates.  

        𝑁+(𝑥, 𝑡) = min {𝐴+ (𝑙, 𝑡 −
𝑥

𝑣𝑓
) , 𝐷̂+(𝑥, 𝑡)} = 𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1.   (50) 

In the unaffected free-flow regime, it is easy to show that the corresponding flow and density do 

not change due to an additional vehicle.  

(3) Impacted free-flow regime, where 𝑁−(𝑥, 𝑡) = 𝐴−(𝑙, 𝑡 −
𝑥

𝑣𝑓
)  and 𝐴−(𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1 ≥ 𝐷̂−(𝑥, 𝑡)  

It is easy to derive that 

        𝑁+(𝑥, 𝑡) = min {𝐴+ (𝑙, 𝑡 −
𝑥

𝑣𝑓
) , 𝐷̂+(𝑥, 𝑡)} = min {𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1, 𝐷̂−(𝑥, 𝑡)} =  𝐷̂−(𝑥, 𝑡) . 

 (51) 

That is, the traffic state in terms of cumulative count of a time-space position in the impacted free-

flow regime will change from uncongested 𝐴−(𝑙, 𝑡 − 𝑥/𝑣𝑓) to congested 𝐷̂−(𝑥, 𝑡), due to an 

additional vehicle.  

The above analysis results are summarized in Table 2.  
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Table 2 Three different regimes in terms of traffic state change after adding a vehicle 

Regimes Prior traffic state Posterior traffic state Traffic state change 

Congested 𝑁−(𝑥, 𝑡) = 𝐷̂−(𝑥, 𝑡)  𝑁+(𝑥, 𝑡) = 𝑁−(𝑥, 𝑡) Remain unchanged 

Unaffected free-

flow 
𝑁−(𝑥, 𝑡) = 𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) , and 𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1 < 𝐷̂−(𝑥, 𝑡) 

  𝑁+(𝑥, 𝑡) = 𝑁−(𝑥, 𝑡) +
1 

Remain unchanged, 

though cumulative 

arrival count 

increased by 1 

Impacted free-

flow 
𝑁−(𝑥, 𝑡) = 𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) , and 𝐴− (𝑙, 𝑡 −

𝑥

𝑣𝑓
) + 1 > 𝐷̂−(𝑥, 𝑡) 

𝑁+(𝑥, 𝑡) = 𝐷̂−(𝑥, 𝑡) Both traffic density 

and flow will change 

due to an additional 

inflow.  

 

6. Conclusions 

This research generalizes the normative capability of DTA to sustainable transportation network 

modeling. The ESODTA model is proposed to obtain path flows in a congested network where 

travelers behave cooperatively in selecting paths to minimize total network emission. The 

mesoscopic DNL model which seamlessly integrates Newell’s simplified kinematic wave model 

and simplified car-following model into a unified framework was developed to enable the 

internally consistent DTA for temporally cross-resolution and spatially multi-scale emission 

modeling. Moreover, we presented, for the first time in literature, the computational algorithm of 

link and path marginal emissions based on Newell’s three-detector principle and thorough 

examination on traffic state changes due to an additional vehicle. These path marginal emissions 

are critical input to the gradient projection-based descent direction method for solving the 

ESODTA problem.  

The solution to the ESODTA model provides a benchmark (or lower bound) in total system 

emission when drivers are unanimously guided by a central controller against other less 

environmentally-efficient routing policies, such as green user equilibrium (GUE) flow patterns. 

Moreover, the GSO path flows provide a basis of generating green routing policies for advanced 

eco-friendly route guidance provision systems that consider different market penetration rates. 

Link and path marginal emissions, which are essential input to the ESODTA algorithm, are also 

valuable for deriving emission charges on road users. On the other hand, the proposed DNL model 

can be encapsulated in traffic emission and energy evaluation and optimization models that require 

both fine-grained and coarse-grained traffic flow representations. Particularly, the high-resolution, 

second-by-second vehicle trajectories generated by the DNL model can be used to derive speed 

and acceleration estimates that are essential input to state-of-the-art emission modeling systems 

(e.g., MOVES).  
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