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EXECUTIVE SUMMARY 

This research report is focused on advancing the methodological frontier in the analysis of 

efficiency and reliability for freight transportation. It deals primarily with truck-related shipments 

although the tools are applicable to other modes and multi-modal systems. The topic is important 

because of the economic value that results from minimizing the resource consumption associated 

with freight activity.  

Section 1 presents a perspective on freight-related reliability by describing concepts and 

assessment tools that pertain to the ensuing analyses. It indicates that freight travel time reliability 

is about consistency in on-time arrivals and departures, not travel times per se. A carrier’s objective 

is to arrive and depart within on-time windows (OTWs) a very high percentage of the time. In 

current practice, carriers measure on-time performance in terms of both departure and arrival 

events, separately and in combination. Shipments (and vehicle moves) are deemed to be “on-time” 

if they both depart during these specified windows. The objective is to find paths and vehicle tours 

that conjunctively maximize on-time performance. If a carrier has high percentages for both their 

arrivals and departures, their service will be perceived as being reliable. Their service is neither 

late nor early. Regarding the arrival window, if the truck arrives early and must wait, less carrier 

resources could have been used or extant resources could have been better deployed. If it arrives 

late, it means the customer’s expectations have not been met. The same thoughts pertain to the 

departure window. If the truck departs early, then the same resource issues exist. And if it departs 

late, customer resources (dock time and space) have been unnecessarily tied up. 

This is not to say that the travel time distributions are unimportant. Rather, it is to stress the fact 

that reducing the mean or the variance is not the primary objective. It is better to think about 

managing the mean and the variance to achieve a specific on-time performance objective. This 

means making intelligent tradeoffs between these two and possibly other measures that affect the 

total cost. The advantages of a reduced variance is more consistent travel times, regardless of the 

mean. Visit sequences can be accomplished with more confidence in the reliability of the visits. A 

reduced mean implies that later departure times can be employed, more customers can be visited 

within a given span of time, more customers can be visited with a given fleet size, and more 

customers can be serviced for a given siting decision. Reducing travel times also reduces in-transit 

inventory costs and fleet size requirements. But the mean should not be reduced at the expense of 

an increase in the variance. 

Section 2 focuses on assessing the reliability of travel time on segments and routes (or paths). This 

is a fundamental building block upon which all the other reliability analysis depends. If segment 

and route travel times are reliable, or more precisely, if their reliability is understood, then decision 

support tools can help improve travel time reliability. The motivation is that a more refined sense 

of the travel times involved in making trips is helpful in ensuring that reliable freight service is 

provided. Working with the average travel times is not enough. What is desired is a sense of the 

individual vehicle travel times that might arise for a given origin-destination (OD) pair, for a 

variety of operating conditions (e.g., normal and abnormal, with the latter being characterized by 

weather, incidents, maintenance work, etc.).  
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In this section, three ways to synthesize the route-level travel time distribution for specific truck 

types are described. The first method is the least demanding in terms of data, and the most 

dependent on inference. It is easy to apply for a given operating condition, but the quality of its 

estimated distributions is highly dependent upon the insights of the analyst. The second method 

relies on individual vehicle travel time observations for segments that lie along the route of interest. 

It combines positive, negative and uncorrelated combinations of segment travel time distributions 

to synthesize a route-level distribution. The process is simple and straightforward yet yields a 

distribution that very closely matches the one observed. The third method uses segment-specific 

Monte Carlo sampling to synthesize route-level travel time distributions. The method is intuitively 

appealing because it capitalizes on natural ideas about how individual vehicle travel times arise on 

congested and uncongested networks. Each of the methods is described analytically and then 

illustrated using a case study example. 

Section 3 describes how to choose paths and departure times for specific trips. A multi-step process 

can be used to find optimal departure times and paths. The process is as follows: 

1) Solve a deterministic K-shortest path problem working backward from the OTW. In doing 

this, use the midpoint of the OTW as the nominal arrival time and use the median travel 

times as the path travel times (or a higher percentile for lower risk tolerance).  

2) Develop a relationship between departure time and the probability of arrival during the 

arrival window for all the K-shortest paths identified.  

3) Select the path and departure time that provides the best combination of travel time and 

reliability based on the risk and travel time preferences of the decision maker.  

 

The section illustrates that there is often a tradeoff between reliability and travel time (and 

implicitly, cost). A path with a longer travel time may provide better reliability, but the higher 

travel time may increase cost. Padding a trip with slack time at the destination also improves 

reliability, but with a cost. Hence, there are likely to be tradeoffs. Anticipating those tradeoffs is 

important. Using a bi-criterion search is important. (And there may be other criteria such as 

minimizing the likelihood of exposure to accidents and incidents that should be considered, but 

those are not examined here.) Once the non-dominated paths have been identified, a utility function 

or some other evaluation and selection process can be employed to identify the best path to choose. 

Section 4 addresses the issue of vehicle routing and scheduling under stochastic conditions. 

Nominally, the objective is to find an assignment of loads to vehicles and determine routings for 

the vehicles that optimizes all the performance metrics. In some instances, the loads are full 

truckloads, in which case the vehicles are assigned to carry loads from one point to another in 

sequence. Alternately, trucks may pick-up or deliver loads. In a third option, trucks may both pick-

up and drop off loads, as with local couriers. The objectives are often to: 

 
1) minimize total cost, 

2) maximize on-time deliveries, 

3) minimize the fleet size, and  

4) maximize vehicle utilization.  
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Other objectives include: 

  
5) maximizing on-time performance and  

6) maximizing the lowest on-time performance among all the vehicles employed.  

 

Two methods are presented for developing shipment assignments, routes and paths for a fleet of 

trucks operating out of a single depot. The first, a meta-heuristic search technique, uses a 

simulation-based heuristic based on an initial Clarke-Wright solution followed by merge, insertion, 

and 2-interchange reduction in order to solve the vehicle routing problem with stochastic travel 

times and soft time windows. The second is a solution methodology that makes a single pass 

through the set of customers to be visited and identifies an assignment of trucks which is both 

efficient and feasible. The method can be described as solving the following optimization problem: 

 

Maximize the on-time performance, and  

Minimize the cost of the service provided 

 

Subject to:  

  
1) all shipments are picked up and/or delivered all shipments  

2) the capacity of any vehicle is not exceeded, and  

3) the maximum tour duration for any vehicle is not exceeded.  

 

An adaptation of the run cutting and scheduling procedure often used to assign buses to transit 

routes is employed to develop the shipment assignments and routes.  

 

Section 5 focuses on siting analysis. The method presented uses Monte Carlo simulation to assess 

the reliability of the delivery service quality provided by candidate distribution center sites then 

identifies the best ones to choose. Because of this, it provides useful and meaningful results that 

are easy to understand. The method can be described as follows: 

 
1) Specify the location of the customers (sites) to be visited, the locations of the candidate distribution 

centers (DCs), and the statistical characteristics of the travel times from the DCs to the customer 

sites. 

2) For each DC: 

a. Conduct a Monte Carlo simulation of trips made from the DC to the customer sites for different 

times of day.  

b. Develop CDFs of the travel time distributions for each of the DCs. 

3) Identify the non-dominated DCs. 

4) Select the best DC based on the importance of the performance metrics assessed. 

 

An example application studies a hypothetical urban area to be served by one depot where there 

are 20 customer locations and five candidate distribution center sites. The solution presented 

indicates that 1) some of the sites are dominated by others and 2) there is a tradeoff among the 

non-dominated choices in terms of the performance metrics considered.  

 

Finally, section 6.0 presents a summary of the research findings and indicates ways in which the 

work conducted can be advanced further by future efforts.  
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Several insights have been derived from this effort. They will have an impact on the way in which 

freight reliability analyses are performed in the future. 

 

 On-Time Windows. Shippers and receivers have expectations about when shipments are going to 

depart and when they are going to arrive. Hence freight reliability is not about travel times per se, 

or even the variance in those travel times. Rather, it is about whether shipments arrive and/or depart 

during these on-time windows.  

 Arrival Times. For freight, it is always the arrival times and frequently the departure times that 

matter. Thus, the question becomes: when must the truck leave the depot so that the shipment will 

be delivered on-time? It is not when it will arrive given a departure time, as is often the case.  

 Searches Backward in Time. Searches for best paths and departure times must often progress 

backwards in time, not forwards because the objective is to arrive at a specific time, not estimate 

when the arrival will occur given a departure time.  

 Doubly-Constrained Path Choices. Scheduled carriers, like trucking firms, often face doubly-

constrained path choice decisions. On-time performance is measured in terms of both departure 

and arrival events, separately and in combination. This means that the on-time performance in terms 

of both in terms of departure and arrival events.  

 Measurement Locations. Timestamps collected at network nodes (intersections or interchanges) 

tend to be ambiguous. The travel times computed from pairs of sensors located at the nodes include 

unknown variability due to turning movements at both the upstream and downstream intersections. 

Collecting timestamps at the midpoints of the links is much better. These midpoints are not 

locations where processing takes place and/or delays occur. And all pairwise combinations of these 

adjacent timestamps are then related to vehicles that have followed the same intervening path.  

 Travel Time and Rate Distributions. There is still a critical need to compute the distributions of 

travel times (and travel rates) of network segments and paths. Section 2 presented three methods 

for doing this. They are all useful and apply to different situations depending on the data available.  

 Vehicle Routing and Scheduling. Section 4 presented two methods for considering reliability in 

developing solutions to vehicle routing and scheduling problems. The first uses a simulation-based 

heuristic to search for good assignments of customer visits to trucks. The second solves a bi-

objective math programming problem that maximizes the on-time performance and minimizes the 

cost of the service provided.  

 Site Choice. A hypothetical case study analysis showed that differences in travel time reliability 

can exist among candidate sites and hence, this aspect of DC choice should be incorporated into a 

multi-objective assessment of potential sites. The shows that some DCs are better choices than 

others in that they dominate poorer performing sites in terms of the combinations of average and 

maximum travel times that the best sites provide. 

 

Much future work can be carried out based on the analyses conducted so far. Some important 

examples of these efforts are as follows: 

 

 Real-World Tests. As is often the case, the methodological advances presented here have been 

tested using a blend of empirical data and hypothetical situations. One natural extension for future 

work is to test these methods based on datasets that are more representative and reflective of real-

world conditions.  

 On-Time Windows. Another opportunity for future work is the further examination of on-time 

windows and the implication this idea has for freight reliability assessment. Surveys of shippers, 

receivers, and carriers would be helpful to double-check that on-time windows are, indeed, the 

current way that reliability performance is assessed.  
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 Backward Searches. The report asserts that the search for best paths and departure times is one 

that involves an analysis backward in time. The veracity of this assertion could be checked through 

a survey of shippers, receivers, and carriers. Also, assuming it is correct, a study of the planning 

and scheduling practices of these three stakeholders would show how this assessment is presently 

carried out, what assumptions are made, and what data are employed.  

 Doubly-Constrained Path Choices. There is an assertion that path choices for truck-based freight 

shipments are doubly-constrained, having on-time windows for both departure and arrival. 

Inquiries with carriers, shippers, and receivers would provide indications as to whether this 

assertion was true or not; or the extent to which it is true.  

 Travel Time and Rate Distributions. Three methods for estimating route-level travel time and 

travel rate distributions have been presented. Analysis based on more real-world data, especially 

from trucking firms, would indicate how well these methods work and how they can be enhanced.  

 Vehicle Routing and Scheduling. Vehicle routing and scheduling will continue to be a critical 

element of the reliability analysis. This report presented two methods for developing a vehicle 

routing and scheduling plan that maximizes the reliability of the service provided.  

 Site Selection. The site selection procedure could be enhanced most significantly by linking it to 

vehicle routing and scheduling. That is, treat the assessment of the reliability of the sites as an 

evaluation of the best reliability that can be provided by a fleet of trucks given the choice of a 

specific site.  

Combinations.  All these possible extensions to the current work could be done separately or in 

combinations. For example, the SVRP ideas could be explored in conjunction with the 

enhancements to the site selection procedures. The enhancements to path characterization could be 

coupled with SVRP so that the SVRP solutions are more tightly and defensibly tied to the 

characterization of the performance of the network over which the trips take place. Determining 

which combinations to select and which options to pursue will depend upon the data available, the 

interests of the research funding agencies that are involved, and the demands of the stakeholders 

whose needs are being addressed.   

 





 

7 

 

1.0 INTRODUCTION 

1.1 RESEARCH FOCUS 

The analysis of efficiency and reliability for freight transportation is the motivation of this research 

report. Although this investigative endeavor focuses on advancing the methodological frontier for 

truck-related shipments, the developed tools can be applied to other modes and multi-modal 

systems. These efforts are important as they seek to explore the economic value of the consumption 

of resources associated with freight activity. Unreliable transport raises costs and diverts scarce 

factors of production away from other, critically important societal activities. It interferes with the 

efficiency of the supply chain and increases both monetary and time-related costs and resource 

requirements (e.g., increased in-process inventory, extra trucks).  

 

As might be expected, the reliability of freight transport has always been important. Military 

leaders, government officials, and people in general have always been concerned about on-time 

delivery of goods and services. For example, the Carthaginian army lost to the Romans because of 

a lack of supplies and manpower in 249 BC and the Germans repeatedly had to revise their battle 

plans because of a lack of fuel in World War II. Much research has been conducted on investigating 

transportation logistics throughout history and consequences of unreliable or delayed shipments. 

Articles on this topic include Stephens (1989), Sakul (2010), Fusaro (2015), and Ronsee and Rayp 

(2016). Stephens (1989) examined the relationship between the railroads and time awareness in 

19th Century America.  Each chief engineer of a railroad faced enormous uncertainty for the 

schedules because of rolling-stock failure, accident, track obstructions, and weather. However, the 

railroads faced pressure to increase punctuality from the U.S. Post Office and as the result from 

fatal incidents. The author illustrated the various steps that the railroad industry took to ensure 

reliable travel times. Such steps included the use of time service based on telegraphed signals and 

strict scheduled operations. Sakul (2010) investigated the role of military transportation in the 

Mediterranean Sea trade environment during the War of the Second Coalition. The author 

examined the supply operation that existed including the military’s need to address delayed orders, 

cancelled orders, and cash payments. Due to the wartime conditions, these operations also faced 

diplomatic challenges. Sakul provides one such example of military logistics historically 

documenting logistics in the transportation domain. Fusaro (2015) explored the logistical support 

that English and Dutch mercantile vessels provided to Venetian naval campaigns during the War 

on Candia. The use of these ships allowed for the movement of goods and resources under intense 

deadlines and conditions.. Ronsee and Rayp (2016) studied the impact that advertising by 

shopkeepers had on the shipping patterns of eighteenth century Ghent. Beyond determining the 

significant impact that commercial ads had on the shipping industry, the authors subsequently 

characterized the shipping data in Ghent. As a conclusion, Ronsee and Rayp determined models 

to assess the impact that the advertisements and the existing shipping market had in Ghent.  

 

Today, the freight industry is still concerned with reliability. To be competitive, companies need 

to remove inefficiencies in their production functions. Both late and early shipments are 

problematic. The industry’s emphasis on just-in-time manufacturing has squeezed buffer stock out 

of the logistics supply chain. It has also raised the risk of stock-outs. Because storage space has 



 

8 

 

been reduced as well, early arrivals are problematic. If reliability suffers, all participants in the 

supply chain must make extra asset investments to buffer the process and ensure that delivery 

schedules are met. From a societal perspective, the cost of producing the goods and services 

increases. Extra scarce resources must be devoted to freight-related activities to make the 

economic system work.  

 

From a research standpoint, reliability has been of interest for at least half a century. One of the 

earliest textbooks on reliability is that of Shooman (1968). He focused on the impacts of 

stochasticity on routing, logistics management, and travel time reliability within specific modes. 

Shooman applies the concept of a hazard rate from reliability physics to determine the reliability 

of a system. This allows for a decreased time required to run tests and the use of actual conditions 

of the system. Shooman then suggests the use of stress-strength models or stress, strength and time 

models to find the probability that a system will fail. Using these models, a hazard function is used 

to depict the reliability of the system. This puts into context work on reliability that has occurred 

more recently, efforts that aims to find solutions for multiple-vehicle routing problems, multi-

modal logistics networks, and optimal mode choice and path selection. 

 

This research focuses on creating analytical tools that can help shippers, carriers, and government 

agencies improve the reliability of the freight system. The tools are aimed at improving reliability-

related decision-making in terms of network investments and operating plans, vehicle routing and 

scheduling, and site selection. In each case, the objective is to identify system treatments that can 

alter the statistical distribution of travel times and/or delivery times so that variances are reduced 

and target values and/or windows are achieved with a higher probability.  For freight shipments, 

this means achieving on-time arrivals (OTAs) and on-time departures (OTDs) by making resource 

investments and operational decisions that maximize the likelihood of arrivals and departures 

during the on-time windows (OTWs). For servicing customers, this means making fleet investment 

decisions and routing and scheduling decisions that maximize the OTAs and OTDs. For siting 

decisions, this means selecting locations that maximize the likelihood of servicing customers 

within their OTWs while at the same time minimizing supply chain costs.  

1.2 GAINING A PERSPECTIVE 

Before describing the results of the research, it seems useful to present a perspective about how 

reliability is perceived in the context of this research. This will help the reader understand the 

reasoning behind work presented. Moreover, since freight is the focus, the report focuses on the 

reliability of package shipments and truck movements rather than personal trips and auto 

movements.  

 

Leemis (2009) has offered the following definition of reliability: “The reliability of an item is the 

probability that it will adequately perform its specified purpose for a specified period under 

specified environmental conditions.” This is suitable for assessing the mean time to failure for a 

physical device, but it does not pertain particularly well to the reliability of transport services. 

 

A slight shift in perception makes Leemis’ definition better fit with freight reliability. A trip 

termination or customer visit can be regarded as the “device” and the absolute difference between 

the on-time arrival window (AW) and the actual time of arrival (ATA) can be the metric monitored. 

A trip termination or customer visit is considered reliable if the ATA is within the AW. That is, if 
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ta is the arrival time, ab is the beginning of the AW, and ae is the end, then da = max(ta – ab, ta - ae, 

0) is the deviation from being on-time. If da = 0, then the delivery was on time, and if da > 0 then 

it was not. Evidence that this is the perspective of the freight industry is illustrated by Knowler 

(2016), who highlights the recent performance of the container shipment industry. Success occurs 

if an arrival or a customer visit begins within the applicable AW. Actions that increase the 

likelihood of that occurring increase the reliability of the service.  

 

The same comments pertain to the on-time departure window (DW). If td is the departure time, db 

is the beginning of the AW, and de is the end, then dd = max(db – td, td - de, 0) is the deviation from 

being on-time. If dd = 0, then the departure was on-time, and if dd > 0 then it was not. Hence, 

freight travel time reliability is about consistency in on-time arrivals and departures, not travel 

times per se. The focus needs to be on probability density functions (PDFs) and cumulative 

distribution functions (CDFs) for da and dd.  

 

This notion stresses the fact shorter travel times are not the primary objective, although travel times 

still are of great importance. Instead, the focus should be on about reducing the variance, managing 

the mean value, and a making intelligent tradeoffs between these two and possibly other measures 

that affect the total cost. The benefits of smaller average travel times are that departure times can 

be employed; more customers can be visited within a given span of time; more customers can be 

visited with a given fleet size; and more customers can be serviced for a given siting decision. This 

also results in reduced in-transit inventory costs and fleet size requirements. However, the mean 

should not be reduced at the expense of an increased variance. 

  

Thus, a carrier’s objective is to arrive and depart within the on-time windows (OTWs) a very high 

percentage of the time. If a carrier has high percentages for both their arrivals and departures, their 

service will be perceived as being reliably on-time rather than late nor early. Regarding the AW, 

if the truck arrives early and must wait, less carrier resources could have been used or extant 

resources could have been better deployed. If it arrives late, it means the customer’s expectations 

have not been met. Regarding the DW, the same two thoughts still pertain. If the truck departs 

early, then the same resource issues exist. And if it departs late, customer resources (dock time and 

space) have been unnecessarily tied up. 

 

As is probably obvious, achieving on-time departures and arrivals 100% the time is impossible. 

Systems do not operate deterministically. Travel times vary. Network conditions change. Loading 

and unloading times vary. Hence, carrier performance must be measured in terms of the probability 

that on-time events occur.  

 

When only an AW exists, the prior DW is implicitly identified by tracing backward for paths and 

their travel time distributions. The search needs to be done backwards because the arrival time 

window is the constraint. The “best” path maximizes the likelihood that an OTA will occur. There 

may also be a tradeoff against travel cost or travel time. This may result in the selection of the path 

with the latest possible departure time window that still meets the objective of achieving an 

acceptable on-time performance. Otherwise, pathologically, leaving extremely early is the optimal 

solution as is the idea of arriving very early. Then, an OTA is almost 100% assured.  
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When only a DW pertains, which is rare for freight shipments, the objective is to find a path that 

minimizes travel cost. The path needs to maximize the likelihood that an on-time departure will 

occur and that the travel cost is minimized.  

 

When both a DW and an AW exist, the path search is doubly constrained. A path is then optimal 

if it maximizes both the probability of an OTA and an OTD. Similarly, multi-vehicle routing and 

scheduling decisions are optimal if they maximize the likelihood that the trucks will arrive and 

depart within all AWs and DWs. Shifting shipments among trucks and increasing the fleet size can 

both have a positive impact on improving performance. Of course, and importantly, the location 

of the depot also has an impact. If that location is changed, there is the potential to improve the 

on-time performance. 

 

Scheduled carriers, like railroads, bus companies, and airlines face these doubly-constrained 

conditions. Trucking firms do as well. They measure on-time performance in terms of both 

departure and arrival events, separately and in combination. Shipments (and vehicle moves) are 

deemed to be “on-time” if they both depart during the DWs and arrive within the AWs. A joint 

density function can be used to track this performance. The objective is to find paths and vehicle 

tours that conjunctively maximize on-time performance. 

 

Minimizing variance is a similar, but different thought. Minimizing the variance helps reliability, 

but it must be done in combination with optimizing the travel time and departure time. In addition, 

there may be no value in minimizing the variance beyond a given point if the desired on-time 

performance is achieved. In effect, the better thought is to control the shape of the travel time 

distribution, either viewing it as a PDF, or better yet as a CDF, so that a sufficient percentage of 

the distribution lies within the AW or DW, or both.  

 

Maximizing the on-time performance is sensitive to the operating conditions under which the trips 

are made. Different departure times and paths may be considered best for different operating 

conditions. For example, different routes may be preferable when the weather is inclement, 

network maintenance is underway, or the network is heavily congested. Consequently, using the 

right travel time distributions for each operating condition is very important.  

 

A graphical way to think about this is to talk about desired times of arrival (DTA) and actual times 

of arrival (ATA) as shown in Figure 1.1. If the ATA is within the AW, then an OTA has occurred. 

The freight transportation system’s reliability can be measured by the percentage of trips that have 

ATAs within their OTAWs. 

  

If it is possible to observe the shipments, as carriers and customers can do, with the AWs being 

known, then the reliability of a service can be assessed completely in the manner described above. 

Using this information, customers can assess the percentage of all ATAs that fall within their 

OTWs. Carriers can do this as well. Customers can nominally adjust their AWs so that the on-time 

performance is improved. Carriers can adjust their departure times, or add slack to the trip time, 

so that the probability of arriving within the AW is maximized. 
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Figure 1.1: Concepts of desired and actual times of arrival 

 

These thoughts have an interpretation that is based in utility theory, as described by Hansson 

(1994). Each trip has a disutility that reflects the “cost” of making the trip. That cost includes the 

travel time, tolls, other expenses; and most importantly, here, the “cost” of being either late or 

early. That delivery-related cost is zero if the ATA is inside the AW. And it becomes non-zero if 

the ATA is outside the AW either before or after. Moreover, the cost of being late may be different 

from that associated with being early. This is shown by Figure 1.2 in that the slope of the cost 

curve indicates the per-unit-time penalties involved. The steeper the slope, the costlier it is to be 

late or early. In the aggregate, the on-time costs of the trips can be summed to assess the “societal 

cost” of the unreliability of the system.  

If the focus is on when the shipment arrives, not when it departs, then the question is: when should 

the shipment leave to maximize the probability of arriving within the AW? Or strike a balance 

between travel time and on-time performance, or minimize the total generalized cost.  

 



 

12 

 

 

Figure 1.2: Disutility function to characterize desired and actual times of arrival 

 

As Figure 1.3 below shows, reliability of the service is maximized if t* is employed. t* maximizes 

the percent of the travel time distribution within the AW. But even then, there is a non-zero 

probability that the shipment will arrive outside the AW, either late or early. It is not necessarily 

true that all the arrival times from the 0th percentile to the 100th will be within the AW. 

 

Maximizing AW performance requires decision-maker actions. The packages cannot move by 

themselves; they cannot make decisions about when to depart or what route to follow or what truck 

to use. The shipments must be managed, handled and transported by people. People must take 

actions. Hence, the objective in this research has been to develop tools that help those decision 

makers. The tools should facilitate their decision making.  

 

From a public agency perspective, which is part of the focus of this research, monitoring ATAs 

and arrivals within AWs are not reasonable thoughts. Public agencies do not have access to this 

information. But they can monitor and “control” the reliability of their networks. They can manage 

the means and variances of the travel times or set targets for the percentage of time that travel rate 

targets are achieved (e.g., the percentage of time that the speed is 45mph or greater). This is what 

the MAP-21 regulations are asking states to do. They are expected to monitor the travel rate 

distributions for TMC segments and make investment and operational changes that improve the 

percentage of time that those targets are achieved.  
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Figure 1.3: Maximizing the probability of arriving during the OTW 

 

As shown in Figure 1.4, the target distribution can vary by network condition, say having different 

targets of performance for various conditions.  

 

 
 

Figure 1.4: Travel time distribution targets by operating condition 
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If the travel time (or rate) distributions that are observed in the field are close to or better than the 

policy-based distributions, then the agency can claim that it is providing acceptable service. If not, 

it ought to take actions that bring the travel time distributions back in line with the targets. 

 

1.3 IS THERE VALUE? 

There are many questions surrounding the importance of travel time reliability for freight 

movements. Does it matter? What is the value of reliability? Does it have a “cost”? How can it be 

assessed? How does the importance of reliability compare with that of travel time itself? If 

reliability is valued, then how should it be factored into decisions about departure times, path 

choice, location decision making, network investment, mode choice, service selection, carrier 

selection, etc.?  

 

Many transport economists have reached the conclusion that reliability is important. It does have 

a cost. Experts see that efficiency in the supply chain is critical and the required efficiency is 

hampered by unreliability and unpredictability. So, if the supply chain is not operating on the 

efficient frontier because of uncertainty, performance can be improved if uncertainty is reduced, 

especially in terms of reduced costs. And in return, service quality may improve as well. The value 

of these improvements depends on what resources become available and what alternate uses for 

those resources exist. In principle, freed-up resources can be used elsewhere by society and reduce 

societal costs overall.  

 

The absence of reliability motivates the creation of buffers, safety stock, and distribution channel 

redundancy to ensure that the supply chain is reliable. In addition, shipments are sent earlier and 

safety stock is held near the point of demand to ensure that arrivals are not late. Shippers and 

producers increase the pipeline inventory to ensure that deliveries are always on-time. Trucks are 

dispatched from depot, earlier, and with fewer stops to make to ensure that pick-ups and deliveries 

are made on time. If the reliability were higher, less time would be wasted in transit, less inventory 

would be carried in transit, and more stops could be scheduled to improve efficiency in the system. 

 

Researchers began to examine the value of reliability in the context of freight operations in the late 

1960’s. The railroad industry elected to invest in a technology called KarTrak, an AVI-like system 

that made it possible to trace every car moved in interchange service. Cars could be tracked from 

shipper to consignee and could be checked to ensure that the cars were correctly routed through 

classification yards. This led to the freight car utilization project conducted by MIT, as described 

by Lang (1970), that aimed to make improvements to the railroad system that would allow it to 

overcome delays and improve reliability. 

 

KarTrak and advancing computer technologies made it possible to monitor the reliability of car 

trips. FRA sponsored the creation of the Freight Car Scheduling (FCS) system (see Shamberger, 

1975). FCS used train schedules and blocking plans to make train “reservations” for cars from 

origin to destination. The plans then used data from the KarTrak system to track actual trips against 

intended trips. The FCS system was first put in service on the Missouri Pacific (see Sines, 1972). 

Sierleja, Pipas, and List (1981) examined the benefits that FCS produced. List and Bongaardt 

(1981) estimated the benefits that FCS would produce for Conrail. Moreover, List, Buchan, 
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Bongaardt, and Pipas (1981) assessed the benefits from FCS for railroads in New England. It was 

clear that FCS could help improve on-time performance. 

 

Other work was concentrated on determining the impact of better reliability. Whybark (1974) 

examined the impact of variations in travel times on supply chain management: reorder points, and 

order quantities. The objective of this research was to identify transportation alternatives that 

minimized total transportation and inventory costs for a receiving facility. He developed an 

effective heuristic procedure that was evaluated over a broad range of conditions. Bevilacqua 

(1978) examined the relationship between energy conservation and different modes of freight for 

delivery services. Alexander (1978) reviewed actions taken by ports to better coordinate rail and 

steamship operations given aspects of the rail travel such as length of haul, speed and reliability of 

the journey.  

 

Van Der Mede, Palm, and Flikkema (1996) asserted that travel time variability should be a “new” 

service quality indicator. They measured variations in travel time and the subjective reaction of 

interviewees to travel time variability. This was done for trips by cars and trucks from door-to-

door. The data collection techniques included trip diaries for drivers, black-box data from trucks, 

and questionnaires. Their finding was that reliability did, indeed, have value. Wigan et al. (2000) 

reported values of travel time and reliability for long-haul and metropolitan freight services. Lam 

and Small (2001) reported values of time and reliability obtained from a value pricing experiment.  

 

More recent studies include Fowkes and Whiteing (2006), Zamparini and Reggiani (2007, 2010), 

Nunez et al. (2008), de Jong et al. (2009), and Fosgerau and Karlstrom (2010). Fowkes and 

Whiteing (2006) attempted to determine monetary valuations of time for nine commodity groups. 

The authors determined that no single value can be used in the freight industry, but specific 

reliability ratios can be used. Zamparini and Reggiani (2007, 2010) explored the value of freight 

travel time savings. The authors recommended a meta-analytical estimation of this parameter given 

contextual factors. These contextual factors included the geographic location, mode of 

transportation, and GDP. Nunez et al. (2008) compared the value of time and reliability of rail and 

road freight transportation in the cross-Alpine and cross-Pyrennean transport domain. The authors 

used both a classic logit model and a mixed logit model to show the socioeconomic evaluation of 

these parameters. de Jong et al. (2009) proposed values of reliability to measure the benefit of 

Dutch infrastructure projects. The authors determined that a reliability ratio that can be used to in 

cost-benefit analysis for passenger travelers and freight transportation. Fosgerau and Karlstrom 

(2010) investigated the impact that the distribution of travel time has on reliability which they 

determined to be the result of the standard deviation and mean lateness factor. This allows for the 

approximation of the value of reliability for any given travel time distribution. 

 

Weigman, Hekkert, and Langstraat (2007) asserted that reliability and costs are the most important 

aspects of service quality in the intermodal market. For terminal operators, both reliability and 

flexibility were found to be more important than they were for customers. This suggested that 

terminal operators could reduce their focus on these aspects without reducing total perceived 

quality by customers. Moreover, less focus from the terminal operators on flexibility and reliability 

would offer opportunities for increased attention on other quality aspects (e.g. costs). For the 

customers, costs and total quality of the service were determined to be more important. Other 
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quality aspects also matter, but were relatively less important. Moreover, the differences among 

these less important quality aspects were small.  

 

Researchers also explored the value of reliability in the context of the role it plays in various kinds 

of freight movement decision-making. Poole (2007) explored its role in the context of truck-only 

toll lanes. Figliozzi and Zhang (2010) examined its impacts on cost. Ozkaya et al. (2010) studied 

it from the perspective of freight rates in the less-than-truckload sector. McLeod (2012) considered 

the role it should play as a performance measure for evaluating freeway systems. 

 

Since reliability has been shown to have value from a decision-making standpoint, it should be 

possible to demonstrate that it influences path and departure time choice decisions. If shippers see 

a value in reliability, they must select path A over path B or mode or carrier A over mode or carrier 

B, ceteris paribus, if the reliability of A is better than B. Meixell and Norbis (2008) provide an  

review of the literature in this area. In their review, they repeatedly observe that reliability is an 

important factor in the choice of modes and even carriers within modes (especially for trucks).  

 

Swan and Tyworth (2001) looked at the issue from the carrier’s perspective. They focused on 

customer retention, asserting that the US railroads were losing the most profitable share of their 

business by providing unreliable service. They argued that by choosing to focus on reducing costs, 

rather than providing better service, they were forcing their customers to shift to other modes, 

notably to truck services. They asserted that railroads should provide better service and recapture 

the costs by charging higher rates.  

 

Bontekoning and Priemus (2004) made a similar assertion for intermodal services. They said that 

the main growth potential for intermodal was in markets for flows that demand speed, reliability 

and flexibility. They further said that innovations in service offerings will produce a breakthrough 

in modal split and allow the use of the mode to expand.  

 

On the other hand, Shinghal and Fowkes (2002) presented the results of an empirical study of 

mode choice for mode choice in the Delhi to Bombay corridor. Travel time, reliability, and service 

frequency are all found to be important. Service frequency is the most important attribute. The 

importance of reliability was generally lower than the authors expected. The reliability of transit 

times was found to be very important for exporters and the auto parts sector because it can affect 

the production process. 

 

Danielis, Marcucci, and Rotaris (2005) conducted a formal study of freight mode preferences 

among logistics managers in two regions of Italy. Four attributes were employed to characterize 

each hypothetical option: cost, time, reliability and damage/safety. Two estimates were obtained 

of each attribute were obtained: (1) the utility associated with each level of the same attribute, and 

(2) the attribute utility revealed by an ordered probability model. Both estimates indicated, on 

average, a strong preference for attributes of quality (time, reliability and safety) over cost. They 

felt this indicated that modal shift policies needed to focus more on the quality aspects of the modes 

rather than just their costs.  

 

Fowkes (2007) considered the concepts of freight value of time and reliability in the context of 

shipments in the UK. He presents findings for nine commodity groups as well as the group overall. 
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Care was taken in developing the results since the estimated valuation of one attribute can vary 

depending on the presence of a related variable. The main empirical finding was that, when 

respondents ignored driver and vehicle costs, for many commodities the valuations of 

improvements in journey time and its variability were negligible. However, shippers of some 

commodities did exhibit a willingness to pay for improvements, and occasionally at a great 

expense.  

 

Fries (2008) reported the results of an effort to develop a freight demand model that could be a 

comprehensive tool for freight demand forecasting in Switzerland. Fries presented the 

methodology and results of the project focusing on the development of modal split functions that 

represent the shippers' demand elasticities. The core part of this project consisted of preparing and 

executing a survey among shippers and freight forwarders. Stated preference experiments based 

on revealed preference data were conducted within the framework of the survey to collect the data 

necessary for the estimation of modal split functions for different commodity groups. Interestingly, 

reliability was ranked equal to or even higher than transport cost in several commodity groups. 

Moreover, travel time was generally less important than reliability.  

 

Grosso and Montiero (2008) did a similar study in Italy. They were interested in seeing what 

factors influenced the decision about choosing a port. A questionnaire was sent to about 30 

companies, including shipping companies, freight forwarders and shippers, currently operating in 

the port of Genoa. They found that port service reliability was among the criteria used. 

 

In the same year, Train and Wilson (2008) completed a study on grain shippers in the upper 

Mississippi River valley. They sent survey forms to 2,000 shippers and received responses from 

480. The survey presented changes in rates, transit times, and reliability, and the respondents were 

asked to state how their annual volumes shipped by barge as opposed to truck or rail would change 

given that all other factors remained the same. The basic finding was that, as might be expected, 

larger declines in reliability increased the likelihood that firms would adjust the volume shipped 

by barge. For example, if the percentage change in reliability was less than 10%, the elasticity for 

those shippers that made a change was 2.417. That is, for them, a 1% decrease in reliability would 

result in a 2.417% decrease in shipment volume. For the survey respondents, including those that 

did not make a change, the elasticity was 0.619. That is, a 1% decrease in service reliability would 

produce a 0.619% decrease in the use of barge. In comparison, these same elasticities for a change 

in rates were -1.407 and -0.075, and for a change in transit time, the elasticities were -1.841 and -

0.310 respectively. In these latter two cases, the elasticities are negative because increases in either 

rates or travel times would result in a decrease in the use of barge. The absolute values are what 

are important for comparison purposes, and those values show that the sensitivity to reliability was 

the highest among these top attributes.  

 

Brooks et al. (2012) examined the Australian domestic freight transport market with a focus on 

the decision-making process by which cargo interests and their agents make mode choice decisions 

between land-based transport and coastal shipping. While their ultimate interest lay in seeing if 

short-sea shipping could provide a reduced carbon footprint to truck and rail, they nonetheless 

looked at shipper sensitivities to various service attributes including reliability. The attributes 

examined were: service frequency, cost (price), transit time, freight distance, direction 

(headhaul/backhaul), and reliability, measured both by arrival within the delivery window and 
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delay. The authors concluded that shippers would be willing to pay significant amounts for 

improvements in the on-time reliability of rail, road, and short-sea shipping.  

 

Spurred by the advent of deregulation in the trucking industry, Bardi, Bagchi, and Raghunathan 

(1989) conducted a survey of 1,000 transportation shippers randomly selected from the Council of 

Logistics Management membership directory. Twenty-nine percent of those surveyed responded. 

Reliability was ranked the first out of 18 criteria by which a carrier could be selected. The next 

five criteria, in rank order, were door-to-door rates or costs, door-to-door transit time, rate 

negotiation flexibility, financial stability of the carrier, and equipment availability. It is clear from 

their research that reliability was important. 

 

Crum and Allen (1997) also examined reliability as a factor in selecting one carrier over another. 

They reported the results of two surveys, one conducted in 1990 data and another in 1996. Based 

on the 1990 results, pick-up and delivery reliability was the top ranked criterion and transit time 

reliability was the second. In 1996, the order was reversed, but the two top measures were still the 

same. 

 

Kent and Parker (1999) conducted a similar study like Bardi, Bagchi, and Raghunathan focused 

on the shippers of international containers. They surveyed export shippers, import shippers, and 

containerized transportation companies and asked for rank order evaluations of the same 18 criteria 

used by Bardi, Bagchi, and Raghunathan. The most important service attribute again proved to be 

transit time reliability/consistency. The next five attributes, in descending rank order, were 

equipment availability, service frequency, rate changes, and operating personnel. Transit time was 

sixth.  

 

The basic conclusion that these researchers reached is that reliability is important and improving 

reliability is significant. Higher reliability produces monetary benefits that are important to 

customers and carriers alike. Therefore, an examination of ways to predict and improve reliability 

of freight services has value. 

 

1.4 REPORT OVERVIEW 

The remainder of the report is divided into five sections. Section 2 focuses on characterizing the 

reliability of single routes or segments. Section 3 deals with departure time and path choice for 

specific origin-to-destination (OD) trips. Section 4 focuses on reliability-based vehicle routing and 

scheduling decisions where multiple stops and multiple vehicles are involved, as in pick-up and 

delivery schedules for fleets of vehicles assigned to a single terminal. Section 5 is devoted to 

location choice comparisons for distribution facilities and depots. Finally, Section 6 provides a 

summary of the material that has been presented and describes work that could be done to further 

advance the frontier.  
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2.0 ASSESSING SEGMENT AND ROUTE RELIABILITY 

The reliability of travel time on segments and routes (or paths) is a fundamental building block 

upon which all the of the other reliability outcomes depend. If segment and route travel times are 

reliable, or more precisely, if their reliability is understood, then decision support tools can help 

improve travel time reliability. 

2.1 BASIC IDEAS ABOUT TRAVEL TIMES 

Trips are comprised of 1) transport across links and 2) processing at nodes. Sometimes the 

processing is significant. Such is often the case with freight shipments. In Figure 2.1, the nodes 

are dots surrounded by boxes. Each node has a letter designation (A through H). Connections 

between the nodes are shown as links. The word “link” refers to these connections when no 

direction is implied. The word arc implies directionality as in the arc DB in which originates at D 

and terminates at B. A shipment leaves a node as it passes through the box on the departing arc. It 

arrives that a node as it passes through the box on the arriving arc. Arc travel times arise between 

the boxes on the arc. Processing times occur between the arriving and departing boxes at the node.  

 

 

Figure 2.1: A hypothetical network and possible monitoring locations 

 

The network diagram can represent two different situations. The first is as a service network 

maintained by a carrier. The nodes are depots and/or transshipment locations. The links are the 

paths between them. In the second, it is a highway network. The nodes are intersections or 

interchanges and the links are the over-the-road paths between them. Both perceptions are used in 

this report.  

 

In the case of a trip across a carrier network, there are arc transit times and nodal processing times. 

If the trip is from B to H, there is an initial processing time at B, a travel time on arc BD, a 

processing time at D, a travel time on arc DC, a processing time at C, a travel time on arc CH, and 

a final processing time at H.  
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For a trip across a highway network, there are arc travel times and nodal delays. For example, a 

truck traveling from B to H has an initial delay at B, a travel time from B to D, delay at D, a travel 

time from D to C, a delay at C, a travel time from C to H, and then a delivery time at H. 

 

The objective in this section is to understand and improve the reliability of these overall trip times. 

The challenge is to determine what causes the travel times on the arcs, and processing times at the 

nodes; and then determine what actions need to be taken to reduce the variability of those times. 

In a sense, this means creating a function that can predict the trip times and then adjust the 

parameter values and variable relationships so that the variation in travel times is reduced.  

 

Insofar as the arcs are concerned, the lengths are important. Longer arcs require more time to 

traverse. And the travel rates (inverse speeds ̀ ) are also important. The travel rates are affected by 

congestion, weather, incidents, maintenance work, etc. These “operating environment” variables 

are important because they affect the travel rates that can be achieved. These variables describe 

the “operating condition.”  

 

For the processing times at the nodes, the type of handling is important. At node D, for example, 

there would be a processing time associated receiving the shipment when it arrives on arc BD, then 

another for getting it prepared for departure on arc DC, and then a third for loading it for departure. 

These times are likely to vary depending on the inbound-outbound combination. These handling 

times may also depend upon when the trucks arrive and depart, how the shipment must be unloaded, 

how congested the terminal is at that point in time, and the resources available (e.g., forklifts and 

people).  From a highway perspective, trucks traveling from B to H see delays at D and C. If node 

D is a freeway interchange, then trucks see the time for traveling on a ramp from arc BD to arc 

DC If it is an at-grade intersection or an interchange that involves intersections, then the trucks 

experience the delay of making a left turn from arc BD to arc DC, for example.  

 

Other independent variables include the shipment class. Premium shipments are handled more 

expeditiously than standard ones. Another variable is the type of commodity being transported 

(e.g., HazMat versus cardboard.) It may be useful to categorize the shipments by class and build 

separate causal models for each rather than considering these differences as independent variables. 

If the models turn out to be the same or very similar, then the class categories can be collapsed and 

combined. 

 

To build a model for carrier shipments, timestamps are needed for shipments and vehicles as they 

arrive and depart from customer locations and processing nodes. For example, for shipments from 

B to G for example, timestamps are needed for the pick-up and receiving time at B, the travel time 

on BD, the processing time at D, the travel time on DF, the processing time at F, the travel time 

on FG, and the delivery time at G. Data are also required for the physical condition of the network 

while the trip was underway and the environment in which the system was operating. These pieces 

of information indicate what the operating condition was when the travel time was observed.  

 

In the case carriers, reliability analysis is relatively easy. Times of arrival and departure are 

typically sensed. This means depot-to-depot travel times can be computed and in-depot handling 

times can be observed. From the carrier’s perspective, monitoring these times is critical for quality 

control and cost management.  
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For trips on the highway network, reliability analysis is more difficult. If an instrumentation 

strategy like that used by the carriers is employed, then timestamps and vehicle IDs need to be 

collected upstream and downstream of every node; that is, before the vehicles join the back of 

queue and then downstream of the intersection. Clearly, this is very sensor intensive. 

 

List et al. (2014) recommended collecting data at the midpoints of the links, not at the nodes. They 

cite two reasons for this. The first is that these midpoints are not locations where processing takes 

place and/or delays occur. Vehicles are typically moving when they pass these locations, so a clear 

and meaningful timestamp can be collected. The second is that all pairwise combinations of these 

adjacent timestamps correspond to vehicles that have followed the same intervening path. They 

have seen the same processing. For example, trucks going from the midpoint of BD to the midpoint 

of DC have traversed half the length of arc DB, turned left at D, and then traversed half the length 

of arc DC. Because the trajectories are the same, the travel times should be similar and predicated 

on the same sequence of events. If they are different, it is likely that something is different about 

the servicing received and is causing a decrease in reliability. Moreover, since the processing is 

the same, it is possible to determine what is causing the variation.  

 

List et al. (2014) also suggested using wireless technologies to collect the data (e.g., technologies 

such as Bluetooth, WiFi, and DSRC) vehicle IDs can be collected along with the timestamps. They 

also recommend using technologies that allow vehicle IDs to be traced through the network (e.g., 

toll tags). Technologies like video and radar are less useful because they only provide image 

information, not vehicle IDs. List et al. also proposed collecting information about the operating 

conditions such as weather, maintenance, incidents, or extraordinarily high demands, because 

these factors tend to affect the reliability.  

 

List et al. (2014) observed that the timestamps collected at the nodes (intersections or interchanges) 

are problematic. First, they provide ambiguous timestamps. Unless the sensing distances are very 

short, it is unclear where the vehicle is when the timestamp is obtained. It is only clear that the 

vehicle was within range of the sensor. Moreover, unless the vehicle’s report their paths, it is not 

possible to tell what turning movement the vehicle was executing. Consequently, since this is true 

at both the upstream and downstream nodes, the travel times computed from pairs of sensors 

include unknown variability due to turning movements at the upstream and downstream 

intersections. Through-through vehicle moves cannot be distinguished from right-lefts, left-rights, 

right-rights, etc. The variations in these turning movement times completely dominate the causality 

of the travel time variations. Any variability on the arc is obscured, and variability in the turning 

movement times at the intersections is impossible to ascertain.  

 

On the other hand, if the sensors are placed mid-block, all the timestamp differences for a given 

pair of sensors reflect similar trajectories. The vehicles do not have to report their trajectories to 

make the observations clear. The processing (handling) seen by those vehicles is nominally the 

same. Hence, the variations in their observed travel times must be caused by variations in the 

turning movement times. And the findings help shed light on what can be done to improve 

consistency in the travel times. 

 

A comparison of the number of sensors required is also useful. Consider the network shown in 

Figure 2.2. It has 12 intersections, A through L. 
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Figure 2.2: Network instrumentation options 

 

For trajectories from F to G, sensors could be placed at the nodes, and only two sensors would be 

required. But, as indicated above, this is not likely to produce useful information. The travel time 

observations are confounded by turning movement times that are buried in the observations. Even 

if the sensors are placed at the dark yellow dots, downstream of F and upstream of G, the data may 

still be confounded. There would be no way to determine when the timestamps were recorded. 

Queue delay might be included. This problem is rectified to some degree if all the indicated dark 

yellow sensors are used, a total of eight. Now the turning movement combinations can be identified 

and the observations can be classified into turning movement combinations. But using many 

sensors is expensive. Instead, if the dark red mid-block sensors are used, then only three sensors 

are required: the ones west of F, between F and G, and east of G. This provides precise and clear 

information about the travel times for vehicles making through moves. If times for all the turning 

movement combinations are desired, then the midblock sensors surrounding both F and G would 

be used, a total of 7. Again, very clear, meaningful information will be obtained. 

 

For the overall network, if sensors are placed at the nodes, 12 are required. But as before, these 

observations would provide limited information because their travel time measurements would be 

confounded by the turning movement times at the intervening intersections. If the dark yellow 

sensors were used, 48 would be required. This has the advantage that the travel time reliability of 

the intersection-to-intersection links can be observed as well as the turning movement times. But 

the proximity of the sensors to the intersections means the influence of queueing delay would be 

unknown. If the mid-block sensors were employed (dark red), then 31 sensors would be required. 

I J K L
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This is more than 12, but less than 48, and the travel times from one sensor to the next would be 

very meaningful because the observations would be based on identical trajectories. 

 

Use of the mid-link monitoring locations creates virtual links. These links can be called “segments” 

to distinguish them from the links in the physical network. The rest of this section focuses on 

characterizing the travel time distributions for these segments, not the physical network links. 

Route-level travel times are combinations of these segment travel times. An important point is that 

the trajectories followed by vehicles traversing these routes are all the same. The vehicles all 

experience the same sequence of nodal processing.  

 

To illustrate these ideas of segments and routes, consider Figure 2.3. A sequence of three segments 

is shown, A, B and C, that form a route from O to D. The nodes R and S are intermediate nodes at 

the junctures between segments. Each segment has a travel time distribution (and by dividing by 

the length, a travel rate distribution). The route also has a travel time (travel rate) distribution.  

 

 

Figure 2.3: A 3-segment route 

 

Many questions arise about the route’s reliability: 1) what are the travel time distributions for the 

segments, 2) what is the travel time distribution for the route; 3) can the segment travel time 

distributions be combined to create a route travel time distribution; 4) can the route’s travel time 

distribution be predicted based on the segment travel time distributions; and, based on all this, 5) 

can ways be identified to improve the route’s reliability? 

 

Regarding question #1, if the sensors are placed mid-link, then the segment travel time 

distributions can be observed. And from them, route-level distributions can be constructed. See 

later discussions about how to do this. If the sensing system can detect vehicle types (e.g., if toll 

tags are used), then travel time distributions by vehicle type can be developed. 

 

For question #2, the same response pertains. If the sensors are placed mid-link and enough vehicles 

traverse the entire route, then the route-level travel time distribution can be observed directly.  

There can be a problem if there are not enough vehicles that traverse the route of interest. An intent 

of the response to question #4 is to address that type of situation. 

 

For question #3, if the segment travel time distributions are statistically independent, the answer 

is reasonably simple. The segment-level distributions can be convolved to construct the route-level 

distribution. But Isukapati et al. (2013) and others have shown that the independence assumption 

does not often pertain. In fact, for networks that are uncongested, positive, serial correlation is 

likely to exist among the segment travel times. Isukapati et al. (2013) show that the travel times 

for each percentile can often be added across the segments to synthesize the travel time distribution 

for the route. That is: 

 

O R S D

A B C
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rp sp

s

t t p          (2.1) 

where rpt is the pth percentile travel time for the route and spt is the pth percentile travel time for 

segment s. This property is called comonotonicity. 

 

The complexity of this synthesis challenge is illustrated by two routes whose segment and route -

level travel times are shown in Figure 2.4. In the case of route #1, adding the percentile-by-

percentile travel times, as suggested by equation 2.1, works quite well. In the case of route #2, 

however, that technique does not work. The significant tail in the distribution for segment C is not 

evident in the route travel time distribution.  

 

List et al. (2016) show that a three-step process can be used to synthesize the route travel time 

distributions. The first step is to develop the segment-level distributions. The second is to create 

three hypothetical route level distributions that combine the segment distributions in three ways: 

positively correlated (PosDis), negatively correlated (NegDis) and uncorrelated (UncDis). In the 

first case, equation rp sp

s

t t p          (2.1) is 

used. In the second, a variant of equation ( rp sp

s

t t p        

  (2.1) is used where the percentiles for the segments alternate between p and 1 – p 

every other segment. In the third, the distributions are convolved. 

 

These distributions are then proportionally sampled to develop the route-level distribution: 

 

1r PosDis NegDis UncDisF F F F where               (2.2) 

 

The values of α, β, and γ are based on minimizing the sum of the squared differences between the 

observed percentile values of the route travel time distribution, rpt  and the corresponding estimated 

values r̂pt derived from equation 1r PosDis NegDis UncDisF F F F where             

  (2.2).  

 

 
(a) route #1            (b) route #2 

Figure 2.4: Segment and route cumulative distributions (CDFs) for two 3-segment routes 
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Determining α, β, and γ leads to insights about the route’s operational condition. For example, a 

high α value pertains when the segments have uninterrupted, uncongested flows. Drivers can 

pursue their desired speeds and the travel time distributions on successive segments tend to be very 

similar. A high β value pertains on segments where the travel rates are sequentially high and then 

low. An example is a signalized arterial where the vehicles see a green signal at every other 

intersection. A large γ value pertains when the segments involve congested flow. Drivers have 

little ability to pursue their desired speeds. Travel times tend to be controlled by the congestion. 

 

These insights suggest that look-up tables could be created that store values of α, β, and γ that 

pertain to specific routes for specific operating conditions. Given these tables, the predicted 

distribution of travel times at points in the future could be forecast. This hypothesis, however, has 

yet to be tested. This is a theorized answer to question #4. 

 

Question #5 may be answered by altering the attributes that produce the segment level distributions 

(e.g., changes in geometry or operating rules) to improve the reliability of the travel times. Speed 

harmonization is an excellent example. So is the addition of new capacity and the construction of 

HOT lanes (at least for the people who use the HOT facility). 

2.2 RELEVANT LITERATURE 

Node, segment, node, and route (path) level reliability have been topics of considerable research 

interest for at least half a century.  

 

Within the rail domain, Boysen et al. (2013) assessed the reliability of container processing in 

railway yards. They investigated the problems that railroads face in maximizing reliability and 

solution approaches that they use. The authors found that improved layouts of the yards and train 

assignment improved the reliability of train movements. Lang and Reid (1970) examined road 

train delays between yards. The causes of delay were studied for more than a thousand trains 

operating over a single main-line division during a two-month period. They found that the 

variations in travel time were caused by equipment failures (e.g., brakes, couplers, engines), 

attributes of the train (e.g., length, trailing tonnage) and the alignment (e.g., vertical profile). 

Martland (1982) created the “PMAKE” function, illustrated in Figure 2.5 to model connection 

reliability in railroad yards.  

 

The PMAKE function describes the cumulative probability that an arriving car at a classification 

yard will connect to outbound trains within a specific amount of time. He concluded that small 

improvements in train and yard operations could translate into significant decreases in delay, 

which would result in better travel time reliability. 

 

Dejax and Bookbinder (1991) examined the route (OD) reliability of car movements on the French 

National Railway. They found they could create a reliability index that codified the timeliness and 

reliability of the services provided. Little et al. (1992) similarly reviewed the reliability for boxcar 

traffic in the US. Kwon et al. (1995) studied origin-to-destination (OD) movements for 477 general 

merchandise trips, 102-unit train trips, and all trips for the 10 largest double-stack corridors. 

Vromans (2005) examined route-level reliability in the context of a typical European rail network 

typified by freight services in shared operation with significant passenger services. Yuan (2006) 
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did a similar study and presented an analytical probability model that estimates the delay for trains 

caused by route conflicts and late transfer connections. The author found that the variation caused 

by train events can be approximated as a lognormal distribution or a Weibull distribution. Arcot 

(2007) considered the problem of modeling uncertainty in rail freight operations and its 

implications for service reliability by presenting an operational simulation tool to evaluate 

different rail operational policies. The simulation tool determined that the policies such as priority-

based classification, train holding and train cancellation strategies yielded the greatest 

improvements in shipment connection reliability. Kaplan (2007) examined the reliability of rail-

based coal shipments and found that the reliability of transportation of coal yards faces problems 

such as severe weather, surges in demand, difficulties in integration of railroad mergers, and 

unplanned maintenance programs. 

 

`  

Figure 2.5: The PMAKE function for rail cars passing through railroad yards 

 

For barges, Dai and Schonfeld (1991) studied the reliability of barge trips on a section of the Ohio 

River. They analyzed delays that accrued as barges passed through locks and interact with other 

river traffic. For other freight sectors, Wang (2007) examined the reliability of air cargo services 

in China and Johnson and Dupin (2012) studied the reliability of oceanic trips. Woo and Pettit 

(2010) examined the reliability of vessel servicing times at ports. Zhao and Goodchild (2011) 

examined the same issues for drayage at a port. In the latter case, the authors presented a simple 

method to predict the 95 percent confidence interval of travel time between any OD pair. Their 

method was validated using global positioning system (GPS) data. Jones and Sedor (2006) studied 

freight reliability for trucking operations. They used satellite data from trucks traveling on five 

freight-significant corridors to calculate travel rates and to derive measures of travel time and 

reliability. Czuch et al. (2011) examined the travel time reliability of truck shipments. Bluetooth 

units were used to measure travel time and reliability. They concluded that the use of Bluetooth 

readers in combination with simple metrics provided a cost-effective way for municipalities to 

measure travel time reliability. 

 

From a public agency perspective, highway network reliability has seen attention only recently. In 

2001, Lomax et al. (2001) began monitoring highway congestion for the major US metropolitan 

areas. The ideas of buffer time, planning time, travel time index, and other reliability performance 

metrics were identified in this effort (see Lomax et al., 2003). The group has continued to publish 
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nationwide performance assessment reports annually, as in the case of the 2012 Urban Mobility 

Report (Schrank et al., 2012). Van Lint, van Zuylen, and Tu (2008) also examined the issue of 

how to measure and assess travel time reliability. They reviewed several measures reported in 

literature. Their most important ones were twofold from comparing the various measures on a 

large empirical dataset. First, the measures were inconsistent. This was true even when comparing 

existing commonly used travel time reliability indicators. For example, the results of the misery 

index differ largely from the results of the buffer time index. Second, a compound measure was 

suggested. Like Lam and Small (2001), they suggested monitoring both the difference between the 

90th and 50th percentile as a robust indicator and the ratio of the difference between the 90th and 

50th percentile and the difference between the 50th and 10th percentile as a measure of skew. They 

interpreted this new measure as the likeliness of incurring a very bad travel time (relative to the 

median). This new compound measure, in contrast to classical statistical metrics for width and 

skew, allows a partial reconstruction cumulative distribution function which is useful from a 

reliability perspective. 

 

Elefteriadou and Ciu (2007) created a model for estimating travel time reliability on freeway 

facilities. They observed that the commonly held notion of reliability among highway analysts is 

very different from the one articulated by previous reliability authors such as Ebeling (1997). 

Ebeling said reliability should be “the probability that a component or system will perform a 

required function for a given period when used under stated operating conditions. It is the 

probability of a non-failure over time.” Highway analysts have focused instead on the idea of 

consistency, which must do with the absence of variability.  

 

Chu et al. (2010) examined various reliability measures such as the planning time index, the buffer 

time index, and the reliability index in the context urban freight corridors that provide access to a 

seaport. The on-board global positioning system (GPS) installed on heavy-duty commercial 

vehicles was utilized to collect travel time and speed data. Also examined is the validity of using 

parametric distributions such as Gamma, log-logistic, log-normal, and Weibull to fit the data. Their 

goodness-of-fit tests indicate that the log-logistic is the best statistical function for freight travel 

times during the mid-day period. In addition, their travel time prediction models identify 

relationships between travel time, speeds, and variance-related factors that affect travel time 

reliability such as incidents, work zones, and traffic signal breakdowns.  

 

Yamamato et al. (2006) studied the reliability of travel time estimates based on the frequency of 

probe observations, focusing on the variability of link /roadway segment travel time estimates for 

different data frequencies. Their results suggested that higher frequency probe data do not always 

yield less variance in the link travel time estimates, and lower frequency data have a smaller 

variance at links just before signalized intersections.  

 

Ramezani and Geroliminis (2012) estimated arterial travel times using data from probe vehicles. 

Using a heuristic grid and applying Markov chains, the researchers integrated the correlation 

between successive links in a network in both simulated data and in-field measurements. Jenelius 

and Koutsopoulos (2013) utilized GPS probes to generate a statistical model for urban road 

network travel times. The model they developed used spatial moving averages to allow correlation 

between network links to be shown. The model also considers attributes such as speed limit and 

trip conditions, such as day of week, season, and weather.  
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Correlations among link travel times have also been investigated. This is critical for understanding 

how segment-based distributions can be combined. Zeitsman and Rilett (2003) used automatic 

vehicle identification to analyze individual and aggregate travel patterns. Significant findings 

included that link travel times of individuals do not have as high of a positive correlation on a trip-

by-trip basis as studies on aggregate trips show. Saberi and Bertini (2010) compared correlated 

segments to uncorrelated segments to assist in identifying hotspots along a freeway. Seshadri and 

Srinivasan (2010) developed an algorithm to determine the maximum travel time on a network 

with normally and correlated link travel times.  Ji et al. (2011) presented a simulation-based multi-

objective genetic algorithm to determine sets of reliable paths in stochastic networks. The 

researchers considered the uncertainties in the travel times and correlations among link travel times 

by using Monte Carlo simulation, genetic algorithms, and a Pareto filter module.  

 

Isukapati et al. (2013) examined a way to synthesize route travel time probability density functions 

(PDFs) based on segment-level PDFs. They used real-world data from I-5 in Sacramento, 

California. Also, List et al., (2014) considered several options for combining segment-level 

distributions. List et al. (2012) and subsequently Isukapati et al. (2013) further advanced these 

ideas. In the work by List et al. (2012), it was established that comonotonicity (perfect positive 

correlation) could be used under a wide variety of conditions to synthesize route-level distributions 

for freeways. It was observed that the ability to do this was dependent upon the level of congestion 

extant on the segment. 

2.3 ROUTE TRAVEL TIME SYNTHESIS METHODOLOGIES 

This section describes three ways to synthesize the route-level travel time distribution for specific 

truck types. The methods are applicable more generally, for any type of vehicle, but this report is 

focused on trucks.  

The motivation is that a more refined sense of the travel times involved in making trips is helpful 

in ensuring that reliable freight service is provided. Working with the average travel times is not 

enough. What is desired is a sense of the individual vehicle travel times that might arise for a given 

OD (origin-destination) pair, for a variety of operating conditions (e.g., normal and abnormal, with 

the latter being characterized by weather, incidents, maintenance work, etc.).  

2.3.1 Method One: Average Travel Times and Distribution Inference 

The first method is the least demanding in terms of data, and the most dependent on inference. It 

is easy to apply for a given operating condition, but the quality of its estimated distributions is 

highly dependent upon the insights of the analyst.  

The first step is to understand the travel time distributions of the trips that the trucks have already 

made. It is best to focus on the distribution of the travel rate rather than travel times because then 

data from different trip lengths can be compared. Data from trips during various operating 

conditions might also be of interest. The distributions of these travel rates need to be studied to see 

if the shape is always the same; how the mean travel times compare to the travel times reported by 

a route guidance system (e.g., Google); if the variance depends on the trip length; and if or to what 

extent the distribution is affected by adverse operating conditions. Several outcomes are needed: 
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1) the ratio of the observed truck travel times to the values reported by the route guidance system, 

2) a relationship between the length of the travel time and the variance in the truck travel times (or 

the individual percentiles of the distribution). Both these outcomes might be sensitive to the 

operating conditions of the network (e.g., normal, adverse weather, incidents, work zones, and 

combinations of these).  

 

The second step is to collect travel time data for the new route. Such data can be obtained from 

route guidance services such as Google maps. The method assumes that segment travel times are 

available at the granularity of about five minutes. This means the observations are not noisy and 

trends in the temporal variations of the travel times do not confound the observations. The method 

also assumes that travel time distributions exist for similar truck trip trips that have taken place 

over segments and routes for other paths through the network. 

  

Having data for a year is ideal. The main value in this is that every seasonal condition has data. 

Each year has 105,120 five-minute observations (365*24*60/5). 74,880 of those are on weekdays; 

29,952 are on Saturdays and Sundays. Given about 250 workdays each year, 72,000 of the 

observations are on workdays. If the focus is on trips made between 7am and 9am on workdays, 

then there are about 6,000 observations each year. This is based on 24 five-minute observations 

per day (or 120 per week) and 250 workdays. Of course, these observations need to be binned 

based on the operating condition that pertains, with a separation at least into normal and “abnormal” 

days, with the latter possibly being separated into categories like “incidents”, “weather”, and 

“maintenance work”, or combinations of these.  

 

The third step is to develop distributions of the five-minute average travel times for the daily 

timespan of interest and operating condition. An example would be the AM peak on workdays, as 

was mentioned above. Of course, for the condition of interest, there must be enough observations 

to create a meaningful distribution (say 50 so, which means there is an observation for every 2nd 

percentile). This result provides a sense of the variation in the route’s average travel times. 

 

The fourth and last step is to combine the results from the first and third steps to create the travel 

time distribution for the route and condition of interest. Monte Carlo sampling is used. The 

distribution of the mean travel time is treated as the average travel times that the overall traffic 

stream experiences and/or the distribution of values that are reported by the route guidance system. 

The findings from step #1 are used to hypothesize what the truck travel time distribution is based 

on the average distribution. Monte Carlo sampling is used to sample values from the average and 

then samples from the hypothesized truck travel time distribution to develop the estimate of the 

actual truck travel time distribution. 

 

As a postscript, this does mean that longer routes will have wider travel time distributions. The 

ratios from the travel rate distribution are being applied to the mean travel rate for the route. Aa 

route with a longer travel time will have a greater spread in the distribution of the travel times than 

will a route with a shorter travel time. If this seems at odds with the intuitively appealing outcome, 

then an alternate approach to step #1 is to treat the historical routes separately and compute the 

differences in times from the mean value to each percentile. These differences, by percentile, can 

then be averaged to create a composite vector of average differences. This result effectively 
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assumes that the faster drivers always arrive “a few” minutes earlier than the average drivers and 

that the slower ones arrive “several” minutes later; and that the length of the trip does not matter. 

 

An example of using this technique is helpful. Figure 2.6 shows an OD pair from Carmel Mountain 

Road in Torrey Pines, CA where I-5 and I-805 split to Civic Center Drive in National City, CA. 

Three paths will be considered: Path A is via I-5; Path B is via I-805, CA-163, and I-5; and Path 

C is via I-805, CA-15, and I-5.  

 

 
Figure 2.6: Map of three paths from Torrey Pines to National City 

 

The first step is to understand the travel time distributions of the trips that trucks have already 

made. Hypothetically, Figure 2.7 shows the distributions of travel times when the values have been 

normalized based on the average travel time. To ensure this figure is clear, assume that existing 

trips have been analyzed and the observed travel times have been normalized (divided by) the 

average travel time. Then assume that the observations have been combined into a database and 

that the distribution of the travel times (relative to the mean) have been created. These hypothetical 

results are displayed in the figure.  

 

The second step is to collect travel time data for the new route. Guidance about how to do this was 

given above. List et al. (2013) provide further guidance. In this case, 5-minute travel time data 

were obtained for the workdays in an entire year. The dataset contained 72,000 records. As 

Torrey Pines 

National City 

Route A 

Route B 

Route C 
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originally received, the records contained no information about the environmental conditions 

under which the system was operating when the travel time observation was obtained. So 

additional data collection activities followed in which incident, weather, maintenance, flow rate 

and special event data were obtained. Fields were added for each of these events. A simple severity 

index was developed and employed for the weather data. The incident, special event, and 

maintenance work indicators were yes/no plus a duration. The flow data was in vehicles/hour/lane. 

 

 
(a) Normalized PDF    (b) Normalized CDF 

 

Figure 2.7: Normalized PDF and CDF for truck trips on other routes 

 

The third step is to develop distributions of the five-minute average travel times and travel rates 

for different congestion levels and environmental operating conditions. For some of the paths, the 

flow rate data motivated a distinction between low, moderate, and high congestion. For others, low 

and high were all that seemed appropriate. Plots of the travel rates for the three routes are presented 

in Figure 2.8, Figure 2.9, Figure 2.10. 

 

As can be seen, the travel rates are sensitive to the operational environment. Weather causes 

problems as do incidents, special events, and high demand. The impact is more severe when the 

traffic congestion is high than when it is low. Perhaps surprisingly, for an urban area whose climate 

is very temperate, weather has a significant impact. The weather events do not occur frequently, 

but, perhaps, when they do occur, the change in the operating conditions is quite significant. 
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Figure 2.8: Travel Rate CDFs by operating environment for the CA-163 route 

 

 

Figure 2.9: Travel Rate CDFs by operating environment for the CA-15 route 
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Figure 2.10: Travel Rate CDFs by operating environment for the I-5 route 

 

The fourth and last step is to combine the results from the first and third steps to create a sense of 

the travel time distribution for the route and condition of interest. Figure 2.11 provides an 

illustration of how this is done. 

 

 

Figure 2.11: Graphical description of how the truck trip times are developed 
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The figure shows plots of the average travel time CDFs for the three routes under normal and 

adverse weather conditions. To make sure they are clear, a little interpretation and analysis can be 

performed. Assume the truck has a travel time that matches the average. Then these CDFs reflect 

the CDFs that the truck experiences. Hence, the CA-15 path is always the shortest; the CA-163 

and I-5 paths have longer travel times and are nearly identical. When the weather is adverse, 

however, the CA-15 path is not always the best. Sometimes the CA-163 path is better. In fact, if 

the main interest lies in selecting the path that is most likely to provide the shortest travel time 

when weather is a problem, the CA-163 path is best. It does not always have the shortest travel 

times at the lower percentiles, but at percentiles above about 45% it is always best. 

 

The two PDFs that are superimposed on the diagram are interpreted as follows. It is assumed that 

the average travel time is at the 80th percentile of its distribution. The blue PDF then shows, 

hypothetically, the distribution of individual vehicle travel times that pertains at the 80th percentile. 

Said another way, it indicates the distribution of individual vehicle travel times that pertains when 

the average travel time is at the 80th percentile. Some vehicles have shorter travel times (about half 

of them since what is shown is the average value, not the minimum); and others have longer travel 

times. The green PDF shows the distribution of the truck travel times. Since the average truck 

travels slower than the average vehicle, the PDF for the truck is displaced from the PDF for all 

vehicles. On days when the average travel time is about 17 minutes (at the 80th percentile) and the 

distribution of all individual travel times ranges from 15.5 to about 21 minutes, the mean travel 

time for the trucks is about 19 minutes and the individual vehicle travel times range from 18.5 to 

20.5. To be clear, these latter two distributions are hypothetical while the CDF shown is based on 

real data. The two PDFs have been created to illustrate the ideas being presented. But there is no 

question that these distributions exist, and the objective of this method is to characterize the 

distribution of truck travel times.  

 

The distribution of the truck travel times is created by doing Monte Carlo sampling combinations 

of the average travel time CDF and the truck PDF across the spectrum of both distributions. 

Random values of the average travel time PDF are sampled to create a representative sample of 

those values. And then for each of these a second sample is taken from the truck travel time 

distribution, to create an observation of what the truck travel time would have been. These Monte 

Carlo samples are then summarized into a CDF for the truck travel time.  

 

The results of these efforts are shown in Figure 2.12. While the plots are like those in Figure 2.11, 

the CDFs in Figure 2.12 are for truck trips, not average vehicle trips. The values are larger. It is 

assumed that the truck trips are 30% longer in time than the average trips, and that the truck trip 

times range from 80% to 140% of the average as shown in Figure 2.6. 

 

As was the case with the average travel times, the CA-163 route has the best travel times for normal 

operating conditions. And when the weather conditions are adverse, this path is still very good, 

but not always the best. At low percentiles, it’s travel time is competitive with the best, and at high 

percentiles it is clearly better than the other two paths. 
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Figure 2.12: Truck travel time CDFs for two operating environments and three routes 

 

Once these distributions have been created, a variety of questions can be answered: how long will 

the trip take; what is the best path to choose; what is the shortest travel time that might arise; what 

is the longest travel time? Of course, since the average travel times vary from day-to-day, as shown 

by any one of the CDFs in Figure 2.12, the truck travel time distribution will shift with it. This 

means that, on a given day, it is important to have a sense of what the average travel time is, or 

will be when the trip takes place; and then the departure time window can be determined.  

 

2.3.2 Method 2: Proportional Sampling 

The second method relies on individual vehicle travel time observations for segments that lie along 

the route of interest. As described in Section 2.1, it combines positive, negative and uncorrelated 

combinations of segment travel time distributions to synthesize a route-level distribution. The 

equation employed is 2.1. The process is simple and straightforward and yields a distribution that 

very closely matches the one observed.  

The context of the assessment is shown by Figure 2.13. The origin node is O and the destination 

is node D. The trip involves a short segment from O to A for which only average travel time data 

are available. For segments AB, BC, CD, and DE, individual vehicle travel time observations are 

available, but the number of vehicles that travel from A to E may be very limited. Most of the 

traffic may be going from G to J. There is also traffic that goes from F to J and from H to K. The 

CDF that can be developed directly from the traffic that goes from A to E is sketchy and coarse 

(i.e., A, F, or O to D, E, or K). But the other traffic provides significant observations on some of 

the segments. The objective of the method is to make use of all segment-level observations 

available to develop a more refined distribution of trip travel times from A to E. Once that 
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distribution has been created, it can be augmented with Monte Carlo-based estimates of the travel 

time distributions for segments OA and ED to prepare the overall OD distribution.  

 

Figure 2.13: Data availability for a route of interest 

 

The first step in this method is again to understand the travel time distributions of the trips that the 

trucks have already made. The procedure described in Section 2.3.1 is used to develop: 1) the ratio 

of the observed truck travel times to the values reported by the route guidance system, 2) a 

relationship between the length of the travel time and the variance in the truck travel times (or the 

individual percentiles of the distribution). As before, these results are sensitive to the operating 

conditions (e.g., normal, adverse weather, incidents, work zones, and combinations of these).  

 

The second step is to develop estimates of three mix coefficients: α, β, and γ. These coefficients 

indicate how the three synthesized distributions PosDisF , NegDisF  and UncDisF need to be combined to 

create the estimated travel time distribution from A to E. Equation 2.2 is employed.  For 

explanation purposes, let Xs be the travel time random variable associated with segment s, s = 

1, …N. Also, let X be a vector representation of these random variables. In the context of the 

example shown in Figure 2.13,  , , ,AB BC CD DEX X X X X . PosDisF , NegDisF , and UncDisF are the 

positively, negatively, and uncorrelated distributions formed by combining ABF , BCF , CDF , and

DEF .  

 

UncDisF is created by convolving X1 through XN under the assumption that the Xs random variables 

are independent. That is, UncDisF = F1   F2 …   Fn …FN. Mathematically, this is done by 

repeatedly evaluating the following integral for successive segments: 

( )( ) ( ) ( )u v u vf g t f g t d  




           (2.3) 

Variables u and v are two random variables whose distributions fu(t) and gv(t) are being convolved. 

Initially, this can be the combination of XAB and XBC. Then that result is convolved with XBC and 
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so on until XDE has been included. For variables that only have positive values (as is the case with 

travel times), equation 2.3 simplifies to: 

 

 
0

( )( ) ( ) ( )

t

u v u vf g t f g t d             (2.4) 

Instead of doing this integration explicitly, Monte Carlo sampling can be used. Segment travel 

times can be randomly drawn from XAB, XBC, XCD, and XDE and added together. This can be done 

a countably infinite number of times and then percentile values then drawn from an ordered 

sequence of the values.  

  

PosDisF is formed by drawing samples at the exact same percentile of each distribution, i.e., from 

XAB, XBC, XCD, and XDE. Then: 

 
p p p p p

R AB BC CD DEX X X X X p             (2.5) 

 

Doing this follows a property called comonotonicity. Isukapati et al. (13)  demonstrated that this 

technique can be used to synthesize route-level travel times for uncongested freeways. The 

proportional sampling produced route-level travel time distributions which were consistent with 

those \observed from direct measurements. 

 

NegDisF is similar except that, alternately, complementary percentiles are selected on subsequent 

segments. For this example: 

 
1 1p p p p p

R AB BC CD DEX X X X X p              (2.6) 

 

Or more generally: 

 

where  if  is odd and 1  if  is evenp n

R s

s

X X p n p s n p s             (2.7) 

The ability of this technique to synthesize observed route-level distributions has been illustrated 

using toll tag data that were collected during the 2007 New York State Fair. Descriptions of the 

twelve locations are as follows: 

 

 Fair-1(ART): On Bear Street at the on / off Ramp for I-690.  This sensor captured the 

left lane for both the on and off ramps. 

 Fair-2, Fair-5 (FWY): On I-690 westbound on the western end (downstream) of the 

work zone. Two sensors were employed to ensure that as much data as possible could be 

collected. Duplicate reads were frequently recorded. For this analysis, the data from these 

two sensors were combined and the duplicate observations were removed. 

 Fair-3 (FWY): On I-690 eastbound at the western end of the work zone (upstream). The 

sensor captured the right most lane. 

 Fair-4 (ART): On Hiawatha Boulevard, just before Spenser Street.  This sensor captured 
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the right most lane. 

 Fair-6 (ART): On I-690 at Exit 7. This sensor was on the westbound ramp at the base of 

the entrance to the Orange parking.  This sensor captured the right most lane. 

 NY-2 (PKG): In the Brown parking lot. 

 NY-3 (PKG): In the Orange parking lot at about the same location as I-690, Exit 7.  

 NY-4 (PKG): In the Orange parking lot at about the same location as I-690, Exit 6. 

 34-A (TPL): At NYS Thruway exit 34A (not visible in the map) 

 36-X (TPL): At NYS Thruway exit 36 (not visible in the map). 

 39-X (TPL): At NYS Thruway exit 39 (not visible in the map). 

Some of the readers were positioned on arterials (ART), others are on freeways (FWY), and still 

others are in parking lots (PKG) or at toll plazas (TPL). The locations of readers Field-1 through 

Field-6 are shown in Figure 2.14.  

 

 

Figure 2.14: Location of readers Field-1 through Field-6 

A total of 249,895 readings were recorded from 79,248 unique transponders. The maximum 

number of observations from a single toll tag was 230 and the minimum was one. 345 toll tags had 

30 or more observations; 1,136 had 20 or more; 4,869 had 10 or more; and 33,979 had only one. 

The average was 3.15 observations. 

 

The toll tags used for analysis had at least three data readings. In addition, they had time stamps 

that reflected realistic travel times between the monitoring locations and not double-reads at the 

same location. There were 15,457 such toll tag reads. 

 

 

FAIR_4 
FAIR_1 

 

FAIR_5 

FAIR_2 
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Trips were created by chaining together sequences of sequential reads where the differenced in 

times was greater than 15 seconds and less than an hour. For example, if a transponder was 

observed at locations a, b, c, d, e, and f and the time differences were 0, 20, 50, 3700, 3750, and 

3800 seconds, then two trips would be formed. The one would be a, b, and c and the second would 

be d, e, and f. Where these resulting trips had three or more segments, subtrips were created. For 

example, if there were a trip involving the location sequence r, s, t, u, v, and w, then subtrips r-s-

t  ̧r-s-t-u, r-s-t-u-v, r-s-t-u-v-w, s-t-u, s-t-u –v, … s-t-u -v-w, …. and so on through to v-w were 

created. This results in 8,107 subtrips based on 4,948 transponders. There are 5,443 subtrips with 

two segments, 1,252 with three, 125 with four, and 63 with five. The maximum number of subtrips 

generated by a single transponder is 81; the minimum is one; 38 transponders have 10 subtrips or 

more; and 130 have 5 or more. The total number of routes (sensor sequences) is 2,465; and 51 of 

these have 20 or more observations. The sequence with the most observations is Fair-3/Fair-4/Fair-

2 with 586 observations. These appear to be vehicles traveling eastbound on I-690 that go past 

Fair-3, get off at the next exit, turn left, go by Fair 4 while turning left again to get back on I-690, 

and then pass Fair-2 on their way traveling west on I-690. It is likely that many of these subtrips 

are for people going home from the fair. The next most common sequence is Fair-3/Fair-1/Fair-2, 

which is the same U-turn pattern only using the next interchange further east. 

 

An illustration of the travel time distributions for one of the two-segment routes is shown in Figure 

2.15. This is the sensor sequence Fair-1/Fair-2/Fair 6. In this case, the vehicles pass Fair-1 when 

getting on I-690 westbound, then Fair-2 while traveling on I-690, and then Fair-6 when exiting I-

690 to go to one of the fairground parking lots. The cumulative distribution functions (CDFs) for 

the two segments and the overall route are shown. The optimal values of α, β, and γ are 0.2, 0.0, 

and 0.8, which means 20% contribution from PosDisF , 0% from NegDisF , and 80% from UncDisF . 

 

 

 

Figure 2.15: Segment and route-level CDFs for route Fair-1 – Fair 2 – Fair-6 

 

For the 51 subtrips that had more than 20 observations, Table 2.1 shows the mix combination 

values that were obtained. 
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Table 2.1: Optimal proportional sampling rates for the 51 routes examined 
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As can be seen, the resulting synthesized distributions satisfy the KS test for matching the observed 

distribution. Also, all but one of the synthesized distributions requires sampling from two or more 

of PosDisF , NegDisF , and UncDisF . In 50% of the routes, provides the largest contribution to the 

composite distribution, in 31% of the routes, PosDisF  provides the largest sampling proportion, and 

NegDisF  has the largest sampling proportion in 19% of the routes. 

 

Figure 2.16 shows in more detail the frequency with which specific proportional sampling rates 

are chosen for the PosDisF , NegDisF , and UncDisF  distributions respectively. It is easy to see that the 

sampling percentage for UncDisF is the highest and is non-zero for nearly all 51 routes. The sampling 

percentages for PosDisF are next highest but diminish to zero more quickly. The sampling 

percentages for NegDisF are the lowest, but they are non-zero for 37 of the 51 routes. 

 

 

Figure 2.16: Trends in the sampling rates for PosDisF , NegDisF , and UncDisF  

Two examples illustrate these results in more detail. The first is for Fair-4, Fair-1, Fair-2 and Fair-

6. There are 22 observations of this trip. The α, β, and γ values found as being optimal are 85%, 

10%, and 5% respectively. The cumulative histograms for the individual segment travel times and 

the overall route travel time are shown in Figure 2.17. A cumulative histogram is just a CDF but 

it is not normalized to 1. This allows the distribution of the observations themselves to be shown. 

All three segment travel times are about of equal magnitude although their distributions are 

significantly different as seen in Figure 2.17.  
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Figure 2.17: Cumulative histograms for route Fair-4, Fair-1, Fair-2, Fair-6 

To help with understanding, the PosDisF , NegDisF , and UncDisF  distributions are shown in part (a) of 

Figure 2.18 and a comparison of the synthesized route travel time distribution with the actual 

distribution is shown in part (b). Neither the PosDisF , NegDisF , nor UncDisF  distributions match the 

observed distribution. A sampling of the three is required. The synthesized distribution shown in 

part (b) has sampling rates of 85%, 10%, and 5%. By visual inspection, the figure shows 

graphically that there is a good match between the synthesized and observed distributions. 

 

 

(a) The PosDisF , NegDisF , and UncDisF Distributions  
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(b) The Observed and Synthesized Distributions  

Figure 2.18: Observed and synthesized cumulative histograms for Fair-4, Fair-1, Fair-2, 

Fair-6 

 

The second example route is Fair-3, Fair-4, Fair-1. In this case, there are 204 observations. The α, 

β, and γ values are 0%, 60%, and 40% respectively, meaning the contribution from the NegDisF

distribution is quite large. The cumulative histograms for the two segment travel times and the 

overall route travel time are shown in Figure 2.19. From the figure, three segment travel times are 

about of equal magnitude despite their cumulative distributions being significantly different.  

 

 

Figure 2.19: Cumulative histograms for the route Fair-3, Fair-4, Fair-1 
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The PosDisF , NegDisF , and UncDisF distributions are shown in part (a) of Figure 2.20. Part (b) presents a 

comparison of the synthesized route travel time distribution with the actual distribution. It is again 

clear that there is a good match between the synthesized and observed distributions. 

 

 

(a) The PosDisF , NegDisF , and UncDisF Distributions  

 
(b) The Observed and Synthesized Distributions  

Figure 2.20: Observed and synthesized cumulative histograms for Fair-3, Fair-4, Fair-1 
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The third step is to develop an estimate of the travel time distribution for the trucks. Of course, in 

the future, once the trips are being made, they will implicitly a component of the distribution of 

travel times for vehicles on the route. Thus, the travel times for the trucks will be among the 

observations upon which the route-level travel time is based. Said conversely, the overall 

distribution is an amalgamation of distributions for specific types or classes of vehicles. One of 

these classes will be the trucks for which the travel time distribution is desired. But that is not the 

case before the trips start to take place. Hence, the distribution must be estimated. The simplest 

way to obtain this distribution is to use the mean of the distribution obtained from the synthesis 

exercise in step #2, multiply it by the mean adjustment factor obtained in step #1 and then sample 

travel times from the normalized distribution also developed in step #1. This is illustrated below. 

 

Let’s assume the route of interest is Fair-4, Fair-1, Fair-2, Fair-6. This is the one for which the 

segment distributions are shown in Figure 2.17 and the overall route distribution is shown in Figure 

2.16(b). The average travel time is 6.02 minutes. Assuming, as was done before, that the ratio of 

the average truck trip time to the average overall travel time is 1.3 and the distribution of truck trip 

times is shown in Figure 2.6, then the truck trip time distribution for this route is shown in Figure 

2.21.  

 

 
 

(a) Hypothetical PDF    (b) Hypothetical CDF 

 

Figure 2.21: Hypothetical truck trip time distribution for Fair-4, Fair-1, Fair-2, Fair-6 

 

2.3.3 Method 3: Monte Carlo Simulation 

The third method uses segment-specific Monte Carlo sampling to synthesize route-level travel 

time distributions. The method is intuitively appealing because it capitalizes on intuitively 

appealing ideas about how individual vehicle travel times arise on congested and uncongested 

networks.  

The method’s main assumption is that a vehicle’s travel time arises from three behavioral 

properties. The first is that when vehicles are traversing segments in an uncongested state, the 

travel time they achieve reflects driving behavior. The second is that when vehicles are traversing 

congested segments, the travel time is randomly determined. It does not reflect driving behavior. 

The third is that a mix of these conditions pertains to vehicles on a given segment. That is, the 
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segment travel time distribution is a blend of travel times derived from distributions for the two 

states. Even though the segment may be labeled uncongested, some vehicle travel times can come 

from the congested distribution. And although a segment may be labeled congested, some travel 

times can come from the uncongested distribution.  

Extending these thoughts, vehicle-specific route travel times, tvr, can be synthesized by sampling 

values on uncongested segments that reflect the driver’s desired speed. And on congested segments, 

by random selection. Mathematically, let rd be a random variable on the interval [0,1] that reflects 

the driver's driving style, and tvs | rvr is the travel time for the vth vehicle and the rth percentile. 

Similarly, let rr be a random variable on the interval [0,1] that reflects a randomly drawn travel 

time, then tvs | rvr is a random travel time. Driver behavior has no influence. When the vehicle is in 

an uncongested state, ts is the sampled travel time from the uncongested travel time CDF. When 

the vehicle is in the congested state, tvs is the sampled travel time from the congested travel time 

CDF. In other words: 

1

1

( ) if vehicle is in the uncongested state and 
 where   

( ) if vehicle is in the congested state

su d

vr vs vs

s sc r

F r v
t t t

F r v






  


   (2.8) 

( )su vsF t and ( )sc vsF t are the uncongested and congested travel time CDFs on segment s. 
1( )su dF r

and 
1( )sc rF r

are the inverses.  

Figure 2.22 shows the congested and uncongested distributions based for a 5-mile stretch of I-5 

northbound in Sacramento, just south of downtown. As can be seen, the uncongested travel time 

distributions have much shorter travel times. And weather or incidents do not seem to have a 

significant impact. But in the case of the congested distributions, incidents and weather both have 

significant effects on the travel times, especially for the middle percentiles. 

 

Figure 2.22: CDFs for a 5-mile stretch of I-5 in Sacramento, south of downtown 
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It is important to remember that the CDFs in Figure 2.22 are for individual vehicle travel times not 

average travel times. This means there is a need to check and see if these CDFs capture day-to-

day variations as the average travel time CDFs do, or if they are depicting typical days. Figure 

2.23 helps with this determination. It shows the temporal trends for the 5th, 25th, 50th, 75th, and 95th 

percentiles of the travel times across two days. To obtain these percentiles, temporally successive 

half-overlapping sets of 50 individual vehicle observations were analyzed. The percentiles are 

identified by sorting the observations into ascending order and then either selecting a specific 

observation (in the case of the 50th percentile) or interpolation between two observations (for the 

others). In the figure, the results are plotted against time using the mid-point timestamp of each set 

of 50 observations. The interval between the reported distributions varies because the traffic 

volumes change across the day. At night, when the traffic flow rates are low, it takes time to 

accumulate 50 probe observations, so the interval between plotted distributions is larger than it is 

in the daytime. In the peaks, when the flow rates are high, the plotted data points are much closer 

together.  

What Figure 2.23 shows is that the peak and off-peak conditions are similar each day. In the off-

peak, there is not much variation in the travel time percentiles. And in the peak hours, the 

percentiles follow a consistent transient where they increase and then decrease. 

 

Figure 2.23: Uncongested and congested travel time CDFs for three routes in San Diego 

The implication of Figure 2.23 is that the CDFs shown in Figure 2.22 can be treated as depictions 

of individual vehicle travel time distributions for a typical day, not reflections of day-to-day 

variations in the travel times as is the case with the CDFs for the average travel times. The figure 

also suggests (as is intuitively obvious) that different CDFs for individual vehicle travel times exist 

across a typical day as the congestion conditions increase and decrease. 

The method involves two steps to create the predicted truck travel time distribution. The first, 

which is akin to step #1 in methods #1 and #2, involve creating CDFs of the travel rates 
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experienced by the trucks when traffic conditions are congested and uncongested (and perhaps for 

several other operating conditions like weather- and incident-affected). These distributions will 

look like the ones shown in Figure 2.22 except that they will reflect travel rates rather than travel 

times (times per unit distance). Ideally, these distributions will be for the segments in the route 

being examined, but generic distributions or ones from other segments are also suitable to use. 

The second step is to synthesize hypothetical trip travel times by summing Monte Carlo sampled 

segment-specific rates which are then multiplied by the segment lengths.  To illustrate, assume a 

route like the one shown in Figure 2.13 is of interest. Starting at O and working towards D, travel 

times are sampled for each segment. In the case of segment OA, if no individual vehicle data are 

available, the same technique used in method #1 can be employed (take the mean multiplied by 

the truck adjustment factor and then sample from the truck-related travel time ratio distribution. 

For segments AB through DE, where vehicle-specific data are available, ascertain whether the 

segment’s operating condition is congested or uncongested, and then apply 

where  if  is odd and 1  if  is evenp n

R s

s

X X p n p s n p s             (2.7. 

For segment ED, apply the same technique as used for segment OA. This synthesizing process is 

repeated a countably infinite number of times and the distribution of these values is ascertained. 

As a postscript, if actual distributions of the truck travel times (or rates) exist for the segments in 

the route (for whatever other operating conditions are of interest), these distributions should be 

used instead. The distributions can be sampled as appropriate to develop the segment-specific 

travel times. A separate thought is that whether a segment is operating congested or uncongested 

is a different thought than whether the time of day is a peak period or not. For example, along a 

freeway, even during the peak period, some segments operate uncongested even though others are 

congested. The segments with bottlenecks operate congested as do some segments upstream; 

segments without bottlenecks or queues operate uncongested.  

Use of this technique can be illustrated by an example. Assume the path of interest is the one from 

O to D shown in Figure 2.13.  Also, assume individual vehicle travel time distributions are 

available for all six segments. Table 2.2 provides details.  

The top part of the table shows the means and standard deviations for the lognormal distributions 

of the uncongested and congested travel times for the segments. Parenthetically, these are truck 

travel times. The cells in the middle of the table show the states of the vehicles as they traverse the 

route. The clear colored cells in the segment columns show the percentage of trucks in the 

uncongested and congested states for each segment. The salmon colored cells show the transitions 

between states from one segment to the next. The numbers in the cells show that in this example, 

100% of the trucks experience a congested travel time on segment OA. 50% of these trucks then 

transition to uncongested operation on segment AB and 50% of them stay in the congested state. 

This means that on segment AB, 50% of the trucks experience uncongested travel times and 50% 

experience congested times. In transitioning to segment BC, of the 50% of trucks that experience 

uncongested travel times on AB, 45% remain in the uncongested state on segment BC (i.e., 90% 

of the 50%). 5% transition to the congested state (10% of the 50%). Of the 50% of trucks that 

experience congested travel times on AB, 45% transition to the uncongested state on segment BC. 

5% stay in the congested state.  
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Table 2.2: Six segment problem description 

 

Figure 2.24 shows the resulting route travel times for 200 hypothetical trucks. The values are 

plotted one on top of another so that the individual segment travel times can be observed, as well 

as the overall route travel time. The segment travel times are typically on the order of 3-5 minutes 

and the overall trip time is about 18 minutes.  

 

Figure 2.24: Travel time values for 200 synthesized trucks 

 

1 xfer 2 xfer 3 xfer 4 xfer 5 xfer 6

Mean 0.75 0.85 1.05 0.90 0.90 0.85

StdDev 0.05 0.08 0.06 0.07 0.07 0.07

Mean 1.00 1.05 1.25 1.25 1.20 1.15

StdDev 0.10 0.08 0.12 0.12 0.11 0.13

0% 0% 50% 45% 90% 10% 20% 10% 10% 5% 15%

0% 5% 80% 10% 5%

100% 50% 50% 45% 10% 10% 80% 0% 90% 10% 85%

50% 5% 0% 80% 80%

Veh rv1 t(AB) t(BC) t(CD) t(DE) t(EF) t(FG) t(AG)

1 0 2.7 2.8 2.8 3.6 3.1 3.5 18.6

2 0 2.6 3.1 2.9 3.3 3.8 2.9 18.6

3 0 2.4 3.0 2.7 4.2 3.0 3.1 18.5

4 0 2.6 3.0 2.8 3.5 3.2 2.9 18.1

5 0 2.7 2.8 4.2 2.5 2.5 4.0 18.6

6 0 2.5 2.5 3.1 3.5 2.9 3.6 18.1

7 0 2.7 2.4 2.6 3.6 2.7 2.9 17.0

8 0 3.1 2.6 3.1 3.0 3.3 2.9 17.9

Segment

U

C

Probs

U

C
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Figure 2.25 shows the cumulative histogram of the truck trip times. It is marked with the 

designation “Rte”. The distributions for positively correlated times, negatively correlated times, 

and uncorrelated times are also shown.  

 

Figure 2.25: Travel time values for 200 synthesized trucks 

2.4 POSTSCRIPT: ASSESSING ROUTE STANDARD DEVIATIONS 

In some instances, knowing the entire distribution of the travel times is not that important. Planning 

models, for instance, only need to know the variance of a given route. For route choice, they use a 

generalized cost functions that applies a weight to the path’s variance. This section presents a 

method for computing the variance of a given route. 

Because the segment travel time distributions are often correlated, as indicated previously, the 

variance of the overall route travel time (i.e., the sum of the segment travel times) is not likely to 

be the sum of the variances for the route segments. The sum of the covariances must be used. That 

is, if the distribution of travel times on segment i is given by Xi {1,....., }i n , then: 

 
1 1 1 1

( , )
n n n n

i i j i

i i j i

Var X Cov X X Var X
   

 
  

 
        (2.9) 

To illustrate how the standard deviation can be computed, a few assumptions are needed. First, 

there is an assumption that there are k travel time samples for each of the n segments in the route 
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R = {1, ….. n}. For the moment, it is assumed each segment has the same number of observations. 

The sample covariance for each pairwise combination of segments can then be calculated as: 

1
,

( )( )

1i j

k

im i jm j

m
X X

X X X X

s
k



 





       (2.10) 

Where iX and jX are the sample means for segments i and j, and imX  and jmX are the mth 

replications for segments i and j respectively. The estimate of the route variance is then: 

,

1 1 1
i j

n n n

i X X

i i j

Var X s
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 
 

 
          (2.11) 

Since these sample covariances are straightforward to compute and provide unbiased estimators 

of the true covariances, this is an appealing way to proceed.  

However, two issues need to be addressed.  

The first is that only a subset of all the vehicles observed traverse the entire route. Other vehicles 

traverse other sequences. For example, if the route contains segments i = (1,2,3,4,5) there may be 

vehicles that traverse segment sequences (1,2,3,4), (2,3,4,5), (1,2,3), (2,3,4), (3,4,5), (1,2), (2,3), 

(3,4), and (4,5) as well as single segments (1), (2), (3), (4), and (5). This means some segments 

will have more observations than others. That is, the fixed k above becomes ki for each of the n 

segments and it is likely that p qk k for segments p q in the route. While it is appealing to think 

that all the segment-level travel time observations can be used to estimate the route variance, there 

isn’t a standard way to utilize all available data. Therefore, creating a method that allows all 

observations to be used justifiably is the focus of this section. 

The second issue regards robustness. Outliers can have a large impact on estimation of route 

variance. A vehicle that is extremely slow or fast can have a significant effect on the estimated 

value of the covariances. Over-estimated values then have a cascading effect on the total route 

variance, providing a lower quality estimate of the true value. Ideally such outliers can be removed 

in preprocessing, but determining which observations to remove requires knowing a priori which 

distributions the data follow (unknown in most cases). Ways have not yet been identified to address 

this issue beyond basic statistical analyses in either a frequentist or Bayesian framework. 

In numerical experiments, options are first explored by considering a sequence of four segments 

where the synthesized travel times were known to be independent for all segment sequences 

traversed. An Excel workbook with VBA code was developed to generate hypothetical data based 

on known parameters. It is assumed each segment's travel time followed a lognormal distribution 

with mean 2 and standard deviation 0.5. Sequences of segment observations were isolated to create 

the set T of all possible subsequences: 

T = {(1),(2),(3),(4),(1,2),(2,3),(3,4),(1,2,3),(2,3,4),(1,2,3,4) }  
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Sampling with and with and without replacement were then explored. In sampling without 

replacement, only the travel times for those vehicles that traversed the entire segment sequence 

(1,2,3,4) were utilized. In sampling with replacement, the desired sample size was arbitrarily set 

to 1000 and segments with fewer observations were over-sampled (sampled with replacement) to 

impute values for the voids. In the case of sampling without replacement, the resulting credible 

interval for the route variance is one whose width is a function of the number samples employed. 

In the case of sampling with replacement, the credible interval is artificially reduced in size as the 

number of samples drawn increases. 

Two covariance matrices are computed based on the sampled data. The first, C0, was based on the 

observations that traversed the entire route. Sampling without replacement was employed. The 

second, C1, was calculated based on sampling with replacement. Total route variance was then 

calculated for each method following equation 2.8 as: 

2 0 2 1

0 1

1 1 1 1

,
n n n n

ij ij

i j i j

s C s C
   

          (2.12) 

 The finding was that sampling with replacement yielded a variance close to the true value. In fact, 
2

1s was often closer to the true route variance than the value obtained by using only the full-route 

data (i.e., 
2

0s ). 

Observations are next explored where the travel times were positively correlated. It is assumed the 

correlations decreased by half for each lag-1 advance. That is, segment 1 had a correlation of 1 

with itself, 0.5 with segment 2, 0.25 with 3, and 0.125 with 4. Similarly, segment 2 had a 

correlation of 1 with itself, 0.5 with 1 and 3, 0.25 with 4; etc. Based on data synthesized consistent 

with these assumptions, covariance matrices are computed without and with replacement as was 

done before: 

0

19.531547 9.214472 4.912257 2.047562

9.214472 18.420215 8.946405 4.555028

4.912257 8.946405 20.445868 8.672634

2.047562 4.555028 8.672634 18.331467

C

 
 
 
 
 
 

 

1

18.2306275 0.3279111 0.3938785 0.8332173

0.3279111 16.5551669 1.7468205 0.6830507

0.3938785 1.7468205 19.9974095 0.5279992

0.8332173 0.6830507 0.5279992 20.0857689

C

 
 
 
 
 
 

 





 

 

As can be seen, the sampling with replacement in matrix 1C does not work well when applied to 

correlated observations. While the diagonal (variance) elements are relatively close to the true 

values, the off-diagonal terms are vastly different from the true values. See Figure 2.26 below for 

a comparison.  
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Figure 2.26: Covariance value comparisons for correlated data 

 

An analysis of these results showed that the sampling with replacement from the available segment 

data served to obscure the correlation among segments, i.e. random draws served to “break” the 

relationships among the segment times, forcing the i j covariances to tend towards an 

independent zero.  

To address this deficiency, an alternative methodology was explored. It generates a composite 

covariance matrix Ĉ  by combining covariances computed for all the sub-routes. Three steps are 

involved. First, the data are sorted into sub-routes. Second, each of the 1 1  up to 4 4

covariance matrices are computed for each of the sub-routes. Third, weighted covariance values 

are computed based on the number of vehicles associated with each sub-route. For instance, to 

estimate element 12Ĉ  the aggregated covariance is computed as: 

(1,2) (1,2,3) (1,2,3,4)

(1,2) 12 (1,2,3) 12 (1,2,3,4) 12

12

(1,2) (1,2,3) (1,2,3,4)

ˆ
n C n C n C

C
n n n

 


 
     (2.13) 

where ( , , )i j kn  is the number of observations for route ( , , )i j k  and 
( , , )i j k

ijC  is the sample covariance 

for segments i and j calculated from only sub-route ( , , )i j k . This procedure is repeated for all 
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segment pairs (i,j) to yield the full aggregated covariance matrix Ĉ . As the covariance matrix is 

symmetric not all n2 elements are computed, but rather the elements of the upper triangular matrix. 

The results from employing this composite procedure have been compared to the prior two 

methods using an independent set of generated data. Figure 2.27 shows the scatterplots for the 

three methods (full route C0, sampling with replacement C1, and composite C2) compared to the 

true covariance values. Clearly method C1 displays the errant result of independence for the data 

points under 10 (from correlation to no correlation as its values approach zero). This example has 

a true route variance of approximately 162.8 while the values of 154.2, 79.1, and 159.79 for C0, 

C1, and C2 are computed respectively. Clearly, the composite method yields a value close to the 

actual one with C0 still performing relatively well, even though it drops many observations in favor 

of only tracking vehicles that provide observations for all segments. 

 

Figure 2.27: Covariance value comparisons for correlated data 

 

The conclusion reached is that the aggregation methodology that generates C2 provides a 

reasonable estimate of the true covariance matrix, often a better estimate of the true full route 

variance when compared to the methodology that only uses full route observations to generate C0. 

In sum, the aggregation scheme provides a simple method to effectively estimate route variance, 

providing insight into a route’s overall reliability. 
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2.5 SUMMARY 

This section has focused on the characterization of travel time reliability for truck trips between 

specific origin-destination (OD) pairs. Three methods have been presented for developing 

estimates of these distributions for specific operating conditions. The first makes use of data about 

the average travel times along segments in the path, prior experience with truck travel time 

distributions on other routes, and inference. The second uses individual vehicle travel time 

observations among the segments and a synthesizing strategy that combines the segment-level 

distributions to estimate a route-level distribution. The third uses Monte Carlo simulation, 

assumptions about the congestion level on each of the segments, and a hypothesis about how the 

congestion level influences the travel time experienced by the truck. All three methods are useful 

in different settings depending upon the type of data available. These methods form the basis for 

the analyses in the subsequent sections because those efforts are entirely reliant upon having valid 

estimates of the truck travel time distributions on various network paths.  
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3.0 CHOOSING PATHS AND DEPARTURE TIMES 

After the reliability of segments and routes has been assessed, the next challenge is to identify 

reliable paths. For a trip between a given OD pair, if the AW is specified, the most reliable path 

maximizes on-time performance. If both an AW and a DW are specified, then the best path 

maximizes the probabilities of achieving both an OTD and an OTA.  

Of course, there is often a tradeoff between reliability and travel time (and implicitly, cost). A path 

with a longer travel time may provide better reliability, but also a higher travel time, and greater 

cost. Padding a trip with slack time at the destination also improves reliability, but still with a cost. 

Hence, there are likely to be tradeoffs. Anticipating those tradeoffs is important. Using a bi-

criterion search is important. (And there may be other criteria such as minimizing the likelihood 

of exposure to accidents and incidents that should be considered, but those are not examined here.) 

Once the non-dominated paths fitting the bi-criterion have been identified, a utility function or 

some other evaluation and selection process can be employed to identify the best path to choose. 

3.1 RELEVANT LITERATURE 

Chen et al. (2011) used the travel time budget as the metric for determining reliability-based user 

equilibrium (RUE) rather than the typical metric of expected travel time. This allows for inclusion 

of differing degrees of risk-aversion for distinct user classes evaluated in the system. A column 

generation technique was used to enumerate over all OD and user class pairs followed by solving 

the associated restricted subproblems by iteratively shifting flows from the costliest path with 

maximum travel time budgets to the cheapest path having minimum budget. The cost itself is 

established using a mean budget (M-B) dominance condition described within the paper. 

 

Chen et al. (2013) solved the reliable shortest path problem (RSPP) for   - reliable path wherein 

the goal is to minimize the travel time budget while ensuring an   level of on-time arrival 

probability. Link travel times follow normal distributions to allow for an analytical reliability 

measure when evaluating routes. A stochastic-based dominance condition is described to 

effectively extend Bellman’s Principle of Optimality to the stochastic case. Two algorithms are 

used to solve the problem, notably a multi-criteria label setting algorithm like Dijkstra’s algorithm 

and the multi-criteria A* algorithm. The A* algorithm inherently favor nodes likely to be on   - 

reliable paths by assigning higher priority in the search space for these nodes, maintaining a set of 

eligible non-dominated path sets ordered in descending likelihood of appearing on the   - reliable 

paths. A case study of Hong Kong shows the computational time advantage of the A* algorithm 

over the more accurate yet more computationally demanding multi-criterial label setting algorithm. 

 

Huang and Gao (2012) investigated stochastic time-dependent (STD) networks with temporal and 

spatial correlation among links, using a minimum expected disutility (MED) to evaluate routes. 

Due to the stochasticity, the problem violates Bellman’s Principle of Optimality and the Algorithm 

CD-Path is designed to find only “pure paths” whose sub-paths are non-dominated. This algorithm 

iteratively trims the search space of dominated paths until the final solution set only contains non-

dominated paths. 
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Ji, Kim, and Chen (2011) described a simulation-based multi-objective genetic algorithm 

(SMOGA) that is used to find non-dominant (Pareto optimal) paths. This algorithm consists of a 

Monte Carlo simulation of correlated travel times, a genetic algorithm to explore the combinatorial 

solution space, and a Pareto solution filter to maximize the diversity of the Pareto solutions. 

SMOGA solves the chance constrained multi-objective programming (CCMOP) model for 

optimal path finding while simultaneously minimizing the travel time budget and satisfying travel 

time reliability constraints. Numerical experiments on the Chicago Sketch network show 

feasibility and diversity in explored solution space, while further showing that correlation among 

link travel times create significant discrepancies in travel time budgets. Without correlation among 

links, Pareto paths resulting have significant travel time budget bias and provide sub-optimal paths. 

 

Srinivasan et al. (2014) solved the most reliable path problem with the added feature of shifted 

log-normal link travel times (MRP-SLN), a constrained nonlinear integer programming problem. 

The MRP-SLN algorithm uses lower and upper bounds on path reliability measures to force 

convergence. A sufficient condition is devised to guarantee that the most reliable path is present 

in a set of least expected travel time paths. A case study of Chennai city in India was examined, 

and the generated set of paths contains the true optimum in more than 98% of tested OD pairs with 

an average relative gap between proposed and true optimum paths less than 0.06%. These sets are 

generated in under an average of 25 seconds. However, using approximations for normal and 

lognormal times at link and path level lead to sub-optimal solutions in 14% and 12% of cases 

respectively, with reliability decreases up to 9%. 

 

Xing and Zhou (2011) sought to answer the most reliable path problem under varying spatial 

correlation assumptions, with total path travel time variability represented by standard deviation. 

Lagrangian substitution is used to estimate the lower bound of the most reliable path by solving a 

sequence of shortest path problems, followed by a subgradient descent to iteratively reduce the 

optimality condition between primal and dual solutions until a termination condition occurs. 

Further, when spatial correlation exists among link travel times, a sampling-based solution 

algorithm is embedded in the above Lagrangian technique. A case study of the Bayshore Freeway 

between Mountain View and San Jose, California was examined. These experiments showed that 

utilizing these reformulated models on a large-scale network allows for 10-20 iterations of standard 

shortest path algorithms to reach duality gaps of about 2-6% for uncorrelated travel times.   

 

3.2 ASSESSMENT METHODOLOGY 

A multi-step process can be used to find optimal departure times and paths. The process is as 

follows: 

1) Solve a deterministic K-shortest path problem working backward from the OTW. In doing 

this, use the midpoint of the OTW as the nominal arrival time and use the median travel 

times as the path travel times (or a higher percentile for lower risk tolerance).  

2) Develop a relationship between departure time and the probability of arrival during the 

AW for all the K-shortest paths identified.  

3) Select the path and departure time that provides the best combination of travel time and 

reliability based on the risk and travel time preferences of the decision maker.  
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The first step is to find the K-shortest paths. The K-shortest path problem is a generalization of the 

shortest path problem. The objective is to find not only the shortest path but also K-1 other paths 

that are in non-decreasing order of cost. K is the number of shortest paths to find. The problem can 

be restricted so that the paths have no loops (nodes repeat) or loops can be allowed.  

 

The earliest study of the K-shortest path problem dates from Bock, Kantner, and Haynes (1957). 

It has been studied extensively as illustrated by the reviews in Yen (1971) and Eppstein (1997). 

Eppstein (1997) is considered by many to have identified the algorithm that produces the best 

results. 

 

An extension of Dijkstra’s algorithm can be used to find the K Shortest paths. For a single path, 

the algorithm is as follows:  

1) Assign to every node a tentative distance value: set it to zero for the origin node and to 

infinity for all other nodes. Also, assign a tentative predecessor node and set its value to 

null. 

2) Set the initial node as the current node. Mark its predecessor as being the initial node. 

Mark all other nodes as being unvisited. Create a list of all the unvisited nodes. 

3) For the current node, consider all its unvisited neighbors and calculate their tentative 

distances. Compare this tentative distance with the currently assigned value (which 

initially is infinity) and keep the smaller value. Also, update the predecessor node to be 

the current node.  

4) When all the neighboring unvisited nodes for the current have been considered, mark the 

current node as visited and remove it from the list of unvisited nodes. Nodes that are 

marked visited set are never checked again. Their shortest distance has been found. 

5) If the current node is the destination node, then stop. The algorithm has found the shortest 

path to that node.  

6) Otherwise, select the next unvisited node that has the smallest tentative distance. Set it as 

the current node and go back to step 3. 

The extension can be described as follows. It involves keeping a K-long vector of the shortest 

distances to each node. It also involves keeping a K-long vector of predecessor nodes. In step 1, 

all the shortest distance cell values are initially set to infinity. Also in step 1, the cell values in the 

vector of predecessor nodes are set to null.  In step 3, the current node is redefined as a node and 

a cell position in the shortest distances vector rather than just a node. This means the extensions 

are from the current node and cell position, not just from the node. Moreover, the visited label is 

ascribed to a node and a cell position not just a node. This means a node must be examined K times 

before all its cell values are marked as having been visited. (When this happens, all the K-shortest 

distances to the node have been identified.)  Distances from the current node and cell position are 

compared to the current vector of shortest distances for all neighboring nodes. If the new distance 

is shorter than the distance in cell i of the neighboring node’s distance vector, then the value in 

cells i through K-1 are moved to cells i+1to K and the new value is placed in cell i. (The entry in 

cell K is dropped.) The vector of predecessor nodes in cells i through K-1 are also moved to cells 

i+1to K. In step 4, the current node and cell position combination is marked as having been visited. 

In step 5, if all K of the cells in the distance vector are marked as having been visited, the algorithm 
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has found the K-shortest paths to that node. If that node is D, the search ends. In step 6, the node 

and cell combination with the smallest tentative distance becomes the current node.  

 

An example of a K-shortest path solution procedure is shown in Figure 3.1.  

 

 

Figure 3.1: K-shortest paths workspace 

 

The network being considered is shown at top left. It has 6 nodes and seven links (14 arcs). The 

node and arc numbers are indicated. The maximum overage allowed above the minimum cost path 

is 200%. The maximum number of paths allowed is 6. 

 

The table to the right of the network shows the paths shown for each OD pair. In the case of OD 

pair (1,4), three paths are found. The first is arc sequence 3, 7 with a cost of 8. The next is 1,5 with 

a cost of 9. The third is 3, 9, 13, 12 with a cost of 13. Other paths are obviously possible, but they 

involve greater costs. 

 

The second step is to develop the relationship between departure time and probability of arrival 

during the AW for all the K-shortest paths identified. To help the reader understand what this 

means, a few diagrams are helpful. Figure 3.2 shows a hypothetical solution to the first step where 

the K-shortest paths are found working backward from the median point in the AW. Four paths 

are found. Of course, there could be a different number of paths. 
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Figure 3.2: K-shortest paths working backward from the median of the OTW 

Once the K-shortest paths have been identified, the next step is to evaluate the potential on-time 

performance of each of the paths. This is illustrated in Figure 3.3.  

 

Figure 3.3: Probabilities of arriving during the OTW for paths and departure times 

 

For path #1, for example, there is an earliest possible time, tb1, for which a departure from the 

origin will result in an arrival during the AW. Of course, from a theoretical perspective, assuming 

the travel time distribution goes to infinity (it does not have a maximum time), the earliest possible 

departure time is t = 0, but this is an impractical thought. The 99th percentile of the travel time 

distribution has been used throughout to establish tbk. That is: 
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99b

bk DTA kt t t            (3.1) 

The value of 
b

DTAt is the beginning of the AW and 
99

kt is the 99th percentile travel time for path k.  

In a similar sense, there is a latest possible departure time, tek, for which an arrival during the AW 

is possible. Assuming the travel time distribution has a strict lower bound (minimum travel time), 

then: 

0e

ek DTA kt t t            (3.2) 

The value of 
e

DTAt is the end of the AW and 
0

kt is the 0th percentile travel time for path k (i.e., the 

minimum).  If the lower tail of the travel time distribution is unbound (e.g., a normal distribution 

is employed), then
1

kt , the 1st percentile travel time, can be used.  

Figure 3.4 helps to illustrate the ideas. For paths #1 and #4 it shows the range of possible departure 

times. 

 

Figure 3.4: Determining the range of departure times to consider 

 

For path #1, the latest possible departure time is te12. For that time, the truck arrives just at the end 

of the AW, tDTAe, and it travels at the 0th percentile travel time
0

1t . As depicted by the travel time 

distribution which extends to the left from te12, it is possible to leave earlier and arrive at tDTAe, up 
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until tb12, which corresponds to
99

1t . Similarly, the very latest time at which the truck can leave and 

arrive at the beginning of the AW, tDTAb, is given by time te11. It is possible to leave earlier and still 

arrive at tDTAb, up until tb11, which corresponds to
99

1t . (An astute reader will recognize that the values 

of 
0

1t and 
99

1t might be different for the arrivals at tDTAe and tDTAb since the network conditions might 

change over time.) This analysis leads to the conclusion that the departure times whose 

performance needs to be assessed start at tb11 and end at te12. 

 

For path #4, the same thoughts pertain. The latest possible departure time is te42. The truck arrives 

just at the end of the AW, tDTAe, and travels at the 0th percentile travel time
0

4t . The earliest departure 

time for which the arrival time is tDTAe is tb42, which involves travel time
99

4t . For tDTAb, the latest 

possible departure time is te41. And the earliest departure time is tb41, which involves travel time
99

4t . 

The departure times whose performance needs to be assessed start at tb41 and end at te42. 

 

Monte Carlo sampling can be used to determine the probability of arriving on-time within the AW 

for all the departure times in the range tbk1 to tek2 for all paths. These were the results portrayed at 

the top of Figure 3.3 for all four of the paths that were assumed to have been identified.  

The plots look like PDFs, but they are not. Instead they show the trend in the total probability of 

arriving during the AW as a function of the departure time employed. To illustrate interpretation 

of the results, path 3 has the highest probability of arriving within the AW. The time at which that 

occurs is
*

3t . The range of possible departure times is shown in burnt orange. It starts at tb3 and ends 

at te3. These two times are not labeled per se, but by using path 1 as a reference, they can be 

identified. Path 4 has a lower maximum probability of arriving within the AW, but it involves 

latter departure times than those associated with path 3. So, there is an implicit tradeoff here 

between the likelihood of arriving during the AW and the point in time when the departure time 

must occur. Path 2 has the lowest maximum probability of arriving during the AW and it has the 

widest spread in possible departure times. (Intuitively, it does not appear to be a very good choice.) 

Path 1 has a maximum probability of arrival during the AW that is slightly lower than that for path 

4 and it involves a window of departure times that is much earlier. Intuitively, it appears that path 

1 is dominated by path 4.  

The implications of these differences in on-time probabilities and travel times is illustrated by 

Figure 3.5 which compares a hypothetical path “a” with path “b”. Path “a” has a higher probability 

of arriving during the AW but a larger travel time. This might be a “surface arterial” that has a 

more consistent but longer travel time. Path “b”, on the other hand, has a lower probability of 

arriving during the AW but a shorter travel time. This might be a freeway path. The path which is 

“better” depends on the perspective of the decision maker in terms of the tradeoff between the 

importance of shorter travel times and higher reliability. 
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Figure 3.5: A comparison of two paths in terms of travel time and on-time probability 

The third step is to select the path and departure time that provides the best combination of travel 

time and reliability based on the risk and travel time preferences of the decision maker. Since the 

K-shortest paths are likely to have different travel times and probabilities of arriving during the 

AW, a tradeoff is likely to exist. As depicted in Figure 3.6, some paths will have shorter travel 

times but lower on-time probabilities and vice versa. Some of the paths will have non-dominated 

combinations of these two metrics. Others will be dominated. 

 

Figure 3.6: Tradeoffs in performance among the K-shortest paths 

 

The non-dominated paths (A, B, C, D, and E) have the best performance combinations. They 

provide non-dominated combinations of reliability and travel time. For example, path E is the best 

for reliability, but it also has the longest travel time. If a shorter travel time is desired, path D can 
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be selected, but the level of performance for reliability must be reduced. The same is true in 

comparing C with D, B with C, and B with A.  

Other paths can exist, such as F, G, and H, but they do not perform as well as the non-dominated 

paths. For any one of these paths, there is a non-dominated path that does better for one or both 

objectives. For example, in the case of path F, path C does better. Path C has both a higher 

reliability and a lower travel time, so it dominates these sub-optimal options.  

Selecting the best path among the non-dominated options is a matter of objective importance or 

weight. If reliability is most important, then path E is best. If travel time is also important, then 

perhaps path D is better. As the importance of reliability diminishes, the choice switches from E 

to D, C, B, and then A. 

3.3 ILLUSTRATIVE APPLICATION 

An example of applying this technique is helpful. The trip being considered is from Carmel 

Mountain Road in Torrey Pines, CA where I-5 and I-805 split to Civic Center Drive in National 

City, CA. This is the same trip as the one considered before. The setting is shown in Figure 3.7. 

 

 

Figure 3.7: Map of three paths from Torrey Pines to National City 
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In step #1, a K-shortest paths assessment needs to be conducted for the origin-destination (OD) 

pair of interest and for the AWs being considered. Here, this is being done for a trip from Torrey 

Pines to National City. Two times of day are considered: midday and the PM peak. Since complete 

data are not available for the San Diego network by time of day and operating condition, an 

assumption is that the three routes highlighted in Figure 3.7 are the three shortest paths. There is 

no loss in presentation content to make this assumption.   Path A is via I-5; Path B is via I-805, 

CA-163, and I-5; and Path C is via I-805, CA-15, and I-5. 

 

Step #2 is focused on understanding the tradeoffs among these paths in terms of their travel times 

and travel time reliabilities. The objective is to develop characterizations like the ones shown in 

Figure 3.4 through Figure 3.6 so that the most suitable path can be selected.  

 

Figure 3.8 through Figure 3.10 begin to help us with this task. They show the daily trends in travel 

times for the three paths. The peak condition occurs in the afternoon. It is also clear that all three 

paths experience “abnormal” conditions. The travel times that are very different from the typical 

values, like the high travel times of about 27 minutes at 9:00 am on I-5  

 

In general, it is shown that CA-163 route has difficulty providing consistent travel times during 

the middle of the day. It is not likely that this path will be selected as being the best.  

 

 

Figure 3.8: Travel times by time of day for the I-5 route 
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Figure 3.9: Travel times by time of day for the CA-15 route 

 

 

Figure 3.10: Travel times by time of day for the CA-163 route 

 

Another observation is that the CA-163 route seems to have three operating conditions: 1) off peak, 

2) AM peak and 3) PM peak. The AM peak appears to be a “moderate” flow condition.  

 



 

67 

 

It is possible to get a little more insight by plotting the travel times against a measure of system 

load, such as the flow rate, as shown in Figures 3.11 through 3.13. This is not something a carrier 

or customer would do, but an operating agency can and should do it. Moreover, since this research 

project is examining the issue of freight reliability from an agency perspective it seems useful to 

present these thoughts. Creating these plots provides a sense of how the travel times increase with 

traffic. The plots also provide a sense of how the travel time consistency varies. 

 

Of course, these routes have multiple segments, so there isn’t a single flow rate that pertains to the 

route. The traffic varies from one section to another. The option employed here is to use 

VMT/Hour. (VMT/Hour/Mile can also be used to normalize this measure of system load among 

routes.) The VMT/Hour captures the total vehicle miles of travel that occurred on all the route 

segments. The VMT/Hour was associated with every 5-minute data point.  

 

Figure 3.11 through Figure 3.13 show the resulting plots. In every plot, there are 72,000 data points; 

one for each 5-minute time period during the 250 workdays in the year. The aberrations in travel 

times due to incidents and other abnormal events are easy to spot. They look like wispy traces that 

have travel times well above the denser parts of the scatter plot. These abnormal travel times are 

not the focus of this discussion, but they are useful to note. 

 

For the normal observations, Figure 3.11 shows that the I-5 route has very consistent travel times 

at low system loads, up to about 60,000 VMT/hour. Above that, the travel times vary more. At 

about 130,000 VMT/Hour, the variation is greatest and it diminishes up to the highest load of about 

145,00 VMT/Hour.  

 

 

Figure 3.11: Travel times versus system load (VMT/Hour) for the I-5 route 

 

Figure 3.12 shows the data points for the CA-15 route. The same general pattern exists as seen for 

the I-5 route; and yet it is different.  
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Figure 3.12: Travel times versus system load (VMT/Hour) for the CA-15 route 

 

The rise in travel times is more abrupt, as can be seen around 120,000 VMT/Hour. The variation 

again diminishes as the maximum VMT/Hour is approached.  

 

The trends for the CA-163 are shown in Figure 3.13. Again, they are similar; but in this case the 

maximum VMT/Hour is about 115,000, considerably less than for the other two routes. This means 

there isn’t as much traffic on this route as there is on the other two. Also, there is an abrupt increase 

in the travel time variation at about 75,000 VMT/Hour. This tells us the range of volumes 

associated with the midday travel times seen in Figure 3.10. 

 

 

Figure 3.13: Travel times versus system load (VMT/Hour) for the CA-163 route 
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More specific to the two periods of interest, namely the midday and the PM Peak, it is important 

to analyze the 5-minute observations that lie within these windows. Without loss of generality, it 

can be assumed that the midday period is 10:00 am to 3:00 pm and the PM peak is 4:00 pm to 6:00 

pm. Also, since the greatest interest is in reliability assessment when the operating conditions are 

“normal”, the “abnormal” observations that involve weather, incidents, etc. can be excluded. If 

this is done, the focus is on the on-time performance during normal conditions.  

 

Figure 3.14 shows the CDFs of the average travel time for the midday and PM peak conditions for 

all three routes. During the midday, the CA-15 route has a distribution of travel times that is always 

less than the other two routes. This does not guarantee that this route will always be the fastest, 

but it does mean that if this route is always chosen, the resulting distribution of travel times 

experienced will always be better than the distribution of travel times that would have been 

experienced for the other two. The next best route is via I-5 and the poorest is via CA-163. In the 

PM peak, the story is very similar. The CA-15 path is again statistically the best, having a 

distribution of travel times that is less than the other two routes. But the I-5 and CA-163 routes are 

nearly identical in their travel time CDFs. And the CA-163 route has lower travel times at the 

higher percentiles, although the differences are only a couple of minutes. 

 

 

Figure 3.14: Average travel time distributions for the midday and PM peak conditions 

 

Applying the first methodology described in Section 2.0 for estimating the truck travel time 

distributions results in the CDFs shown in Figure 3.15. The trends in these CDFs are like the 

average travel time distributions with the very minor exception that in the PM Peak, the 

relationship between the CDFs for the CA-163 and I-5 route are slightly different. The better 

performance of the CA-163 for the higher percentiles is no longer present. 
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Figure 3.15: Truck travel time distributions for the midday and PM peak conditions 

 

Based on these distributions, the three routes can be assessed in terms of their on-time performance, 

consistent with the ideas presented in Figure 3.3 through Figure 3.5. Figure 3.16 presents the 

probabilities of arriving during the OTW for all three routes during the midday and PM peak time 

periods. The assumed OTW is 10 minutes in duration. Admittedly, this is a small window, but the 

travel time is relatively short.  

 

 

Figure 3.16: OTA probabilities for the midday and PM peak conditions 
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In the midday, the probability of an OTA peaks at 100% for the CA-15 route if the departure occurs 

14 minutes before the AW starts. For the I-5 route, the same is true, but the departure time needs 

to be 16 minutes before the AW starts. The CA-163 route reaches its maximum 16 minutes before 

the OTW starts, but the probability is slightly lower. In the PM peak, none of the routes can achieve 

a 100% probability of arriving during the AW. The CA-15 route does the best reaching an 86% 

probability for a departure time 18 minutes before the start of the AW. The I-5 and CA-163 routes 

achieve their maximum probabilities for a departure time 20 minutes before the start of the AW 

and the I-5 route has a slightly higher probability of 81% versus 78%. 

 

These tradeoffs among the performance of the three routes is portrayed in Figure 3.17. Consistent 

with what was said above, in the midday condition, the CA-15 route dominates the other two. Its 

travel time is lower and its probability of being on-time is as high or higher than for either of the 

two other routes. The same is true in the PM Peak; and the maximum on-time probability is 

significantly higher than it is for the other two routes. 

 

 

Figure 3.17: Tradeoffs between travel time and on-time performance 

 

The third step involves selecting the path and departure time that provides the best combination of 

travel time and reliability based on the risk and travel time preferences of the decision maker. In 

this case, that choice seems relatively clear. Based on Figure 3.17, the CA-15 route is the best in 

both the midday and the PM Peak conditions.  

3.4 SUMMARY 

This section has focused on the topics of path and departure time selection. A K-shortest path 

methodology has been presented that identifies a non-dominated set of path options from which 
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the most desirable one can be selected. The methodology assumes the vehicles do not arrive 

early and wait for the AW to begin. (That tactical option is considered in the next section.) An 

example is presented focused on an assessment of three routes in the San Diego area from Torrey 

Pines to National City.  
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4.0 VEHICLE ROUTING AND SCHEDULING 

4.1 INTRODUCTION 

Vehicle routing and scheduling lies at the heart of operating a freight transportation system. 

Nominally, the objective of the vehicle routing problem (VRP) is to find an assignment of loads 

to vehicles and routings for the vehicles that optimizes all the performance metrics. In some 

instances, the loads are full truckloads, in which case the vehicles are assigned to carry loads from 

one point to another in sequence. Alternately, trucks may pick-up loads or deliver loads. In yet a 

third option, trucks may both pick-up and drop off loads, as with local couriers. The objectives are 

often to 1) minimize total cost, 2) maximize on-time deliveries, 3) minimize the fleet size, and 4) 

maximize vehicle utilization. Other objectives include 5) maximizing on-time performance and 6) 

maximizing the lowest on-time performance among all the vehicles employed.  

. 

4.2 RELEVANT LITERATURE 

The body of literature on vehicle routing and scheduling is vast. When Bodin et al. (1981) did their 

review more than two decades ago, over 500 papers were identified. This review, which is broader 

in scope and almost 25 years later, will not be able to review all this literature in detail. 

 

The first treatment of the topic appears to be Dantzig and Ramser (1959). They presented a 

formulation of the truck dispatching problem that assigns loads to multiple trucks based on truck 

capacity. The motivation was refinery trucks delivering gasoline to filling stations. No direct 

treatment is given to the distances traveled by the trucks. The loads are sorted into a specific order 

and then assigned to trucks sequentially given the truck capacities. This problem is a generalization 

of the single Traveling Salesman Problem (TSP), again studied in the initial stages by Dantzig.  

 

A subsequent paper by Clarke and Wright (1964), which describes their savings heuristic, 

explicitly considered the distances traveled. They state the problem in a somewhat informal 

manner (by today’s standards) by indicating that tours are to be established for K trucks such that 

1) all loads are carried, 2) the total distance traveled by the trucks is minimized and 3) the capacities 

of the trucks are not exceeded.  

 

Often, the goal of VRP is to design a set of minimum-cost routes for a vehicle fleet that serves a 

set of customers at various locations with each route beginning and ending at a fleet depot. 

Intuitively, the cost attributed to a set of routes includes total travel time or distance across all 

individual routes in addition to the total number of vehicles required to cover the routing, resulting 

from vehicle wear and employee payment. As there exist a combinatorial number of routes that 

can be built, the general VRP falls in the NP-Hard class of problems; therefore, it is unlikely that 

there exists a polynomial-time algorithm to solve VRP to optimality. Such exact algorithms use 

problem formulations often from Integer programming, including branch and bound, set 

partitioning, column generation, and network flow solution methods or formulations from dynamic 

programming with effective state-space relaxation (see survey paper of Laporte (1992)). These 

formulations suffer from intractability in practice, thus heuristics have been developed to allow for 
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often suboptimal although adequate solutions in a fraction of the time required by exact methods. 

Many popular heuristics for solving instances of VRP rely on a 2-phase route construction and 

route improvement algorithm. Route construction methods include the Clarke-Wright Savings 

algorithm described in Clarke and Wright (1964) and the Sweep algorithm in Wren and Holliday 

(1972).  The Clarke-Wright algorithm applied to Euclidean depot-customer locations begins with 

a number of routes equal to the number of customers and creates routes until no more savings can 

be achieved by merging routes, respecting direct ),( ji  arcs for greedy optimal step saving ijs . As 

a result, the number of vehicles in the fleet is fixed upon termination of the algorithm. Further 

reductions in total route cost can often be achieved by limiting the domain of eligible arcs using 

an upper bound on arc costs as was done in Caccetta, Alameen, and Abdul-Niby (2013). The 

Sweep algorithm on the other hand uses a fixed number of vehicles when building routes. The 

solutions to these algorithms are then improved upon using such techniques as k-opt switches of 

customers, route merging and splitting, and subroute deletion and insertion. 

 

Over time the VRP has been reformulated to include more realistic constraints, such as capacity 

constraints, time window constraints at customers, nonhomogeneous travel times, stochastic 

demands and travel times, and pickup and delivery precedences. For instance, in the vehicle 

routing with hard time windows, each customer has the added restriction that service must occur 

within a fixed time window specified by early and late times ( ie  and il  respectively for a given 

customer i ). A feasible routing is required to meet all time constraints. On the other hand, the 

vehicle routing problem with soft time windows allows for the violation of time windows with a 

resulting penalty cost often proportional to the size of the violation. 

 

One of the more realistic elements to add to VRP problems is the use of stochastic travel times 

instead of the classical deterministic travel times. In these Stochastic Vehicle Routing Problems 

(SVRPs), the expected travel times and service times are used as surrogates for the more realistic 

stochastic variability arguing that a “expected value” problem is being solved. This is expedient, 

but the resulting solutions provide little or no insight about system performance when the vector 

of values is significantly different from these mean values. As intelligent transport systems have 

developed, the integration of real-time information into traffic monitoring systems has allowed for 

more accurate travel time to be relayed dynamically to interested stakeholders. For example, Ando 

and Taniguchi (2006) detailed the means of relaying traffic information using vehicle probe GPS 

devices and Japan’s Vehicle Information Communication Systems. Freight transport businesses 

should then account for the most recent traffic and service information when planning distribution 

routes of their fleets. However, these travel times are constantly changing and thus prior routing 

cannot be applied as effectively without compensating for stochastic times. Common distributions 

used in travel time estimations are the lognormal and gamma distributions (See Tas et al. (2013, 

2014, 2014)). Notably, Section 错误!未找到引用源。 describes a procedure that generates route-

level travel time distributions by sampling distributions of congested and uncongested segment-

level travel times. The distributions are lognormal and the likelihood of sampling from the 

congested distribution depends upon a random number draw.  

 

While VRPs with soft time windows do have specified time windows at customers, this study is 

interested in investigating the effect of self-imposed time windows at customers. This represents 
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a determination of delivery windows by supplier rather than the customer, a property that could 

likely be present when the supply chain is managed by a single operator.  

 

The literature on VRP can be broken down into two subgroups. The first treats the travel times 

between locations and the servicing times at each location as being fixed or nearly so. This 

representation of the problem is the classical one and has been studied for a long time. 

Mathematical programming techniques, like combinatorial optimization, are used to find problem 

solutions. So are heuristics.  

 

The second subgroup assumes the travel times and servicing times are stochastic. Techniques like 

stochastic optimization and simulation in combination with optimization (search routines) are used 

to find solutions. This work is more recent, spawned by the advent of computers that can simulate 

the movement of large fleets of trucks in reasonable time.  

 

The problem can be stated as follows. Assume there are N loads to be carried to destinations and 

assume that each has a size given by demi. Also, let K vehicles be available and assume each one 

has a capacity of capk. Choosing to use vehicle k is reflected by z0k = 1 and the assigning load i to 

vehicle k is designated by zik. The sequence for visits to the destinations is captured by xijk which 

indicates that load i is to be delivered before load j by vehicle k. If the distance between i and j for 

vehicle k is given by cijk, then the problem is: 

 

Minimize: 

ijk ijk

k i j

c x            (4.1) 

Subject to: 

 

0i ik k k

i

dem z cap z k             (4.2) 

0k

k

z K             (4.3) 

1ik

k

z i             (4.4) 

,ijk jk

i

x z j k             (4.5) 

1 ,ijk

j

x i k             (4.6) 

| | 1 ( ) is the set of all deliveries made by ijk ik

i S j S

x S k where S N z k
 

      (4.7) 

 

The objective function specifies that the total vehicle miles should be minimized. Equation 

0i ik k k

i

dem z cap z k             (4.2) 

ensures that the capacity of each truck used is not exceeded. Equation 0k

k

z K    

         (4.3) ensures the selected fleet 
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size is not greater than the fleet available. Equation 1ik

k

z i        

     (4.4) ensures that the loads get assigned, Equations 

,ijk jk

i

x z j k             (4.5) 

and 1 ,ijk

j

x i k             (4.6) 

establish the load assignment sequences and equation 

| | 1 ( ) is the set of all deliveries made by ijk ik

i S j S

x S k where S N z k
 

      (4.7) 

ensures that the number of arcs traversed by each truck is less than or equal to the number of 

deliveries made. 

 

The next major focus for VRP was on the dispatching of special purpose vehicles to accommodate 

the needs of elderly and handicapped individuals. “Dial a Ride” is how it was described. The 

problem is as follows. A set of requests are made for trips to and from specific locations with 

specific departure and arrival times, like doctor’s appointments and shopping trips. The task is to 

determine how to assign these trips to the dial-a-ride vehicles, and how many vehicles to use. The 

solution becomes the pick-up and delivery schedule. Unlike delivering loads, multiple people can 

be on-board the vehicle at any given point in time. 

 

Bruck (1969) was one of the first to present a formulation. He described a tool called CARS 

(Computer Aided Routing and Scheduling) that was intended to be a decision support system for 

solving the dial-a-ride problem. Papers with a similar focus were prepared by Howson (1970), 

Deleuw, Cather (1971) Arthur D. Little (1971), Roos (1971), Roos and Porter (1971), and Roos 

and Wilson (1971).  

 

As stated by Cordeau (2006), the problem is as follows. Paraphrased slightly, let n denote the 

number of users (or requests) to be served. The problem can be defined on a complete directed 

graph G = (N,A) where N = P ∪ D ∪ {0, 2n + 1}, P = {1, . . . , n} and D = {n + 1, . . . , 2n}. Subsets 

P and D contain pick-up and drop-off nodes, respectively, while nodes 0 and 2n + 1 represent the 

origin and destination depots. Thus, for each user i there is an origin node i and a destination node 

n + i. Each vehicle k ∈ K has a capacity Qk and the total duration of its route cannot exceed Tk. 

With each node i ∈ N are associated a load qi and a non-negative service duration di such that q0 = 

q2n+1 = 0, qi = −qn + i  (i = 1, . . . , n) and d0 = d2n + 1 = 0. A time window [ei, li] is also associated 

with node i ∈ N where ei and li represent the earliest and latest time, respectively, at which service 

may begin at node i. For each arc (i, j) ∈ A there is a routing cost cij and a travel time tij. Finally, L 

represents the maximum ride time allowed by policy for a user. For each arc (i, j) ∈ A and each 

vehicle k ∈ K, 
k

ijx = 1 if vehicle k travels from node i to node j. For each node i ∈ N and each vehicle 

k ∈ K, let k

iB  be the time at which vehicle k begins service at node i, and k

iQ  be the load (number 

of people) on vehicle k after visiting node i. Finally, for each user i, let 
k

iL  be the ride time of user 

i on vehicle k. The formulation is as follows: 

 

Minimize: 
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{0,1} , ,k
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The objective function (4.8) minimizes the total routing cost. Constraints (4.9) and (4.10) ensure 

that each request is served exactly once and that the origin and destination nodes are visited by the 

same vehicle. Constraints (4.11) - (4.13) guarantee that the route of each vehicle k starts at the 

origin depot and ends at the destination depot. Consistency between the time and load variables is 

ensured by constraints (4.14) and (4.15). Equalities (9) define the ride time of each user which is 

bounded by constraints (4.19). The latter also act as precedence constraints because the non-

negativity of the 
k

iL variables ensures that node i will be visited before node n + i for every user i. 

Finally, the inequality (4.17) bounds the duration of each route while (4.18) and (4.20) impose 

time windows and capacity constraints, respectively.  This formulation is non-linear because of 

constraints (4.14) and (4.15) but there are ways to convert it to a mixed integer LP. Those 

techniques are discussed by Cordeau (2006).  

 

The research on VRP saw a diversity of applications while the dial-a-ride problem was being 

addressed. Nussbaum (1975), Field (1976), and Hinds (1979) described a software package for 
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routing and scheduling transit buses (The program is called RUCUS for Run Cutting and 

Scheduling.) Fielding (1977) examined shared-ride taxis (like dial-a-ride). Bodin et al. (1978) 

studied the routing and scheduling of street sweepers. Ghoseiri, Ghannadpour, and Seifi (2010) 

examined the problem of dispatching railroad locomotives.  

 

VRP has also been applied to other domains. Ronen (2002) described the use of VRP in the context 

of cargo ships.  Zografos and Androutsopoulos (2002), Meng, Lee, and Cheu (2005), and 

Androutsopoulos and Zografos (2012) examined the domain of hazardous materials transport.  

 

Attention has also been given to finding procedures that can solve very large VRP problems. Agin 

(1975) described a large number of algorithms. Buxey (1979) explored the possibility of using 

Monte Carlo simulation to find solutions. Baker and Rushinek (1982) examined large-scale 

implementation issues. 

 

More recently, AVI (automatic vehicle identification) and AVL (automatic vehicle location) 

technologies have been used to gain additional insights into travel time reliability. Kwon, Martland, 

Sussman and Little (1995) examined reliability in the context of samples of railroad freight car 

movements collected by the Association of American Railroad’s Car Cycle Analysis System. Clear 

differences were found in reliability between general merchandise, unit train, and double-stack 

container services. Fu and Rilett (2000) explored the estimation of time-dependent, stochastic 

route travel times by using artificial neural networks. Ichoua, Gendreau, and Potvin (2000) studied 

dynamic vehicle routing and scheduling options in exploitation of real-time information about 

vehicle location. Taniguchi, Thompson, Yamada, and van Duin (2001) examined city logistics 

issues in light of the information provided by global positioning systems. An examination of 

reliability and the related issues of routing and scheduling for urban pick-ups and deliveries 

followed (see Taniguchi, Yamada, and Tamagawa, 2001). Kwon et al. (1995) used the American 

Railroad’s Car Cycle Analysis to determine reliability of freight car movements. Ichoua, Gendreau, 

and Potvin (2002) utilized real-time vehicle location data to examine dynamic vehicle routing and 

scheduling options. In this same period, there was an emphasis on supply chain logistics. Armacost, 

Barnhart, and Ware (2002) discussed the use of composite variables to describe the logistics of 

UPS. Kim, Mahmassani, and Jaillet (2004) investigated dynamic truckload routing, scheduling 

and load acceptance using simulation to evaluate the relative performance of various decision-

making policies. In 2004, Armacost, Barnhart, Ware, and Wilson explored the optimization of 

UPS in regard to aircraft movements and cost efficiency. 

 

Treatment of the problem from a stochastic standpoint starts about 1990.  Laporte et al. (1992) 

addressed the problem of finding solutions to the vehicle routing and scheduling problem when 

stochastic travel times are present. A chance-constrained programming formulation is presented 

along with two stochastic optimization formulations and a branch-and-cut algorithm for solving 

all three formulations. The chance constrained formulation performs well as should be expected 

since it is a variant on the mixed integer LP formulation. Of the two stochastic optimization 

formulations, the one that more explicitly represents the problem formulation does much better. 

The authors conclude that such problems can be solved for significant size problems in reasonable 

time. Powell (1988) describes algorithms that can be used to solve the dynamic (time-based) 

routing of vehicles in response to known and anticipated, but unknown loads. 
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Many papers focused on solving stochastic vehicle routing problems followed Laporte et al. (1992). 

There is the notable paper by Bertsimas et al. (1995) and the proceedings paper by Taniguchi et 

al. (1999). Campbell (2004) described heuristics for considering a variety of complicating 

constraints not typically included in the traditional formulations. Yamada, Yoshimura, and Mori 

(2004) is an interesting paper because it endeavors to use VRP procedures to study and assess road 

network reliability.  

  

Other papers focused on making decisions about re-routing vehicles in real-time in response to 

evolving network conditions. Taniguchi, Yamada, and Tamaishi (2001) presented a formulation 

of the problem. Taniguchi and Nakanishi (2003) gave another. Slater (2002) provided an approach 

to the problem as does Kim (2003). Dessouky, Ioannou, and Jula (2004) examined strategies that 

can build partial tours (in time) and then update those tours as more information becomes available. 

Mitrovic-Minic and Laporte (2004) explored the use of waiting strategies. Hejazi and Haghani 

(2009) inestigated ways for less-than-truckload services to optimize their services considering 

evolving conditions in the highway network. Kanturska, Trozzi, and Bell (2013) presented the idea 

of hyperpaths to help drivers select optimal delivery routes and schedules in response to evolving 

patterns of network travel times. The hyperpaths are sets of possible paths plus a path selection 

logic.  

 

The advent of optimization schemes such as genetic algorithms, simulated annealing, and tabu 

search has motivated explorations of ways to use these techniques to solve VRP problems. The 

earliest investigation appears to be Garcia and Arunapuram (1993) who explored the use of tabu 

search. Potvin (2007) provided a survey of evolutionary algorithms that have been applied to VRP. 

Included in the review are genetic algorithms, evolutionary strategies, and swarm optimization. 

Weise, Podlich, and Gorldt (2009) completed a similar, newer review.  

 

Subsequent research efforts focused on using a variety of techniques to address specific problems. 

Cordeau and Laporte (2003) used tabu search to solve a multi-vehicle dial-a-ride problem that is 

dynamic. Bell (2004) explored the use of game theory to address VRPs where the occurrence of 

incidents is of concern. Vidal et al. (2012) presented a hybrid genetic algorithm for solving multi-

depot and periodic VRPs. Lin, Yu, and Chou (2011) employed simulated annealing and Xu, He, 

and Li (2009) explored a hybrid procedure that integrates genetic algorithms, stochastic simulation, 

and neural networks. 

4.3 HEURISTIC SEARCH 

This search procedures uses a simulation-based heuristic based on an initial Clarke-Wright 

solution followed by merge, insertion, and 2-interchange reduction in order to solve the vehicle 

routing problem with stochastic travel times and soft time windows. Unique to this method is the 

fact that time windows are set at runtime based off a lookup table of previously simulated ordered 

customer pairs, corresponding to supplier-side control of a supply chain. It is able to solve in 

reasonable time on a relatively weak computer a problem instance with 200 customers for a given 

parameters in a few minutes, and this resulted in at least 23%  cost reductions for 10 or greater 

customers. This could easily be extended to larger problem instances on larger RAM computers, 

as storage space is the critical element in the algorithm.  
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4.3.1 Related Work 

Most recently, Wang and Lin (2013) developed a similar algorithm as used in this paper by using 

Monte-Carlo simulation of the travel and service times in setting a cost for a given route. They 

used fixed time windows unlike this paper and used only a deletion-and-insertion based 

improvement scheme from the earliest to the latest route, rather than trying from late to all earlier 

routes in order until a reduction is found; this method will be discussed in later sections. 

 

Earlier work by Laporte, Loveuax, and Mercure (1992) solved the VRP with stochastic travel times 

using a chance-constrained model that can relatively easily solve problems with additive 

probability distributions for travel and service times, in addition to two- and three-index recourse 

models.  Kenyon and Morton (2003) sought to answer small-scale VRP with stochastic travel times 

using two solution methods: (1) solve an integer programming exactly using branch-and-cut as a 

deterministic equivalent of a stochastic problem by including probability mass function terms in 

the model and (2) solve the problem approximately by using simulation to generate lower and 

upper bounds on candidate solution routes until a solution of a given problem falls within   of 

what would be the exact solution in (1). Metaheuristic methods using tabu search and adaptive 

large neighborhood search have been developed to solve the VRP with stochastic travel times with 

soft time windows by Tas et al. (2013, 2014, 2014) and Li et al. (2010).  Jabali et al. (2013) 

investigated the VRP with self-imposed time windows and developed a heuristic algorithm that 

embeds the timing decisions as modified buffer scheduling problems (common to industrial 

engineering applications) within a tabu search metaheuristic that generates the routes. Lecluyse, 

Van Woensel, and Peremans (2009) use a 95th percentile approximation for travel times to solve 

the VRP with time windows embedded within a 2-interchange tabu search. Similar to this paper, 

they use a lognormal distribution to model travel and service times.  

 

4.3.2 Description of the Formulation 

The problem can be formulated as follows. Let N  be the number of customers to be served and k  

be the fleet size. The transportation network is given by the undirected graph ),(= AVG . With 

the depot included as vertex 0 , G  is then a complete 1|| = NV KK  graph. Therefore },{0,1,= NV   

and NjijiA ,)},{(= . The lognormal parameters of scale squared and location are provided for travel 

times on all arcs ),( ji  among the N  customers and the depot node 0  in 1)(1)(  NN  matrices 

)(= 22

ij  and )(= ijU  , respectively. These will be used during simulation to produce traveling 

times ijt  for Vji , . Additionally the lognormal parameters of scale squared and location are given 

for service times for each of the N  customers in 2 vectors 
2

s


 and s


, respectively. These will be 

used during simulation to produce service times is  for {0}Vi . Each customer {0}Vi  will be 

assigned a soft time window ),( ii le  upon realization of a given route. 

 

Each route of the solution starts and finishes at the depot vertex 0 . Let ir


 be the vector of the route 

for vehicle i  specified as customer vertices, not including the depot as the first and last elements, 

and },,{= 1 krrR





 be the list of routes. Then =ji rr

  given that each customer is in exactly one 
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route and that {0}=
1=

Vr ik

i


  as each customer must be included in one route. Also, ir


 is an 

ordered vector for all i ; thus nrmr i

j

i

j =,= 1


 implies that the arc ),( nm  is included in route ir


. 

 

For simulation, the 2D coordinates of the depot and customers are set ranomly as jyx ),(  for 

Nj ,0,1,=   within a 9090  grid. The dimensions represent minutes of travel across a 

hypothetical urban area. The mean time between customers i  and j  is calculated as the Euclidean 

distance as follows: 

 

22 )()(= ijijij yyxxd    (4.22) 

 

This means the maximum expected travel time is across the grid diagonal for a total travel time of 

127.28290   minutes. Symmetric travel times are assumed, hence 
jiij dd = . The location 

parameters of travel times in the lognormal distribution were set as a function of the distance ijd ; 

notably, the exponential decay-based function described in Westgate et al. (2016) to allow for 

reasonable real-life inspired variance. Their paper explored ambulance travel times in the Toronto 

area and used Bayesian methods to determine hyperparameters in lognormal-based travel times 

across a network. The following location parameter function is employed: 

  
2 d

ij
ij M e

     (4.23) 

 

where 0>0,>0,> M . The mean values they obtained were 0.0576=0.2064,= M , 

and 0.00097= . However as these values corresponded to an emergency vehicle that was 

assumed to have lower variance than common freight vehicles, the variance here was increased by 

doubling both M  and   while keeping the rate of variance descent in  . With the mean travel time 

and location parameters, the scale parameters can then be calculated as below: 
2

2= ( ) =
ij

ij

ij ijd t e


 

 (4.24) 

2
)(ln=

2

ij

ijij d


   (4.25) 

 

The lognormal distributions for service times adhere to the Euclidean nature of travel times, so a 

mean service time is sampled from ( ) (10,~ 60)is Unif  for each customer i  with an assumption 

that the standard deviation is half the mean service time. In reality, if the same truck, the same 

deliverer, and the same load is unloaded, this standard deviation should be much lower. Let the 

variance of a service be iv  and mean service time be = ( )i im s  for a given customer i . By 

assumption, 
4

=
2

i
i

m
v and, by definition, the mean and variance on the non-logarithmic scale is 

calculated from the scale and location parameters 
2  and   of a lognormal distribution: 
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2

2

=




em  (4.26) 
222

1)(=   eev  (4.27) 

 

The log-scale parameters i  and 
2

i  are then derived using this relationship between the logarithm 

and non-logarithmic parameters for a specific customer i  as follows:  

)(ln=
2

2

ii

i
i

mv

m


  (4.28) 

0.2231441)
4

1
(ln=1)(ln=

2

2 
i

i
i

m

v
  (4.29) 

 Note that since it is assumed that 
4

=
2

i
i

m
v , then 2

i  becomes a fixed value.  

For a given routing schedule R  there is a given set of time windows le


, . Let ia  and id  be the 

arrival and departure times at and from some customer i ; as a feasible routing requires that only 

one customer is assigned to each route, the index for vehicle number is omitted. It is assumed that 

service times must begin within a customer’s time window, hence if ii ea   there is an associated 

waiting time iii aew = . Similarly, it is assumed that service finished within a time window must 

wait for the end of the window before departure, hence if iiii lswa <  then 
ii ld = . Let 

id0  and 
ia0  

be departure and arrival time at the depot, corresponding to starting and ending times of a route ir

. 

An operating cost rate of io  is used for vehicle i  proportion to total travel time 
ii da 00  . 

 

Penalty costs are applied for violating the time windows of customer i  as 
e

ip  and l

ip . Each 

customer has a rate of early penalty application e

ic  and late penalty application l

ic . An overtime 

penalty cost is similarly defined for vehicle i  as o

ip  with rate 
o

ic . Overtime hours for a given 

vehicle i  occur when vehicle i  is in service longer than some regular hour time regularih , . Also, 

there is a absolute maximum allowable time for a given route ih , where 
iregulari hh ,
.  

 

A simple linear penalty is applied, hence:  

 

},{1,,0}{max= Niaecp ii

e

i

e

i   (4.30) 

            },{1,,0}{max= Nildcp ii

l

i

l

i    (4.31) 

  

and an overtime vehicle penalty is employed: 

 

},{1,,0}{max= ,00 kihdacp regulari

iio

i

o

i   (4.32) 
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The objective function consists of four parts. The first is the traveling cost representing the 

operating costs such as employee pay and vehicle maintenance defined by: 

  

},{=),,( ,00

||

1=

regulari

ii
R

i

hdamindaRT 


  (4.33) 

  

The second is the total cost associated with fleet size defined by  

            |=|),,( RdaRF


  (4.34) 

 

The third is the total penalty cost associated with violating time windows defined by 

 

             (4.35) 

 

 

The fourth is the total penalty cost associated with entering overtime hours defined by           

     

  (4.36) 

  

The complete objective function is then: 

 

),,(),,(),,(),,(=),,( daROdaRPdaRFdaRTdaRZ


  (4.37) 

 

4.3.3 Algorithm 

The essential algorithm breaks down into several steps. 

 

First, the relative time windows are determined for each customer. Travel and service times are 

simulated for adjacent locations i, j to set relative time windows locations. Notably, the travel time 

from location i  to j  is simulated along with the service time of j . The total time (travel + service) 

is the sum of two lognormal distributions and has no analytic form. To set the relative early and 

late time windows for this ordered ji,  a percentile forward across the travel and service times is 

estimated as well as a percentile back across only the service time, called 
ijforward,  and 

ijback,  

respectively, to determine the relative time windows. The late time window is set as the 
ijforward,  

percentile of all simulated travel and service cumulative times, and a backtrack from this point in 

time is used to set the 
ijback, . A large number of samples are simulated (say 500 travel and service 

pairs) and the percentile marks are examined to see how they affect a given multi-objective 

function for a variety of possible   values by finding the average cost of a given pair of 

ijforward,  and 
ijback,  for simulated free-flow times. That is, if service were to immediately begin 

upon arrival. An approximate solution is of interest, so only a set number of percentiles is examined 

for both ijforward,  and ijback,  (e.g., some discrete 1<<0   set likely greater than 0.5  and less 

than 0.95). The cost function is piecewise lienar having an early penalty if simulated travel time 

allows arrival before the servicing window, a service time penalty ( wp ) which may be zero 

l

i

e

i

N

i

ppdaRP 
1=

=),,(


0

1=

=),,( i

k

i

pdaRO 

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(identical for all simulated runs for a given pair), and a late penalty if the  simulated service 

completes after the servicing window ends. It is assumed further that the linear penalty rates are 

ordered strictly descending as late penalty ( lp ), early penalty ( ep ), and service time penalty ( wp ), 

that is, 
wel ppp >> . Therefore each simulated travel and service time free-flow pair has a given 

associated cost and it is determined which of the discrete ijforward,  and ijback,  pairs has the lowest 

average cost. The simulated times are kept the same across all 
ijforward,  and ijback,  pairs, as this 

represents one set of realized times. The above procedure is repeated for each i, j pair (excluding i 

= j pairs) to generate a table of relative percentiles and their associated times. Note that a restriction 

is also imposed on the late time (
ijforward, ) and the maximum travel time across the diagonal cannot 

violate the daily hours otherwise the routing would likely be rendered infeasible. 

 

Figure 4.1 illustrates the above concepts. The anchor points are set as 0.9== backforward   for some 

arbitrary sequential i, j visitation sequence.  

  

 

Figure 4.1: Simulated window setting example 

 

The free flow travel + service completion times are represented by the blue asterisks. The th90  

percentile of these order times corresponds to the forward  value, with the exact time plotted as the 

vertical green line. The algorithm then backtracks by the exact 0.90  cumulative probability of 

the service time to set the early window corresponding to 
back . This time is plotted at the red 

vertical line. In this manner, a single i, j time window is set with known relative early and late 

window times. The dashed line distribution represents the travel time distribution, and the solid 
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line represents the service time distribution starting at the early time window. When a route is built 

in simulation, these relative time windows are found so as to set the ordered time windows in a 

given route. 

 

As a caveat on the time windows, it is assumed that a given customer j must have identical service 

times for any i, j location pair. Determined by ijback,  for some predecessor customer i , the optimal 

ijback,  must be found across all predecessor customers i  to force equal width service windows. To 

do this, travel times and service times from customer i  to given customer j  are simulated and the 

lowest cost penalty is found assuming only the late and window width penalties are assessed. Since 

the starting point varies (predecessor customers), the early penalty is not assessed; service is 

assumed to start immediately upon arrival. Therefore each ijback,  is fixed for a given customer j  

based on a common service time and the above simulation can be performed by altering only 

ijforward,  values. 

 

Now with these, the windows can be set and the costs of a given routing evaluated. In the multi-

objective function used to evaulate given   pairs the values of 1=3,=6,= wel ppp  are used for late, 

early, and window width penalties respectively. Clarke-Wright is used to establish an initial 

feasible solution followed by local search updates to improve the solution given simulated travel 

times; this includes setting the time windows iteratively using the lookup tables followed by a 

realized testing period. The parallel Clarke-Wright procedure is employed with travel times 

between customers approximated using the expected travel time as: 
2

2 2= ( ) = ( | ln ( , ) = ,~ ) ,
ij

ij

ij ij ij ijT t x X N e i j V i j




 


    (4.38) 

 

 Service times follow a similar derivation to get  
2( )

2( ) = {0}

i
i s
s

is e i V


 

     (4.39) 

 

A time-restricted upper bound ia placed on the route lengths as a proportion   of 1<<,0 ih  for 

each vehicle i . It is assumed that the max hours are the same across vehicles so let 
ihh = . In 

particular, the maximum allowable truck hours set by Federal Motor Carrier Safety Administration 

(FMCSA) is 11 hours of driving in a given 24 hour period when applied to long-haul freight and 

so this value is treated as the upper bound on the local delivery routing. If any given route exceeds 

11 hours, the full routing is rendered infeasible and cannot be used. The relatively common regular 

8 hours is employed to set 8=,regularih  for all vehicles. Therefore overtime penalties are only 

assessed when a route arrives between 8 and 11 hours after departure. If beyond 11 hours, the route 

is assessed an infeasible penalty cost of  , making the full routing infeasible in the 

algorithm. To make sure that a feasible solution is used initially, 0.8=  initially and this value 

is decremented by 0.1 until a feasible initial solution is reached. This allows for a somewhat 

lower the likelihood of overtime hours during later simulation, and as a result, the likelihood that 

the following improvements will be made. To simplify the presentation of the algorithm let 
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T s   (4.40) 
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1 1=2 | |
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i i ki r

i

T t t t


    (4.41) 

 

where equation 
| |

,

=1

= ( )

kr

serv k kr
ii

T s  (4.40) is the total expected service time of a 

given route k  and equation 
| |

, 0, , ,0
1 1=2 | |

= ( ) ( ) ( )

kr

trav k k k k kr r r r
i i ki r

i

T t t t


 

 (4.41) is the total expected travel time of a given 

route k . The Clarke-Wright Algorithm with these requirements and definitions is outlined in 

Algorithm 1 found in Figure 4.2. 

 

To test whether the given   value produces a feasible initial routing, the customer time windows 

are set to test for any violations. For a given routing R , windows are set by iteratively based off 

the relative early and late window lookup tables of ji,  ordered location pairs. In particular, from 

the depot to the first customer i  the customer’s late window is set as the relative late time window 

from location zero (the depot) to customer i  (element i0,  in the lookup table of late windows). 

 

Algorithm 1 Clarke-Wright Algorithm 

1: function CW(Graph G) 

2: for all i,j ∈ V − {0},i   j do 

3: Savings sij ← Ti,0 − Tij + T0,j 

4: for all i ∈ V − {0} do 

5: Build route ir
 = {i} 

6: Order savings in decreasing order in Queue Q 

7: while Q Not Empty do 

8: maxSavings ← Q.dequeue, where maxSavings = sij for some i,j 

9: if i is last customer of route ar  , j first customer of route br  then 

10: if Tserv,a + Tserv,b + Ttrav,a + Ttrav,b + Tij − T0j − Ti0 ≤ βh then 

11: Merge Routes ar , br
 by deleting arcs (i,0),(0,j) and adding arc (i,j) 

12: end while 

Figure 4.2: Clarke-Wright Algorithm 

      

Then using this time point as an anchor, the early window is set by backtracking the appropriate 

percentile by using the early window lookup table. The anchor time is then the late window and 
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determine the next customer’s windows relative to the first customer, again by using the lookup 

tables. This procedure of setting the relative late window, backtracking to find the early window, 

and anchoring to the late window for traveling to the next customer repeats until each customer in 

a given route receives a time window. This procedure is applied to each route so that every 

customer receives a time window. 

 

With the time windows established, a test simulation can be run to calculate the cost of a route 

given by equation ),,(),,(),,(),,(=),,( daROdaRPdaRFdaRTdaRZ


 (4.37). With 

repeated test simulations the mean route cost ),,( daRZ


 is found. This value serves as the iteration 

score with which the score of a possible route improvement can be compared. Again if the initial 

Clarke-Wright solution for a given   yields an infinite cost (hence infeasible route), decrement 

  is decremented by 0.1 until a finite cost initial routing is found. 

 

The improvements explored in reducing the route score are a merge-based reduction, an insertion 

reduction, and a 2-customer exchange reduction. Again, all time windows are set by using the 

lookup tables. The merge-based reduction is attempted for each ordering pair of routes; therefore 

a new merged route is simulated },{= ji rrr


 for all jiRji  |},|,{1,2,,  . To limit the 

number of simulated tentative routes, Wang and Lin’s (2013) metaheuristic is employed. Notably, 

in an effort to balance the travel times, the insertion and 2-exchange reductions are employed from 

the latest arriving vehicle to earliest first; if this does not work, the second earliest, the third earliest, 

etc. options are explored. To save some computational time, the aim is move from the single latest 

route instead of simultaneously decreasing from latest, to second latest, and so on.  

 

If any of the merge, insertion, or 2-customer exchange reductions has a lower score than the 

incumbent, the incumbent route can be changed to that of the route of maximum reduction (lowest 

cost routing). If no reduction can be made, the algorithm terminates. See Algorithm 2 found in 

Figure 4.3 for the pseudocode. 

 

4.3.4 Specifications 

The algorithms are coded in Java and runs on a Dell OptiPlex 740 Enhanced desktop with an AMD 

Athlon(tm) 64 X2 Dual Core Processor 5800+ CPU @ 3000 MHz, 2 Core(s), 2 Logical Processors 

on a 64-bit operating system with 4.00 GB of RAM. Due to the limitations in memory and the fact 

that tables of generated statistical distribution objects are used (not primitives) from the Apache 

Commons Mathematics Library in addition to the   forward and back lookup tables, instances of 

only up to 200 customers were evaluted. Data files were generated containing travel and service 

time information in Microsoft VBA and saved these data into text files to be read at runtime by 

the Java program. 

 

4.3.5 Results 

Using the above specifications, 100 random location mappings were generated for 10, 20, 30, 50, 

75, 100, and 200 customers. This yielded a total of 700 different maps. Each of these maps was 

studied three times and the average simulated cost after reductions was found. The average 



 

88 

 

simulated cost after reduction was compared to the initial Clarke-Wright solution to find a 

percentage reduction. A daily fixed truck cost of 8 was applied, an early penalty rate of 2, a late 

penalty rate of 5, an overtime penalty rate of 2, and a travel cost rate of 1. 

 

To compare the reductions across the number of customers, the score was treated as the average 

percentage reduction in cost from initial Clarke-Wright solutions to a reduced solution. For the 

100 randomized maps of customer sizes, the interest lay in the averages across maps for a given 

customer size. Let nX  be the score for n  customers as the average percentage reduction from the 

Clarke-Wright initial solution to the reduced solution. This measure allows a comparison of the 

results across a varying number of customers to determine if the algorithm can produce similar 

reductions regardless of the number of customers with locations randomized across the given plane. 

It also shows differences in the overall running time of the algorithm itself for a given number of 

customers so that average running times can be determined. This allows testing of whether the 

algorithm represents a time-manageable solution for reducing overall routing costs. 

 

 

 

 

 

 

 

 
Algorithm 2 Reduction Algorithm 

1: function Reduction (Graph G, Initial feasible routing R) 

 2: repeat 

3: bestRouting ← copy of R 

4: for all i,j routes ∈ R, i j do 

5: Try merging routes i,j into new routing R∗ 

6: Reset windows for new routing based off lookup table 

7: Score simulated routing cost 

8: if Merged route R∗ has lower cost than current bestRouting then 

9: bestRouting ← R∗ 

10: re ← route predicted returning earliest to depot in R 

11: rl ← route predicted returning latest to depot in R 

12: Boolean flag reduced ← FALSE 

13: while re   rl AND reduced = FALSE do 

14: for all customers i ∈ rl do 

15: for all positions j ∈ re do 

16: Remove customer i from rl 

17: Insert customer i in re at position j as new routing R∗ 

18: Reset windows for new routing based off lookup table 

19: Score simulated routing cost 

20: if New routing R∗ has lower cost than current bestRouting then 

21: bestRouting ← R∗ 

22: reduced ← TRUE 

23: for all customers i ∈ rl do 
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24: for all customers j ∈ re do 

25: Swap customers i,j in routes rl,re respectively for new routing R∗ 

26: Reset windows for new routing based off lookup table 

27: Score simulated routing cost 

28: if New routing R∗ has lower cost than current bestRouting then 

29: bestRouting ← R∗ 

30: reduced ← TRUE 

31: if reduced = FALSE then 

32: re ← route predicted returning next earliest to depot in R after current re 

33: end while 

34: Boolean flag continue ← FALSE 

35: if bestRoutingR then 

36: R ← bestRouting 

37: continue ← TRUE 

38: until continue = FALSE 

Figure 4.3: Reduction algorithm 

 

 

As seen in Table 4.1: Mean score reductions across customer number from initial solution, it seems 

that the procedure could reduce costs a minimum of about 23% across all customer numbers. As 

expected the running times grow super-linearly, mainly from how the reduction algorithm explores 

the current route’s possible local search neighborhood. With 200 customers, this time is only about 

190 seconds. This means that the algorithm could easily be applied to more customers while 

maintaining a reasonable amount of computation time, with the limit on number of customers 

instead being restricted by lack of local memory on the test computer. 

 

Number of Customers n Xn Mean Running Time (seconds) Mean # Reductions 

10 27.634 0.027 1.181 

20 24.104 0.415 3.378 

30 25.536 1.253 5.109 

50 24.584 3.966 7.755 

75 23.221 9.818 11.454 

100 25.988 20.174 15.751 

200 30.577 187.291 35.038 

Table 4.1: Mean score reductions across customer number from initial solution 

To establish baseline comparisons, an assessment is done to see how the α values affect the cost 

of routing. This allows a comparison of the costs associated with the more computationally 

demanding optimization scheme with those of the simple static window setting that requires a 

simple CDF calculation for chosen percentiles. 
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4.3.5.1 Fixed Alpha 

Instead of optimizing the windows at runtime, the windows are fixed a priori. In particular, there 

will be no simulation to find heuristic optimal αforward,ij and αback,ij for ordered customer visitation 

i,j, resulting in improved computation times. The forward and back times are ignored in favor of 

directly using the travel and service distributions, providing instead αtravel,ij and αservice,ij. The i,j 
sequences are fixed to the same αtravel and similarly for αservice, i.e. the algorithm is given a fixed 

αtravel and αservice such that αtravel,ij = αtravel and αservice,ij = αservice for all i,j. Both parameters are varied 

over the percentiles 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99. To simplify analysis, only the 100 different 

50 customer maps are tested for a total of 100 × 7 × 7 = 4900 scenarios. Each of these scenarios 

are simulated 2 times. These fixed conditions are compared to the optimized routing from part 1 

of the analysis in which windows are set via simulation, notably looking at simulated costs prior 

to and after reductions as the metric.  Upon completion of the simulation, the reduced simulated 

costs were compared by finding the percent change in reduced costs from the optimal value to the 

new static window value as follows:  

Percent Change in Reduced costs = 
( )

100
static optimal

optimal

Cost Cost

Cost


    (4.42) 

This means that a positive percentage is an increased cost for the static from the base optimal and 

vice versa. With this value calculated for each map and for each (αtravel, αservice) pair, the average 

percent change is then calculated in reduced costs for the 100 maps evaluated at a given (αtravel, 
αservice). This is the metric for final evaluation. Figure 4.4 below shows the resultant percent change 

surface. 

 

Figure 4.4: Average percent change in reduced costs from optimal to static window setting 
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For the given penalty rates and parameter choices for travel and service distributions, it appears 

that a highly aggressive window setting with    = (0.5, 0.5) provides a slight reduction in costs 

compared to setting the windows heuristically at runtime. These values limit potential delay 

buffers that higher α values generate implicitly for the sake of assigning more customers to a given 

vehicle route. Of note is that the more conservative α values above about 0.9 lead to large increases 

in costs, especially for travel time window adjustment as seen in the cost spike along the α Travel 

axis. 

 

4.3.6 Observations 

While the procedure shows promise, only a hypothetical application has been examined. Most 

importantly, real-world data on travel times and service times would better assess performance.  

 

Another thought is that the procedure could be extended to a Bayesian statistics framework in 

which times are estimated via prior distributions (not necessarily lognormal as used in this paper) 

that can be updated upon realized routes. Ostensibly this would allow for any given distribution to 

be used to set relative time windows and test routes. Notably, a business with repetitive deliveries 

could benefit from using the same routing for a given period of time to obtain new samples and 

update the routing accordingly. Additionally, with customer penalty assessment data, customer-

specific penalties could be introduced. This would likely result in higher late penalties for larger 

and/or more demanding clients due to phenomena such as customer loyalty and product 

obsolescence. Lastly, it would be worth investigating some of the natural extensions to the 

uncapacitated VRP, such as putting capacities on trucks or implementing precedence constraints 

as in pickup-and-delivery customers. 

4.4 BLOCK-BUILDING METHODOLOGY 

A second solution methodology makes a single pass through the set of customers to be visited and 

identifies an assignment of trucks which is both efficient and feasible. The method is based on List 

et al. (2003) and List and Turnquist (1993). These formulations are based on Goeddel (1975) as 

enhanced by Ball, Bodin, and Greenberg (1985) and described by Wren and Rousseau (1995). 

 

4.4.1 METHODOLOGY 

The problem formulation can be stated verbally as follows: 

 

Maximize the on-time performance  

Minimize the cost of the service provided  

 

Subject to: 

 

 Picking up all shipments and/or delivering all shipments 

 Not exceeding the capacity of any vehicle 

 Not exceeding a maximum tour duration for any vehicle 

 

In creating the solution procedure, several assumptions are made.  
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 The fleet size is fixed. 

 The vehicles are always available. (Maintenance spares exist.) 

 There is a single depot where trucks originate and terminate their tours. 

 Both pick-ups and deliveries can be made by the same vehicle during a given tour. But 

delivered shipments must originate at the depot and picked-up shipments must be carried 

to the depot. Said another way, the depot must be one end of the trip for each shipment.  

 Vehicles have a limited capacity and each shipment uses some of that capacity.  

 The total time for each tour is the sum of the random variables that describe the travel times 

between stops and the amount of time spent in pick-up or delivery. This means the travel 

times are stochastic as are the pick-up and delivery times.  

 An upper limit exists for the length of any tour, measured in time.  

 Every customer visit (stop) has an AW at the beginning of the service window and a DW 

at the end. 

 If vehicles arrive earlier than the AW, they wait until the AW to commence loading or 

unloading. 

 Vehicles can depart as soon as they are finished with the loading/unloading task. 

 The cost equation has five components: a) the number of vehicles used, b) vehicle hours, 

c) vehicle miles, d) the penalty cost for arriving early, and e) the cost for departing late.  

 On-time performance for arrivals is measured by the probability of arriving within the AW. 

The same pertains to the probability of departing during the DW. 

 The probability of an OTA can be improved by adding slack time to the schedule; that is, 

by arriving early, off-site, near a customer’s location, at the cost of adding time to the tour 

and potentially increasing the fleet size. 

 The probability of an OTA can also be improved by increasing the fleet size. A larger fleet 

reduces the number of customer stops per vehicle and adds more resource availability.  

 All shipments are accommodated, either directly, or by outsourcing (at a significant cost).  

 Vehicles are interchangeable.  

 Drivers are always available.  

 A load and a shipment are the same thing. The two words can be used interchangeably. 

The same is true for the words customers, consignees, and stops.  

 

The AWs indicate when the loading or unloading dock is available for use. A vehicle is “early” if 

it arrives before the AW begins. It is “late” if it arrives after the AW ends. It is “delayed” if it 

leaves after the DW ends. When the truck arrives early, it waits until the beginning of the AW. 

There are costs for being early or delayed, but not late. (This could be changed. The lateness is 

monitored.) The cost of being early is less than the cost of being delayed.  

 

The AWs are of two types. AWs of Type 1 are set by the customers. Examples include AWs set 

by warehouses, retail stores, or manufacturing plants that belong to external entities. The carrier 

and/or shipper can request a specific AW, but cannot control it. An AW of Type 2 is set by the 

carrier. This happens when the shipper also operates the truck fleet and controls the operation of 

the customers being served. Illustrations are supplier managed filling stations, grocery stores, or 

big box retail stores. The start times for the Type 2 AWs are choice variables. For both Type 1 and 

Type 2 AWs, the on-time performance is optimized by assigning loads to vehicles, sequencing the 

visits to customers, and in the case of Type 2 AWs, specifying their start times.  
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Two objectives apply. The first is to maximize the on-time performance for the customers. This is 

done by minimizing the combination of the average delay for all customers (a mini-avg  or mini-

sum objective which is an L-1 norm) and the greatest lateness among all customers (which is an 

L-∞ norm). The second objective is to minimize total cost. Other “objectives” such as minimizing 

the fleet size and the duration of time required to complete all deliveries (the makespan) are treated 

parametrically. 

 

The choice variables are: 1) the assignment of loads to vehicles, 2) the sequencing of visits to 

customers, and, 3) in the case of the Type 2 AWs, the start times. The fleet size is an input as well 

as the start times for the Type 1 AWs. The sequencing and assignment introduces slack to minimize 

late arrivals, ensure early or OTAs. Adding slack lengthens the tour durations. Larger fleet sizes 

improve on-time performance but also increase cost.  

 

The search procedure tracks the performance of various routing and scheduling solutions. The run-

cutting procedure develops the solutions. The procedure can deal with large-scale problems and is 

easy to understand. Optimally cannot be assured, but the procedure’s performance can be 

compared to optimal solutions for small problems. 

 

The pseudo-code representation of the algorithm is shown in Figure 4.5.  

 
Algorithm 3 Assign load sequences to vehicles 

1: function Assign and Sequence(Graph G, Stop info array Stop, Fleet sizes array M, Simulation specifications S) 

2: for all Fleet sizes k ∈ M do 

3: for all n = 1,...,S.numRuns do  

4:  for all i,j node pairs in G do 

5:   Sample for travel time t[i,j] 

6:  for all i Stops in Stop do 

7:   Sample for service time Stop[i].tSvc 

8:  Create array VI containing Stop indices ordered by earliest arrrival window 

9:  for all vehicles j ∈ 1,...,k do 

10:    veh[j].arrive,veh[j].begin,veh[j].early,veh[j].depart,veh[j].delay ← 0  

11:    veh[j].loc ← 0 where location 0 is depot 

12:  maxDelay,aveDelay,timesDelayed ← 0 

13:  for all Indices i ∈ V I do 

14:   vehTemp ← veh 

15:   for all vehicles j ∈ 1,...,k do 

16:    vehTemp[j].arrive ← t[veh[j].loc,Stop[i].node] 

17:    vehTemp[j].early ← max(Stop[i].bWin − vehTemp[j].arrive,0) 

18:    vehTemp[j].begin ← max(vehTemp[j].arrive,Stop[i].bWin) 

19:    vehTemp[j].depart ← max(vehTemp[j].begin+Stop[i].tSvc,Stop[i].eWin) 

20:    vehTemp[j].delay ← max(vehTemp[j].depart−(Stop[i].eWin+OTW),0) 

21:  Select jBest such that vehTemp[jBest].arrive ≤ vehTemp[j].arrive and vehTemp[jBest].delay ≤ 

vehTemp[j].delay ∀j ∈{1,...,k},j 6= jBest 

22:   if veh[jBest].delay > 0 then 

23:    aveDelay ← aveDelay + veh[jBest].delay 

24:    timesDelayed ← timesDelayed + 1 

25:    if veh[jBest].delay > maxDelay then  
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26:     maxDelay ← veh[jBest].delay 

27:    vehTemp[jBest].delay ← veh[jBest].delay + vehTemp[jBest].delay 

28:   veh[jBest] ← vehTemp[jBest] 

29:   load[i] ← veh[jBest] 

30:   load[i].veh ← jBest 

31:  for all Indices i ∈ V I do 

32:   delayStops[n,i] ← load[i].delays 

33:  for all vehicles i ∈ 1,...,k do 

34:   delayV ehicles[n,i] ← veh[i].delay 

35:  maxDelays[n] ← maxDelay 

36:  aveDelays[n] ← aveDelay/timesDelayed 

37:  Provide summary of results through aveDelays,maxDelays,latenessStops, and latenessVehicles before iterating 

to next fleet size 

Figure 4.5: Block and truck tour building algorithm 

Based on the results for each fleet size provided by the algorithm, determine which solution is 

optimal: the trade-off between delay performance and fleet size. The truck tours are developed 

using a greedy heuristic that assigns the best available truck to the loads in chronological order, 

seen prominently in lines 15-21 of code. 

  

The equivalent math programming formulation is a stochastic version of Bender’s decomposition. 

Each sub-model is a realization of the travel times and load-unload times. It has a probability that 

the scenario arises. These probabilities are used as weights in computing the overall objective 

function. The overarching choice variable is the fleet size. The assignment of loads to vehicles and 

the tour sequences vary by sub-model. The overriding purposes are to 1) identify a fleet size that 

can accommodate the stochasticity in an acceptable manner and 2) seek general patterns in the 

assignment of loads to vehicles. 

 

4.4.2 EXAMPLE APPLICATION 

The example application is hypothetical. The network comprises 10 nodes. Node #1 is the depot. 

New networks are created using stochastic equations to generate the travel times. The equation is 

ij ij ij ijt a b r   where tij is the travel time, rij is a uniform random variable on the interval [0,1] and 

aij and bij are constants. Table 4.2 shows a sample set of values. The unit of travel time is one 

minute. The travel times in the network are symmetric. That is, tij is the same as tji.  
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Table 4.2: Network travel times 

Twenty visits are to be made, as shown in Table 4.3. Each one has a location (2 .. 10), a beginning 

time for servicing/visitation (bWin), an ending time for servicing (eWin), and a service time (tSvc). 

The locations are the nodes also shown in Table 4.3. The unit of time is one minute. (An 8-hour 

day is 480 minutes long.) New problems are created using a stochastic equation to compute the 

service times. The equation is s s s st a b r   where ts is the service time for stop s, rs is a uniform 

random variable on the interval [0,1] and as and bs are constants. (Besides the twenty actual stops 

there are two more, stop #0 which is departure from the depot at the beginning of the tour and stop 

#21 which is the return to the depot at the end of the tour.)  

 

Trucks that arrive before bWin must wait until bWin to start their servicing. They are considered 

late if they start servicing after bWin + OTW where OTW is the duration of the on-time window. 

OTW is set to 10 minutes. Trucks cannot leave until eWin. They are considered delayed if they 

depart later than eWin + OTW. The same value of 10 minutes is employed.  

 

Times

1 2 3 4 5 6 7 8 9 10

1 1 20 10 13 15 21 16 15 28 19

2 20 1 21 22 18 7 17 17 22 21

3 10 21 1 19 17 14 17 20 5 30

4 13 22 19 1 22 28 30 29 30 7

5 15 18 17 22 1 12 16 27 16 22

6 21 7 14 28 12 1 28 14 20 10

7 16 17 17 30 16 28 1 6 28 23

8 15 17 20 29 27 14 6 1 27 15

9 28 22 5 30 16 20 28 27 1 12

10 19 21 30 7 22 10 23 15 12 1

10  = #Loc 1 Time unit = 1 minute
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Table 4.3: Visits and their characteristics 

A business day of 10 hours is assumed, which is equivalent to 600 minutes. For each realization 

of the problem setting, a single day is examined. 

 

The fleet size can range from 1 to 10 trucks. It is set before each solution is obtained and its impact 

on the objectives is explored parametrically. All truck tours originate and terminate at the depot 

(node #1). An upper bound can be imposed on the capacity of each truck.  

 

For a given problem (set of nominal travel times and service times), stochasticity is introduced by 

pre-multiplying the nominal times tnom by a random variable rk. That is, k nom kt t r . And rk follows 

a four-point discrete distribution. Specifically, the possible values of rk are 0.8, 1.0, 1.5, and 2.0 

and they have probabilities of 10%, 50%, 20% and 10%. To illustrate, this means there is a 20% 

chance that rk will be 1.5 and therefore tk will be 1.5 times the nominal value. The travel times and 

load/unload times are both treated this way. And they are assumed to be independent random 

variables.  

 

A set of stochastic realizations are analyzed for a given set of nominal travel times and service 

times so that the scope of performance variations can be understood. So far, the number of 

realizations studied is 100. Based on these, plots and tables are created to portray the results. Figure 

4.6 presents the distributions of delays for the 20 customer visits when three trucks were employed 

in the problem setting described earlier. (Visit #0 is departure from the depot at the beginning of 

the tour and visit #21 is the return to the depot at the end of the tour.) As can be seen, for about 10 

customers, the delay is almost always zero. For four others, visits 8, 16, 17, and 20, the delay is 

considerably different, being 40 minutes or more. Further, visit 18 typically has delays of 10 

minutes or less, but the value can reach up to 30. 

 

Stop Loc bWin eWin tSvc

1 8 135 165 18

2 10 240 270 20

3 2 195 255 23

4 7 15 45 20

5 4 180 225 23

6 3 240 255 16

7 3 105 150 23

8 6 195 225 20

9 8 285 315 23

10 9 435 480 21

11 8 195 240 16

12 6 240 255 21

13 10 285 345 20

14 3 360 390 23

15 5 405 450 18

16 9 300 360 15

17 4 255 300 16

18 8 345 375 15

19 6 255 285 24

20 2 300 315 24



 

97 

 

 

Figure 4.6: Distributions of delays for customer visits – 3 trucks employed 

Figure 4.7 shows the distribution of tour times for the three vehicles in this same analysis. All three 

vehicles have tour durations of about 400 minutes (about 5 hours) although the range is from 380 

to 440. Consequently, a solution involving three trucks is feasible although the customer delays 

may be greater than desirable. 

 

 

Figure 4.7: Tour Durations for the three vehicles in the scenario analyzed 

As would be expected, the fleet size has a major impact on the quality of the solution. Figure 4.8 

shows the performance that results from fleet sizes ranging from 1 to 6 trucks. The figure presents 

data for 1) the early arrivals and 2) delays, both average and maximum values. A visit to a customer 

is considered early if the truck arrives before the beginning of the servicing window. The visit is 



 

98 

 

“late” if the truck arrives later than 10 minutes after the beginning of the service window. The visit 

is “delayed” if the truck leaves later than the end of the service window.  

 

 

Figure 4.8: Trends in early arrivals and delays 

It is easy to see that the delays fall toward zero rapidly as the fleet size increases from 1 to 3 trucks. 

At 6 trucks, the delays are all zero. Hence, for this setting, a fleet size of 4 or more trucks ensures 

that reasonably high-quality service will be provided. 

 

It is also important to view these trends in performance from the perspective of the trucks providing 

the service. Figure 4.9 presents trends in 1) the number of visits assigned per truck, 2) the extent 

to which the trucks are early and 3) the extent to which they are delayed; both average and 

maximum values. 

 

 

Figure 4.9: Trends in truck performance as affected by fleet size 
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It is easy to see that truck performance improves dramatically as the fleet size grows from 1 to 4 

trucks. Beyond that, the improvement is very gradual. The delay performance improves most 

dramatically, from an initial value of 250 minutes down to nearly zero. It is also easy to see that 

the reason why this happens is because the early arrivals continue to increase, starting from zero 

and reaching up to 60 minutes. The implication is that to achieve the objective of minimizing 

delays (providing reliable service), at least 4 trucks are required and early arrivals of 50 minutes 

are more are involved.  

 

4.5 SUMMARY 

This section has presented methods for solving the stochastic vehicle routing and scheduling 

problem. This problem lies at the heart of operating a freight transportation system. Nominally, 

the objective is to find an assignment of loads to vehicles and routings for the vehicles that 

optimizes all the performance metrics. In some instances, the loads are full truckloads, in which 

case the vehicles are assigned to carry loads from one point to another in sequence. Alternately, 

trucks may be picking-up loads or delivering loads. In yet a third option, trucks may both picking-

up and dropping off loads, as with local couriers. The objectives are often to 1) minimize total cost, 

2) maximize on-time deliveries, 3) minimize the fleet size, and 4) maximize vehicle utilization. 

Other objectives include 5) maximizing on-time performance and 6) maximizing the lowest on-

time performance among all the vehicles employed.  

 

The first method uses a simulation-based heuristic starting from an initial Clarke-Wright solution 

followed by merge, insertion, and 2-interchange reduction in order to solve the vehicle routing 

problem with stochastic travel times and soft time windows. Unique to this method is the fact that 

time windows are set at runtime based off a lookup table of previously simulated ordered customer 

pairs, corresponding to supplier-side control of a supply chain. It is able to solve in reasonable 

time on a relatively weak computer a problem instance with 200 customers for a given parameters 

in a few minutes, and this resulted in at least 23%  cost reductions for 10 or greater customers. 

This could easily be extended to larger problem instances on larger RAM computers, as storage 

space is the critical element in the algorithm.  

 

The second method makes multiple single passes through the set of customers to be visited based 

on Monte Carlo simulations of the location-to-location travel times and the loading/unloading 

times and identifies assignments of the trucks to the customer visits which are both efficient and 

feasible. The objectives are to 1) maximize the on-time performance and 2) minimize the cost of 

the service provided subject to: a) picking up all shipments and/or delivering all shipments, b) not 

exceeding the capacity of any vehicle, and c) not exceeding a maximum tour duration for any 

vehicle. One of the main insights provided by the method is the relationship between the reliability 

of the service provided and the size of the fleet employed. As would be expected, it shows that 

higher reliability is provided by larger fleet sizes. But more importantly, it quantifies the extent of 

that improvement through the stochastic analysis presented. It also allows the analyst to see if there 

are consistent patterns in the assignment of customer visits to trucks across the problem 

realizations examined. 
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5.0 SITING ANALYSIS 

5.1 INTRODUCTION 

Building a distribution center, a terminal, or any other type of large facility is a major investment 

decision. Ceteris paribus, it makes sense to cite these facilities at locations where the travel times 

will be reliable to all major trip origins or destinations. On the manufacturing side, it makes sense 

to locate plants where the inbound and outbound travel times are reliable. Of course, the travel 

times are only part of the overall stochastic process. Hence, solutions that focus on the travel times 

are only myopically optimal, but it still an interesting area on which to focus research. 

 

5.2 PREVIOUS WORK 

As early as 1979, efforts regarding siting analysis have been completed. Mirchandani and Odoni 

(1979) may have been the first to consider the location of facilities on networks where the travel 

times were stochastic. They examined problems where the travel times on the network links were 

random variables with discrete probability distributions. They demonstrated that solution 

algorithms for such problems can be developed and reasonable size problems can be solved if the 

number of states of the system (considering the stochastic travel times) is small. More from the 

standpoint of siting emergency response services than logistics facilities, Mirchandani (1980) 

again considered the problem of locating facilities when the travel times are stochastic. He shows 

that realistic and reasonable size problems can be formulated and solved using a variety of solution 

techniques. 

 

Daskin (1985) reviewed the location decision-making literature and indicated that “both demands 

and link travel times should, in principle, be treated as random variables” as should the demands. 

But his review does not identify location models where the network travel times are stochastic. 

 

Owen and Daskin (1998) provided a second review in which stochastic location problems are 

considered. They indicated that “any number of system parameters might be taken as uncertain, 

including travel times, construction costs, demand locations, and demand quantities. The objective 

is to determine robust facility locations which will perform well (based on the defined criteria) 

under several possible parameter realizations.”  

 

Despite these assertions that it is important to treat the travel times as stochastic, it appears that 

only limited work has been done to advance this frontier. Wang and Ma (2008) appear to be the 

next authors to explore ways to solve this problem. They use a mixed genetic algorithm to solve 

problems of various sizes. The results are compared with two greedy heuristic algorithms which 

have been shown to be good at solving set covering location problems. The computational 

experiments showed good performance for the mixed genetic algorithm. 

 

More recently, Fazel-Zarandi, Berman, and Beck (2013) have considered stochastic facility 

location / fleet management problems where the travel times are random variables. They use 

stochastic programming to solve the problem. Two-level and three-level logic-based Benders’ 
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decomposition models are employed. The computational experiments showed that these developed 

models can substantially outperform the integer programming model the authors also presented to 

determine optimal siting solutions.  

5.3 METHODOLOGY 

The solution methodology employed is relatively simple and straightforward. It uses Monte Carlo 

simulation to assess the reliability of the delivery service quality provided by candidate distribution 

center sites and then it identifies the best ones to choose. Because of this, it provides useful and 

meaningful results which are easy to understand.  

 

The method proceeds as shown in Figure 5.1. 

_____________________________________________________________________________ 

 
1) Specify the location of the customers (sites) to be visited, the locations of the candidate distribution 

centers (DCs), and the statistical characteristics of the travel times from the DCs to the customer 

sites. 

2) For each DC 

a. Conduct a Monte Carlo simulation of trips made from the DC to the customer sites for 

different times of day.  

b. Develop CDFs of the travel time distributions for each of the DCs 

3) Identify the non-dominated DCs 

4) Select the best DC based on the importance of the performance metrics assessed. 

_____________________________________________________________________________ 

Figure 5.1: Site selection algorithm 

 

5.4 EXAMPLE APPLICATION 

The example application is predicated on a hypothetical urban area. As shown in Figure 5.2, there 

are 20 customer locations to be served and five centrally located candidate distribution center (DC) 

sites. 

 

The hypothetical travel times are developed in the following manner. First, it is assumed that there 

are four time periods during typical workdays, AM, Midday (MD), PM, and nighttime (NT) In 

addition, the distribution of trips from the DC to the customer sites is assumed to be 25% during 

the AM period, 40% midday, 25% during the PM period, and 10% at night. Second, for each of 

these time periods there are three parameters that describe the travel times involved: 1) circuity 

measures that convert the Euclidian distance into an over-the-network distance, 2) travel time 

multipliers which convert the over-the-road distances into travel times by time period, and 3) 

coefficients of variation that allow computation of standard deviations. The travel times are 

assumed to be lognormal. The circuity values are (1.3, 1.2, 1.4, and 1.1) for the (AM, MD, PM, 

and NT) periods respectively, reflecting the effects of congestion on route choice – i.e., more 

circuitous routes during time periods with higher congestion. The travel time multipliers are (2.4., 

2.1, 2.5, and 2.0), again reflecting the impacts of congestion. The coefficients of variation are (15%, 

10%, 20%, and 5%), again because of congestion. These are all hypothetical, but perceived to be 

reasonable values. For example, urban truck trips tend to occur predominantly during the daylight 
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hours and during the midday especially (Rodrigue, 2017). Network circuity is typically in the range 

of 1.2 (Levinson, 2012). Travel speeds are often 20-30 mph, which implies travel time multipliers 

of 2.0-3.0.  

 

 

Figure 5.2: Customer sites (red) and potential distribution center locations (blue) 

 

For a specific realization of the problem, Figure 5.3 presents the CDFs for travel times to all the 

customers from the five candidate DCs. 

 

 

Figure 5.3: Travel time CDFs to all customers 
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It is interesting that the CDFs are very similar. DC-1 appears to provide the most reliable travel 

times, but its performance is nearly matched by DC-2 and DC-3. DCs 4 and 5 have poorer 

performance especially for the likelihood of longer travel times. But DC-4 does have the shortest 

overall travel times.  

 

However, travel time reliability is not the only important metric to consider, Figure 5.4 presents 

the bi-objective performance of the DCs in terms of average and maximum travel times to the 

customer sites. It addresses the question of reliability in the sense of focusing on the average and 

maximum travel times, in combination. Here it is clear that DCs 1 and 2 are “the best” choices, 

dominating the other three in terms of combinations of average and maximum travel times. And if 

the tradeoff between these two performance measures is known, then the best DC can be selected. 

If minimizing the maximum travel time is relatively important, then DC-2 is the best choice. If the 

average travel time is more important, then DC-1 is best. Under no conditions (reflected in the 

average and maximum travel times) are DCs 3, 4, and 5 good solutions. They are dominated by 

DCs 1 and 2. 

 

 

Figure 5.4: DC option performance in terms of average and maximum travel times 

 

Figure 5.5 considers reliability from a slightly different perspective, focusing on the tradeoff 

between average travel time and the standard deviation of the travel times. Here again, DC 

candidates 1 and 2 are the best choices, dominating candidates 3, 4, and 5. DC-1 has an average 

travel time which is significantly shorter than that for DC-2 and the standard deviations are nearly 

identical. Hence, it might be, that for nearly all preferences between these two metrics, DC-1 would 

be the best choice. The importance of the standard deviation would have to be very high to allow 

DC-2 to be preferable to DC-1.  
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Figure 5.5:  Average travel time versus the standard deviation of the travel times 

 

As shown in this example problem, the question facing siting analysis z would be, based on these 

two assessments of performance, which DC is best. It could be that DC-1 is the better choice 

despite the larger maximum travel time it has. The important point here is not which choice is 

better, but that the methodology provides a mechanism for arriving at that conclusion. 

5.5 SUMMARY 

This section has focused on assessing the reliability performance of distribution centers. Building 

such facilities is a major investment decision. Hence, it makes sense to choose locations where the 

travel times to customers will be reliable. There are tradeoffs against other performance metrics 

like the average travel time and cost. Consequently, having a methodology that allows assessments 

to be performed is important. One method for doing that has been presented.  
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6.0 SUMMARY AND FUTURE WORK 

6.1 SUMMARY 

This research report has focused on advancing the methodological frontier in the analysis of 

efficiency and reliability for freight transportation. It deals primarily with truck-related shipments 

although the tools are applicable to other modes and multi-modal systems. The topic is important 

because of the economic value that results from minimizing the resource consumption associated 

with freight activity. Unreliable transport raises costs and diverts scarce factors of production away 

from other, critically important societal activities. It interferes with the efficiency of the supply 

chain and increases both monetary and time-related costs and resource requirements (e.g., 

increased in-process inventory, extra trucks).  

 

The freight industry continues to be concerned with reliability. To be competitive, companies need 

to remove inefficiencies in their production functions. Both late and early shipments are included 

in the set of problematic inefficiencies facing freight companies. The industry’s emphasis on just-

in-time manufacturing has squeezed buffer stock out of the logistics supply chain. It has also raised 

the risk of stock-outs. Because storage space is reduced as well, early arrivals are problematic. If 

reliability suffers, all participants in the supply chain must make extra asset investments to buffer 

the process and ensure that delivery schedules are met. From a societal perspective, the cost of 

producing the goods and services increases. Extra scarce resources must be devoted to freight-

related activities to make the economic system work.  

 

Several insights have been derived from this effort. They will have an impact on the way in which 

freight reliability analyses are performed in the future. 

 

On-Time Windows. Shippers and receivers have expectations about when shipments are going to 

depart and when they are going to arrive. People see similar on-time windows when they travel by 

commercial carriers in the context of published departure and arrival times. They may not be aware 

of the details, but the carriers measure their on-time performance based on whether the vehicles 

(trains, planes, buses) depart and arrive at times that are consistent with the published timetable. 

The same is true for freight. Shippers perceive that packages have left on-time if they are picked-

up by the carrier within a specific window. The window might be wide (a couple of days) or narrow 

(less than an hour), but a window exists. The same is true for the receiver. There are expectations 

that shipments will arrive at specific times. Or more precisely, within given windows.  

 

Hence freight reliability is not about travel times per se, or even the variance in those travel times. 

Rather, it is about whether shipments arrive and/or depart during these on-time windows. In other 

words, reliability is assessed not based on travel time distributions but rather whether the arrival 

or departure was on time or not. That is, reliability is the probability of arriving (or departing or 

both) during the on-time window.  
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However, minimizing the variance in the travel times is still an important thought. But there may 

be no value in minimizing the variance beyond a certain value once the desired on-time 

performance is achieved. In effect, the better thought is to control the shape of the travel time 

distribution, either viewing it as a PDF, or better yet as a CDF, so that a sufficient percentage of 

the distribution lies within the AW or DW, or both.  

 

Arrival Times. For freight, it is always the arrival times and frequently the departure times that 

matter. This is different from most personal trip-based analyses where the focus is on the reliability 

of travel times based on a departure time. The focus of fright movements is on delivering or picking 

up packages on-time. And thus, the question becomes: when must the truck leave the depot so that 

the shipment will be delivered on-time? It is not when it will arrive given a departure time, as is 

often the case.  

 

Searches Backward in Time. An implication of the focus on arrival times is that the searches for 

best paths and departure times must often progress backwards in time, not forwards. This means 

they must often be performed based on projections about travel rates that will pertain in the future 

when the truck will traverse the highway network. Estimates of future travel times, based on past 

performance, become extremely important.  Path search algorithms will need to make assumptions 

about what the network operating conditions will be in the future and work backwards (in time 

and space) to determine what path should be employed and when to depart.  

 

Doubly-Constrained Path Choices. Scheduled carriers, like trucking firms, often face doubly-

constrained path choice decisions. On-time performance is measured in terms of both departure 

and arrival events, separately and in combination. Shipments (and vehicle moves) are deemed to 

be “on-time” if they both depart during the DWs and arrive within the AWs. A joint density 

function can be used to track this performance. The objective is to find paths and vehicle tours that 

conjunctively maximize on-time performance. This means that the path choices are doubly, not 

singly constrained. On-time performance in terms of both in terms of departure and arrival events. 

Shipments (and vehicle moves) are deemed to be “on-time” if they both depart during the DWs 

and arrive within the AWs. A joint density function needs to be used to track this performance. 

 

Measurement Locations are Critically Important. Timestamps collected at network nodes 

(intersections or interchanges) tend to be ambiguous. Unless the sensing distances are very short, 

it is unclear where the vehicle is when the timestamp is obtained. Moreover, unless the vehicle’s 

report their paths, it is not possible to tell what directional movement the vehicle was executing. 

Consequently, since this is true at both the upstream and downstream nodes, the travel times 

computed from pairs of sensors include unknown variability due to turning movements at both the 

upstream and downstream intersections. Especially for truck trips, there are nodal delays. Hence, 

it is not wise to place the measuring locations at the physical network nodes. 

 

Collecting timestamps at the midpoints of the links is much better. Two reasons exist for this. The 

first is that these midpoints are not locations where processing takes place and/or delays occur. 

Vehicles are typically moving when they pass these locations, so a clear and meaningful timestamp 

can be collected. The second is that all pairwise combinations of these adjacent timestamps are 

then related to vehicles that have followed the same intervening path. And because of that, they 

are very likely to have seen the same processing.  
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Estimating Travel Time and Rate Distributions. Although the focus is on on-time performance, 

there is still a critical need to compute the distributions of travel times (and travel rates) of network 

segments and paths. Section 2 presented three methods for doing this. The first method used 

average travel times and assumptions about how the truck trip travel times are related to these 

averages. Monte Carlo sampling was used to sample values from the average and then samples 

from the hypothesized truck travel time distribution to develop the estimate of the actual truck 

travel time distribution. This process is the least demanding in terms of data, but the most 

dependent on inference. It is easy to apply for a given operating condition, but the quality of its 

estimated distributions is highly dependent upon the insights of the analyst. 

 

The second method used proportional sampling from three hypothetical distributions derived from 

segment-level travel time distributions: positively correlated, negatively correlated, and 

uncorrelated. Coefficients α, β, and γ indicate the relative percent to which the three distributions 

should be sampled to synthesize the overall route travel time. Empirical analyses suggest that the 

value of α (for the positively correlated distribution) is high and predominant when the segments 

are uncongested; the value of β (for the negatively correlated distribution) is high when an 

oscillating pattern in the travel times exists (short travel times on one segment followed by long 

travel times on the next, as sometimes occurs on signalized arterials), and the value of γ (for the 

uncorrelated distribution) tends to be high and predominant when the segments are operating at or 

near capacity. The process is simple and straightforward and appears to yield distributions that 

very closely match the ones observed. 

 

The third method used segment-specific Monte Carlo sampling to synthesize route-level travel 

time distributions. The method is intuitively appealing because it capitalizes on ideas about how 

individual vehicle travel times arise on congested and uncongested networks. The method’s main 

assumption is that a vehicle’s travel time arises from three behavioral properties. The first is that 

when vehicles are traversing segments in an uncongested state, the travel time they achieve reflects 

driving behavior. The second is that when vehicles are traversing congested segments, the travel 

time is randomly determined. It is less reflective of driving behavior. The third is that a mix of 

these conditions pertains to vehicles on a given segment. That is, the segment travel time 

distribution is a blend of travel times derived from distributions for the two states. Even though 

the segment may be labeled uncongested, some vehicle travel times can come from the congested 

distribution. And although a segment may be labeled congested, some travel times can come from 

the uncongested distribution.  

Vehicle Routing and Scheduling Can Address Reliability. Section 4 presented two methods for 

considering reliability in developing solutions to vehicle routing and scheduling problems.  

 

The first method used a simulation-based heuristic to search for good assignments of customer 

visits to trucks. It starts from an initial Clarke-Wright  assigment of visits to trucks and then 

modifies that solution through merge, insertion, and 2-interchange reduction analyses. Unique to 

this method is the fact that time windows are set at specified relative times along a vehicle route 

provided by a lookup table of previously simulated ordered customer pairs; in particular, given 

percentile values for travel and service simulated distributions, along with  this corresponds to 

supplier-side control of a supply chain. It often results in at least a 23%  cost reduction for 10 or 

more customers.  
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The second method provided a formulation of a bi-objective problem that involves maximizing 

the on-time performance and minimizing the cost of the service provided. This is subject to: 

picking up all shipments and/or delivering all shipments, not exceeding the capacity of any vehicle, 

and not exceeding a maximum tour duration for any vehicle. It assumes the fleet size is fixed, the 

vehicles are always available (that is, maintenance spares exist), and there is a single depot where 

trucks originate and terminate their tours. It also assumes both pick-ups and deliveries can be made 

by the same vehicle during a given tour, but delivered shipments must originate at the depot and 

picked-up shipments must be carried to the depot. Hence, the depot must be one end of the trip for 

each shipment. It assumes the total time for each tour is the sum of the random variables that 

describe the travel times between stops and the amount of time spent in pick-up or delivery. This 

means the travel times are stochastic as are the pick-up and delivery times. It conducts the 

evaluation by simulating the system’s performance multiple times. It samples random variables to 

establish each realization; assigns loads to the trucks and develop the tours; sequences the loads 

based on the beginning of their windows; and for each stop, selects the truck that can arrive earliest 

and has the least delay. The reliability is improved by adding slack time to the schedule; that is, 

by arriving early, off-site, near a customer’s location, at the cost of adding time to the tour and 

potentially increasing the fleet size. It is also improved by increasing the fleet size. A larger fleet 

reduces the number of customer stops per vehicle and adds more resource availability.  

 

Site Choice is Critically Important. Section 5 presented a method for considering the reliability 

of different sites for distribution centers (DCs). Technique employed uses Monte Carlo simulation 

to assess the reliability of the delivery service quality provided by candidate distribution center 

sites and then it identifies the best ones to choose. It provides useful and meaningful results which 

are easy to understand.  

 

A hypothetical case study analysis showed that differences in travel time reliability can exist 

among candidate sites and hence, this aspect of DC choice should be incorporated into a multi-

objective assessment of potential sites. The example portrayed this thought in the context of a bi-

objective assessment in which the average and maximum travel times to the customer sites is 

considered. It is clear from this analysis that some DCs are better choices than others in that they 

dominate poorer performing sites in terms of the combinations of average and maximum travel 

times that the best sites provide. Moreover, if the tradeoff between these two performance 

measures is known, then the best DC can be selected. 

 

6.2 FUTURE WORK 

Much future work can be carried out based on the analyses conducted so far. Some important 

examples of these efforts are as follows: 

 

Real-World Tests. As is often the case, the methodological advances presented here have been 

tested using a blend of empirical data and hypothetical situations. One natural extension for future 

work is to test these methods based on datasets that are more representative and reflective of real-

world conditions. This pertains to all of the methods presented, from the assessment of reliability 

for segments and routes to the selection of plans for vehicle routing and locations for distribution 

centers.  
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On-Time Windows. Another opportunity for future work is the further examination of on-time 

windows and the implication this idea has for freight reliability assessment. Surveys of shippers, 

receivers, and carriers would be helpful to double-check that on-time windows are, indeed, the 

current way that reliability performance is assessed. Such surveys could also indicate the way in 

penalties are assessed for degradations in on-time performance and how expected performance is 

specified contractually. The knowledge gained would further enhance the proposed methods. 

 

Backward Searches. The report asserts that the search for best paths and departure times is one 

that involves an analysis backward in time. The veracity of this assertion could be checked through 

a survey of shippers, receivers, and carriers. Also, assuming it is correct, a study of the planning 

and scheduling practices of these three stakeholders would show how this assessment is presently 

carried out, what assumptions are made, and what data are employed. If this perspective is not 

embraced, then such surveys would help improve the understanding of how on-time performance 

and/or reliable service is planned and scheduled for when on-time windows are part of the overall 

picture.  

 

Doubly-Constrained Path Choices. There is an assertion that path choices for truck-based freight 

shipments are doubly-constrained, having on-time windows for both departure and arrival. 

Inquiries with carriers, shippers, and receivers would provide indications as to whether this 

assertion was true or not; or the extent to which it is true. Assuming it is an issue and major 

constraint, such inquiries would also provide indications of how carriers choose paths and 

departure times to ensure that these doubly-constrained solutions are obtained. For example, it 

could be seen if is there a conscious effort to add slack time to the trips to ensure that arrival 

windows are achieved.  

 

Travel Time and Rate Distributions. Three methods for estimating route-level travel time and 

travel rate distributions have been presented. Analysis based on more real-world data, especially 

from trucking firms, would indicate how well these methods work and how they can be enhanced. 

Especially for the third method, which has been evaluated entirely based on hypothetical data, such 

an analysis would be very fruitful. This ability to synthesize travel time distributions for paths that 

lack direct observations is a critical need, especially for planning activities. Having a method 

which works reliably under a wide variety of conditions would be very helpful. Also, being able 

to see how the correlations among travel time distributions can and should be addressed is very 

important. 

  

Vehicle Routing and Scheduling. Vehicle routing and scheduling will continue to be a critical 

element of the reliability analysis. This report presented two methods for developing a vehicle 

routing and scheduling plan that maximizes the reliability of the service provided.  

 

The meta-heuristic method could be further improved in several ways. One of which is to 

incorporate a Bayesian statistics framework in which times are estimated via prior distributions 

(not necessarily lognormal as used in this paper). Ostensibly this would allow for any given 

distribution to be used to set relative time windows and test routes. Notably, a business with 

repetitive deliveries could benefit from using the same routing for a given period of time to obtain 

new samples and update the routing accordingly. Additionally, with customer penalty assessment 
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data, customer-specific penalties could be introduced. This would likely result in higher late 

penalties for larger and/or more demanding clients due to phenomena such as customer loyalty 

and product obsolescence. Lastly, it would be worth investigating some of the natural extensions 

to the uncapacitated VRP, such as putting capacities on trucks or implementing precedence 

constraints as in pickup-and-delivery customers. 

 

The building-block method could be enhanced by adding a search procedure to the current heuristic. 

Presently, it sorts the customer visits into ascending order by the beginning of the on-time arrival 

window and assigns the earliest available truck to each visit in sequence. The production of sub-

optimal solutions has been demonstrated preliminarily by taking specific realizations of the 

problem settings and finding solutions by both the heuristic and explicit optimization using a 

mixed-integer linear programming (MILP) representation of the problem. The MILP is almost 

always able to find a better solution than does the heuristic. (However, the MILP formulation can 

only be applied to small-scale problems.) One way to improve the solution provided by the 

heuristic is to link it to a search procedure  (e.g., a genetic algorithm, tabu search, or simulated 

annealing).  

 

Site Selection. The site selection procedure could be enhanced most significantly by linking it to 

vehicle routing and scheduling. That is, treat the assessment of the reliability of the sites as an 

evaluation of the best reliability that can be provided by a fleet of trucks given the choice of a 

specific site. This means solving the SVRP for each of the sites and then comparing the results.  

 

Combinations.  All these possible extensions to the current work could be done separately or in 

combinations. For example, the SVRP ideas could be explored in conjunction with the 

enhancements to the site selection procedures. The enhancements to path characterization could 

be coupled with SVRP so that the SVRP solutions are more tightly and defensibly tied to the 

characterization of the performance of the network over which the trips take place. Determining 

which combinations to select and which options to pursue will depend upon the data available, the 

interests of the research funding agencies that are involved, and the demands of the stakeholders 

whose needs are being addressed. 
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