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EXCUTIVE SUMMARY 

The efficiency and reliability of its freight transportation system greatly affect the economic 
competitiveness of the U.S. and the standard of living of its citizens.  For instance, production 
systems have become increasingly dependent on “just-in-time” deliveries, which can reduce 
inventory and handling costs but depend critically on reliable deliveries. Efficient coordination 
of vehicle movements and freight transfers in transportation networks and at intermodal 
terminals, such as ports, airports and rail yards, can reduce the dwell time of vehicles and freight 
at the transfer terminals where various routes interconnect, such as ports, airports and rail yards, 
thereby also increasing the vehicles utilization rates, reducing the need for direct routes to 
connect many origins and destinations, and reducing storage requirements at terminals. Efficient 
coordination of vehicle arrivals can also improve the overall system efficiency through reduced 
handling costs (e.g., fewer handling stages, direct vehicle-to-vehicle transfers, and reduced 
transfer distances). The reliability of vehicle operations and goods deliveries can also be 
significantly improved by properly planning and controlling transfer operations at terminals. 

This report specifies a mixed integer nonlinear programming problem (MINLP) for assisting 
intermodal logistics operators with coordination decisions in freight transfer scheduling. A 
hybrid technique combining sequential quadratic programming and genetic algorithms (GA-
SQP) is developed to solve the proposed MINLP. We first formulate an optimization model for 
coordinating vehicle schedules and cargo transfers at intermodal freight terminals, which is done 
primarily by optimizing coordinated service frequencies and slack times, while also considering 
loading and unloading, storage and cargo processing operations. This study also provides 
flexibility in managing general and perishable cargos with different cargo value functions that 
depend on dwell times. Numerical results indicate that the developed algorithm is capable of 
producing optimal solutions efficiently for both small and large intermodal freight networks.





 

 

1.0 INTRODUCTION AND BACKGROUND RESEARCH 

Increasing integration of intermodal transport resources is a valuable approach toward achieving 
green logistics, and most operations at intermodal freight terminals require transfer movements 
among modes to serve cargos with diverse destinations, especially for break-bulk, cross-docking, 
or transshipment systems. According to the 2002 and 2007 Commodity Flow Survey (CFS) 
results, shown in Table 1, shipments (in terms of million ton-miles) using a single transportation 
mode increased by only 0.9% over these six years, while multi-modal shipments almost doubled. 
CFS is a survey of shippers sponsored by the Bureau of Transportation (BTS), which provides 
detailed information on U.S. freight flows. CFS data are collected every five years as a 
component of the national Economic Census and provide a benchmark on the value, tonnage, 
ton-miles, distances, and mode use of commodity shipments. 
 
Several previous studies consider the schedule coordination problem in transit transfer systems, 
but only a few deal with intermodal freight transfer operations. Voss (1992) formulates the 
schedule synchronization problem as a multi-commodity network design problem, exploiting the 
quadratic semi-assignment problem (QSAP), and proposes a tabu search algorithm to solve the 
problem. The QSAP is related to the quadratic assignment problem by the requirement of 
assigning a set of objects to the candidate locations (i.e. time slots). The QSAP can assign to 
each location zero, one, or multiple objects, unlike the QAP which requires a one-to-one 
mapping function. The work presented in Voss (1992) mainly seeks to jointly optimize the slack 
times and service schedules, but this model does not fully fit our requirements. 

 
Table 1 CFS DATA Comparisons Based on Mode Types  

Shipment Characteristics by Mode in Ton-miles Mode of 
Transportation 2002(million) 2007(million) Percentage Change 
Single Modes 2,867,938 2,894,251 0.9 

Truck 1,255,908 1,342,104 6.9 
Rail 1,261,612 1,344,040 6.5 

Water 282,659 157,314 -44.3 
Air 5,835 4,510 -22.7 

Multiple Modes 225,715 416,642 84.6 

(Source: BTS Special Report, 2009) 
Gue (1999) develops a trailer scheduling model based on the layout of the terminal to minimize 
the worker travel distances, which can provide a basis of scheduling coordination between 
delivery and cargo processing vehicles within the terminal. In this study we focus on transfer 
movements through the studied networks. Detailed transfers inside terminals, such as scheduling 
and operation problems of crane and other loading / unloading facilities, and cargo processing 
procedures subject to security concerns, are worth considering in possible extensions. 
 
Anderson et al. (2009) also propose a capacitated multi-commodity network design model with 
schedule coordination of multiple fleets. They design a scheduled service network for a 
transportation system where several entities provide transportation services and coordination 



 

 

with neighboring systems. Their model determines departure times of the service fleets by 
minimizing throughput time of the shipments in the system. They analyze how collaborating 
transportation services should be synchronized and evaluate how border-crossing operations 
impact the throughput time for the shipments. Their study has two main weaknesses. First, 
service collaborations among different organizations may be difficult in a freight transportation 
system unless under a consortium or alliance. Second, the proposed border-crossing operations 
mainly coordinate services with neighboring systems, so the compromise solutions among these 
neighboring systems may be not efficient through entire networks. 
 
In order to develop an effective freight shipment transfer scheduling process, Chen and 
Schonfeld (2010) contribute a method for quantifying and simultaneously optimizing the service 
frequencies and slack times among all routes within the studied network based on different 
coordinated policies. The studied problem is first tested in small networks and solved by GA and 
SQP. In this study, a hybrid technique combining sequential quadratic programming and genetic 
algorithms (GA-SQP) is further developed for solving the large-scale intermodal logistics timed 
transfer problems. 
 
Our previous logistic timed-transfer models develop coordinated and optimized schedules for 
given freight networks, which minimize transfer delays, among other factors. Three different 
coordinated methods are analyzed, namely: uncoordinated operations, coordinated operations 
with a common service headway, and coordinated operations with integer-ratio service 
headways. Uncoordinated operation means that all modes and routes are optimized 
independently; other coordination methods are developed for different characteristics and 
combinations of modes.  It should be noted that several related models (Lee and Schonfeld, 
1994; Ting and Schonfeld, 2007) have been developed for urban passenger transportation and air 
transportation systems; however, some important differences pertaining to freight logistics (e.g. 
factors affecting demand, lack of self-guidance, storage requirements, perishability, 
heterogeneous characteristics of cargos, information availability about shipments) require special 
attention in this study. 
 
The models for uncoordinated service and coordination with a common headway are formulated 
as nonlinear programming problems (NLP). Since constraints in the proposed models are not 
convex functions, standard heuristic algorithms for solving these NLPs can guarantee 
convergence only to a local minimum. The model of integer-ratio coordination including both 
integer and linear variables (i.e. integer ratio multipliers) with nonlinear cargo time values is 
known as a mixed-integer nonlinear program (MINLP). The optimization of such models is 
typically difficult due to their combinatorial nature and potential existence of multiple local 
minima. 
 
Many previous studies apply genetic algorithms (GAs) to solve scheduling and schedule 
coordination problems. Shrivastava et al. (2002) formulate scheduling and schedule coordination 
problems as conflicting objectives with user's costs and operator's costs. Sarker and Newton 
(2002) develop a method for determining an optimal batch size for a product and purchasing 
policy for associated raw materials, given limited storage space and capacities of transportation 
fleets. Torabi et al. (2006) investigate the delivery schedule that would minimize the average of 
holding, setup, and transportation costs per unit time for the supply chain. Cao and Lai (2007) 



 

 

present a vehicle routing problem with time windows constraints and simultaneous delivery and 
pick-up operations. A hybrid optimization algorithm is proposed based on the combination of 
differential evolution techniques and GAs. 
 
In other MINLP applications, Cheung et al. (1997) integrate GAs and a modified grid search 
method to minimize the cost development problem within oil fields and optimize the design of 
the multiproduct batch plant. Ponsich et al. (2007) also test similar batch plant problems by using 
GAs. In general, the objective of the batch plant problem is to minimize the plant investment 
cost. The formulation usually accounts for the synthesis of m products treated in n batch stages 
and k semi-continuous units (pumps, heat exchangers, etc.). Ozçelik and Ozçelik (2004) mention 
that the traditional gradient methods for solving the MINLP must separate the problem into 
Mixed Integer Linear Programming (MILP) and NLP, with some special formulations where 
continuity or convexity has to be imposed. They develop a heuristic algorithm based on a 
simulated annealing algorithm to solve this problem. 
 
SQP methods are appropriate for solving smooth nonlinear optimization problems when the 
problem is not too large (although this limitation has been alleviated in some of the studies 
discussed below for large scale problems), the functions and gradients can be evaluated with 
sufficient precision, and the problem is smooth and well-scaled (Hock and Schittkowski, 1983). 
In this approach, an approximation is made of the Hessian of the Lagrangian function using a 
quasi-Newton updating method. Boggs and Tolle (2000) apply the general SQP methods to solve 
nonlinear constrained optimization problems. They point out that large scale problems (i.e., with 
a large number of variables and / or constraints) may lead to inefficient solution procedures when 
using SQP. Thus, they propose reduced Hessian SQP methods for solving large scale problems. 
Cervantes et al. (2000) describe a modified SQP method for solving the nonlinear optimal 
control formulation, which has been applied in some general nonlinear programming problems. 
This method employs a line search, a merit function, and reduced-space quasi-Newton Hessian 
approximations. Tenny et al. (2004) develop a feasibility perturbation – sequential quadratic 
programming method (FP-SQP). One main advantage is that the latest iterate can be used as a 
(suboptimal) feasible solution, if it is necessary to terminate the solution process early, thus 
avoiding unpredictable algorithmic behavior associated with allowing infeasible points. Based on 
this approach, Wright and Tenny (2004) seek an approximate minimizer of the model function 
over the intersection of the trust region with the original feasible set at every iteration. 
 
Although deterministic methods (e.g. SQP) are relatively fast, they might get trapped in local 
optima since such problems may have many local solutions (Fatemi et al., 2005). Still, a good 
initial point or initial range could lead to the global solution. On the other hand, stochastic 
methods (e.g. GAs) are more suitable for solving such type of problems because a wide range of 
values for parameters would be searched and probability of getting trapped into local optima 
would decrease. Nevertheless, their convergence in the final problem solving steps is relatively 
slow. Therefore, several researchers have developed some hybrid / combination optimization 
methods for solving nonlinear programming problems. 
 
Victoire et al. (2006) present a hybrid tabu search (TS), particle swarm optimization (PSO) and 
SQP technique for scheduling generating units based on the fuzzy logic decisions. Youssef et al. 
(2007) describe a hybrid TS – GA – SQP method for optimizing the fitting of non-uniform 



 

 

rational B-Spline surfaces to laser-scanned point clouds. Pedamallu and Ozdamar (2008) develop 
a hybrid simulated annealing (SA) and SQP method for solving nonlinear and non-convex 
constraint problems. They develop two versions of hybrid SA - SQP methods. The first version 
incorporates penalties for constraint handling and the second one eliminates the need for 
imposing penalties in the objective function by tracing feasible and infeasible solution sequences 
independently. Numerical experiments show that the second version is more reliable in the worst 
case performance. Mansoornejad et al. (2008) use a hybrid GA - SQP method to determine the 
kinetic parameters of the set of highly nonlinear hydrogenation reactions. Gasbarri et al. (2009) 
also use a hybrid GA – SQP method to solve an integrated dynamic and structural optimization 
procedure for a composite wing-box design problem. Since hybrid methods can adopt 
advantages of both deterministic and stochastic methods and avoid certain existing 
disadvantages, some of the above hybrid techniques are considered in this study. Based on the 
proposed nonlinear programming models (e.g. some components of objective function, 
constraints, and nonlinear time value settings), GAs and SQP are well suited for such problems 
with complex and nonlinear formulations. One hybrid GA – SQP method is developed for 
solving our problem. The basic concept for the hybrid method is to do the global search with 
GAs and use SQP for the deeply local search. 

2.0 MODELING FRAMEWORK 

In this section, three analytical models for different schedule coordination policies are developed 
based on the predetermined logistic networks, given origin-destination information for a specific 
time period, and some suggested values for certain parameters, in order to minimize the total 
system costs. Based on problem’s characteristics, it is modeled as nonlinear programming 
problem (NLP) and mixed-integer nonlinear programming problem (MINLP) within the studied 
networks. To deal with the stochastic vehicle arrivals and uncertain route travel times, optimized 
slack times are built into the operating schedules. 

2.1 MODEL FOR SCHEDULING UNCOORDINATED OPERATIONS 

The mathematical model for uncoordinated operation is based on independently optimized 
schedules for different routes. The objective is to minimize the total system costs (Equation 1), 
which include delivery vehicle operating cost (Co), cargo dwell time cost (Cw), 
loading/unloading cost (Cl), cargo processing cost (Cp), and cargo transfer cost (Cf). Cargo in-
vehicle cost is not affected by service frequencies; hence it is not included in the total system 
cost function. Bi = unit vehicle operating cost ($/vehicle-min); Ti = round trip time of Route i 
(min), including the lay-over time; fi = service frequencies of Route i (veh/min); ai = fixed 
vehicle operating cost of Route i ($/min); bi = variable vehicle operating cost of Route i ($/lb-
min); and Si = vehicle size on Route i. Equation 3.3 specifies that the total demand of Route i 
includes m types of cargos. Di = demand along the Route i (lb / min); μm = unit time-dependent 
cargo value function of type m cargo ($/lb-min); wi = dwell time on Route i; θ= unit cargo 
loading / unloading time (min); σ2

i = variance of service headways of the Route i (min2). 



 

 

Detailed formulations are shown in Chen and Schonfeld (2010). The model is expressed as 
follows: 

Minimize  (1) 

 (2) 

 (3) 

 (4) 

 
(5) 

Subject to  

 
(6) 

 (7) 

 (8) 

Equation (6) assumes that the required storage areas for the total transfer demand cannot exceed 
the available storage areas at the transfer terminal k. ε = unit cargo storage areas; Ak = available 
storage areas at the transfer terminal k. Equation (7) states that the service frequency on any 
feeder route i should not exceed the maximum allowable service frequency (fmax), where Ni = 
total available vehicles for dispatching on route i (vehicles); li = load factor on route i. Equation 
(8) states that the service frequency on any feeder route i should exceed the minimum acceptable 
service frequency (fmin). 

2.2 MODEL FOR SCHEDULING A COORDINATED OPERATION 
WITH A COMMON SERVICE FREQUENCY 

A major difference between the uncoordinated and coordinated systems is the provision of slack 
times for coordinated systems. Slack times are additional decision variables within the proposed 
sub-models. For the uncoordinated system, we address the cost terms related to the service 
frequency (or headway). Since the exact vehicle travel and arrival times are uncertain, adding 
some reserve or “slack” time into a schedule can improve adherence to scheduled departures at 
the transfer terminal and allow a better response to demand fluctuations, congestion and other 
contingencies. For a coordinated operation, the costs of vehicle operation and cargo dwell, 
loading, unloading and processing are the same as those for an uncoordinated system. However, 
some costs related to the transfer movements are sensitive to the slack times and service 
frequencies. These cost components are formulated in Equations (9)-(12). 

 (9) 



 

 

 (10) 

Equation (9) states that the transfer cost of the coordinated operation with a common service 
frequency includes three cost components: the slack time cost (Cs), the missed connection cost 
(Cx), and the connection delay cost (Cd). The slack time cost includes the costs of additional in-
vehicle time for loaded cargos and processing operations during the slack time. In Equation (10) 
the first term is the slack time delay cost for the cargos already loaded in vehicles serving route i; 
the second term is the dwell time cost for cargos transferred to route i; the third term is the 
additional vehicle operating cost due to the slack time. Let Hmk

i = amount of m types of cargos 
already loaded at terminal k on route i (cargo / min); Fmk

i = amount of m types of cargos 
transferred at terminal k from other routes to route i (cargo / min); ski = slack time at transfer 
terminal k on route i (min); δki (a binary variable) = 1 if transfer terminal k is located on route i 
and 0 otherwise. Equations (11)-(12) represent the missed-connection and connection-delay costs 
based on the corresponding probabilities. 

 (11) 

 (12) 

2.3 MODEL FOR SCHEDULING A COORDINATED OPERATION 
WITH INTEGER-RATIO SERVICE HEADWAYS 

The common service frequency is not efficient when the demands or vehicle round-trip times of 
different routes vary much. Especially for international intermodal freight transportation 
networks, the characteristics of routes and modes differ significantly. Thus, the concepts 
proposed by Ting and Schonfeld (2007) for coordinating operations with integer ratios for 
headways and segment travel times (in passenger transportation systems) are adapted here and 
revised as follows. The cost terms related to transfer movements are sensitive to the slack time 
and service frequency. These cost components are expressed in Equations (13)-(17). 

 (13) 

 (14) 

 (15) 

 (16) 

 (17) 

Equation (13) states that the transfer cost of the coordinated operation with integer-ratio service 
headways includes four cost components. In order to describe the inter-cycle transfer delay cost 
(Ci), the frequencies and headways (which are reciprocal terms) of routes i and j can be 
expressed with integer multipliers (βi and βj) of the base cycle y (headway): hi =βi y and hj 
=βj y (or fi =βi -1y-1 and fj =βj -1y-1). Let zmk

ji = the average transfer waiting time from route j 



 

 

to route i; gji = the greatest common divisor βi of and βj. The inter-cycle cost includes all 
routes connecting at the transfer center, as shown in Equations (14)-(15). All other formulations 
are similar as those for the common frequency method. 

3.0 SOLUTION METHODS 

In this section, three heuristic approaches for both NLP and MINLP are described. Here we first 
briefly introduce the solution procedures of genetic algorithms (GAs) and sequential quadratic 
programming (SQP), starting from initializing and verifying input data until obtaining the 
optimized solutions. A hybrid GA-SQP method is then described specifically for the proposed 
models, which is related to but somewhat different from the one proposed by Mansoornejad et 
al. (2008), as explained later in this section . 
 
The application of GAs to a specific problem includes several steps. A proper encoding method 
should be devised first. A fitness function is required for selecting individuals and evaluating 
produced offspring, which is derived through some problem-specific genetic operators. Thus the 
main components of GAs should contain (1) solution encoding, (2) initial population, (3) fitness 
function, (4) selection, (5) genetic operators, and (6) population replacement. The proposed GAs 
comprise three kinds of chromosomes with linear and integer genes to represent the strategic 
planning variables of different control policies, as shown in Figure 1. 
 

 
Figure 1 Settings of Chromosomes for (a) Uncoordinated, (b) Common Headway Coordination, and (c) 

Integer-ratio Coordination approaches 
SQP is another widely used approach for solving nonlinear constrained optimization problems. 
Since its popularization in the late 1970s, SQP has arguably become the most successful method 
for solving nonlinearly constrained optimization problems. This method attempts to solve a 
nonlinear program directly rather than convert it to a sequence of unconstrained minimization 
problems. With a solid theoretical and computational foundation, SQP algorithms have been 
developed and used to solve a remarkably large set of important practical problems (e.g. 
Cervantes et al., 2000; Tenny et al. 2004). 
 
Although both GA and SQP have been widely applied in solving the nonlinear optimization 
problems, both approaches still have some drawbacks. Hybrid heuristic algorithms have been 



 

 

favored recently due to the potential combinatorial advantages. We first introduce the hybrid GA 
– SQP approach of Mansoornejad et al. 2008, and explain some differences between their 
approach and our proposed algorithm. 
 
In Mansoornejad’s approach, a GA is applied first to produce a proper starting solution and then 
calculations shift to SQP. Furthermore, the GA and SQP are used sequentially. The algorithm 
starts with the GA since the SQP is sensitive to the starting point. The calculation continues with 
the GA for a specific number of generations or a user-specified number for the stall generation, 
during which the approximate solution approaches to the final solution. The stall generation is 
one possible stopping criterion. In other words, the GA keeps running until the number of 
generations meets a specified value or the objective function value stays unchanged for a 
specified number of generations, both specified by the user based on the nature of the problem. 
Their algorithm then shifts to the SQP, which is a faster solution method. If the improvement 
with the SQP is insufficiently large, the algorithm returns to the GA. The criterion for “enough 
improvement” depends on the nature of the problem and can be specified by users. Otherwise, 
the algorithm continues until no further improvement in the objective function is observed. This 
sequence of shifting between GA and SQP in series could be applied more than once until the 
final solution is reached. 
 
The hybrid GA – SQP method proposed by Mansoornejad et al. is sound; however, there are still 
some drawbacks which can be improved by our approach. Details of the hybrid GA - SQP 
approach proposed here are illustrated in the flowchart of Figure 2. 



 

 

 
Figure 2 Procedures of proposed hybrid GA - SQP method 

 
 

First, the GA stopping criterion in Mansoornejad’s algorithm seems somewhat insufficient. In 
our approach, we use SQP to produce the starting solution which provides a reasonable threshold 
for the following GAs. As soon as the GA result overtakes the current dominant solution D*, the 
program switches back to SQP. 
 
Second, the alternation between GA and SQP may be inefficient because the GA may not exploit 
its main advantage, the “diversity” of solutions. An important problem with a hybrid method is 
determining the appropriate switching time. In our approach, if the dominant solution is 
generated from SQP, then even if the current switch (i.e. GA) cannot find a better solution, the 
program does not terminate immediately. In order to increase diversity for the GA, different 
random seeds applied in the GA challenge the dominant solution again and are repeated several 
times until no further improvements are found. However, if the GA result can improve on the 
current dominant solution, this result is recorded as the new dominant solution and becomes the 
initial estimate for SQP. The proposed algorithm keeps running the SQP program to find a better 
solution or terminates when no further improvements are found. 



 

 

Third, Mansoornejad’s approach has another problem of timing the switch from SQP to GA. If 
the SQP step size is too small, the algorithm shifts to the GA. This switching strategy may raise 
two additional difficulties: (1) How should we determine the “large enough” step size for 
proceeding in SQP; and (2) The intermediate termination of SQP may not generate a useful base 
for the following GA. To solve these two problems, we switch to GA only if we reach a local 
optimun in SQP. 
 
In order to exploit the major advantages of both GA and SQP and alleviate the weaknesses of 
these two approaches, a hybrid GA – SQP method is developed and applied in case studies. In 
general, the proposed hybrid approach first implements a global search with the GA and then 
runs SQP to reach the final solutions. Through this algorithm, the GA can converge very fast 
initially and provide a good initial solution for SQP, which then searches until no further 
improvements are found. 

4.0 NUMERICAL EXAMPLES 

Through this work we seek to coordinate the service frequency among inbound and outbound 
routes connecting to an intermodal freight terminal. Some applications arise when the service 
routes have significantly different demands or travel times. Additionally, this study provides 
flexibility for general and perishable cargos with different inventory / dwell time value functions. 

4.1  CASE 1: SINGLE COMMODITY, MULTIPLE MODES, & SINGLE 
HUB OPERATIONS 

In Case 1, we assume there are 9 light truck routes (Routes 1-9) and 1 heavy truck route (Route 
10) connecting to the terminal. To simplify the problem, we start from the single-hub operation 
with symmetric demand between any pair of inbound and outbound routes. 
 
The capacities of light and container trucks are 7,300 and 22,000 pounds, respectively. The 
vehicle operating cost function is expressed as a + b*c, where a represents the fixed cost ($/hr), b 
represents the variable cost ($/lb-hr), and c is the capacity for the vehicle. In this case, we assume 
a = 100 (light) and 200 (heavy), and b = 0.03. The value of parameter b is suggested by Coyle, 
Bardi, and Novack (1994); however, this value may differ for different modes and commodities. 
The following case studies adopt this value, but it is easily changeable based on user 
requirements. The unit cargo dwell cost (µ) is $0.2/lb-hr. Unit cargo loading and processing 
times are set as 0.03 and 0.05 (min/lb), respectively. Other given inputs are listed in Table 2. 

 

 

 

 

Table 2 Demand and Route Information for Case 1 
Inbound 

Route 
Outbound Route 

(Unit: 100 lb / 
Route Travel Time 

(min) 



 

 

 hour) Mean Standard 
Dev. 

1 24.50 82 8 
2 31.50  99 9.5 
3 15.50 43 3.5 
4 32.50 107 10 
5 15.00 39 3.5 
6 22.50 79 7.5 
7 35.00 115 10.5 
8 30.00 94 9 
9 21.00 73 6.5 

 
In this case, the common headway approach has the same result as the integer-ratio approach. As 
shown in Table 3, both SQP (also same as the result via GA-SQP in this case) and GA can obtain 
better system performances in coordinated operations than in uncoordinated ones, especially for 
the transfer cost components.  
Table 3 Overall Results of Different Policies in Case 1 

Optimized Headways (hour/vehicle) / Frequencies (vehicle) 
 Uncoordinated 

(GA-SQP) 
Coordinated 

(GA) 
Coordinated 
(GA-SQP) 

Route 1 1.34 0.75 0.966 1.035 0.967 1.034 
Route 2 1.30 0.77 0.966 1.035 0.967 1.034 
Route 3 1.22 0.82 0.966 1.035 0.967 1.034 
Route 4 1.33 0.75 0.966 1.035 0.967 1.034 
Route 5 1.18 0.85 0.966 1.035 0.967 1.034 
Route 6 1.37 0.73 0.966 1.035 0.967 1.034 
Route 7 1.32 0.76 0.966 1.035 0.967 1.034 
Route 8 1.29 0.77 0.966 1.035 0.967 1.034 
Route 9 1.36 0.73 0.966 1.035 0.967 1.034 

Route 10 0.97 1.03 0.966 1.035 0.967 1.034 
Slack Time  

S1
1 -- 0.03 0.02 

S2
1 -- 0.08 0.06 

S3
1 -- 0.03 0.03 

S4
1 -- 0.11 0.03 

S5
1 -- 0.02 0.02 

S6
1 -- 0.02 0.05 

S7
1 -- 0.02 0.02 

S8
1 -- 0.08 0.03 

S9
1 -- 0.05 0.06 

S10
1 -- 0.05 0.05 

Costs ($/hour)  
Operating Cost 10382 12496 12485 

Dwell Cost 5216 4444 4447 
Loading / 
Unloading 10 9 9 

Cargo Processing 9 7 7 
Non-transfer Cost 15617 16956 16948 

Inter-cycle -- 0 0 
Slack time -- 661 509 

Miss-connection -- 1724 1958 
Connection delay -- 442 328 

Transfer Cost 5216 2827 2795 
Total System Cost 20833 19783 19743 



 

 

 
When comparing the values for coordinated and uncoordinated objective functions, we observe 
that the coordinated approaches are better than the uncoordinated one, especially for transfer 
costs. It is clear that, due to lower load factors, higher service frequencies lead to higher 
operating cost, lower cargo dwell, loading, unloading, and processing times and costs. 
In this multi-variable problem, SQP can generate robust solutions based on given initial feasible 
solutions. However, the quality of the optimized solutions may be affected by different initial 
solutions. The proposed hybrid GA-SQP algorithm is developed for overcoming this weakness 
of SQP. However, if the initial estimate is fairly good, the SQP can still reach the same solution 
as the hybrid method. 
 
In our GA applications, the optimized result is almost the same (i.e. the difference between total 
system costs is only 0.2 %). Although this GA objective value can be improved by running 
additional generations, those additional generations yield diminishing improvements. The proper 
number of generations that should be run depends on tradeoffs between solution quality and the 
program running time. In our hybrid approach, an initial solution solved by SQP with any 
random feasible estimate can be viewed as one threshold value for stopping the GA. 

4.2 VARIABILITY IN OPTIMIZED RESULTS 

As mentioned above, results solved by SQP may vary with different initial inputs and those 
optimized by GAs may reach various local optima due to different random seeds of initial 
populations. The GA-SQP performance in terms of objective function value is tested by 
comparing its results to those of GA and SQP. Some numerical examples generated based on 30 
different initial solutions (for SQP) and 30 different random seeds (for GAs) are tested in this 
section. Results are also compared with the proposed hybrid GA-SQP method by using the same 
set of random seeds for GAs. All other settings are as in Case 1. 
 
A hybrid GA-SQP heuristic algorithm proposed here shows the robust capability to find the same 
optimal solution based on different random seeds for its GA stage. One of the GA stopping 
criteria is the number of generations; here we set a threshold at 500 generations. For the hybrid 
GA – SQP approach, we first let a GA run 100 generations and then use those results when 
switching to SQP. It should be noted that both GAs and the hybrid GA – SQP may be terminated 
and switched by other criteria. The pre-determined thresholds are only used for comparison 
among different solution approaches. Results found by the GA after running 100 generations are 
also provided for comparison with those solved by other algorithms.  
 
In Figure 3, when comparing the results solved by four different algorithms, both GA (with 500 
generations) and the hybrid GA - SQP approaches are better than the GA (with 100 generations) 
and SQP. This figure also demonstrates that SQP is very sensitive to initial feasible solutions. 
Wide variation in results is seen based on different initial solutions. Although SQP can reach 
similar fitness values to those of our hybrid GA- SQP approach due to the good initial estimates 
(2 times within the 30 examples), it may be difficult for inexperienced users to obtain good 
initial solutions. 
 
Some examples indicate that GA results after 100 generations may still be unable to surpass the 
current dominant solution solved by SQP. Moreover, results solved by GA may be affected by 



 

 

different random seeds of the initial populations. In further comparisons between the GA over 
500 generations and the proposed hybrid method, the results obtained with the hybrid approach 
provide better and consistent optimized solutions, although the differences from those solved by 
GA are not significant. 
 

 
Figure 3 Optimized Results Solved by GA, SQP, and a Hybrid GA-SQP in Case 1 

4.3 COMPUTATION TIME 

The computation time is important for future real-time applications. On average, Figure 4 shows 
that the GA (with 500 generations), the hybrid GA (with 100 generations) –SQP, and SQP in 
Case 1 are completed in 144.22, 48.13, and 13.85 seconds, respectively. All programs are 
executed on a PC with a Pentium(R) 4 CPU 2.80 GHz and 512 MB of RAM. 
 
As mentioned above, additional generations of GAs yield diminishing improvements in the value 
of the objective function. Thus, the suitable number of generations for each optimization process 
should be based on the available computation time and mission importance. 
Apparently, both SQP and the hybrid algorithm can obtain satisfactory results within one minute, 
which provide a competitive ability for fairly complex real-time applications. It should be noted 
that the computation time may be affected by the scale of studied networks, number of decision 
variables and constraints, and equipment used. 



 

 

 
Figure 4 Program Running Time with Different Solution Approaches in Case 1 

 
Case 2: multiple commodities, multiple modes, & multiple hubs with loop in network 

Three container truck routes (Routes 1-3) and three heavy truck routes (Routes 4-6) are analyzed 
in Case 2. As shown in Figure 5, the three hubs form a loop, which generally complicates their 
coordination. The vehicle capacities are 44,000 and 22,000 pounds. In this case, a = 200 (heavy) 
and 250 (container), and b = 0.03. Two types of shipments with different unit time values are 
assumed in this case. μ1 and μ2 are $0.5*exp(-t) /lb-hr and $0.2/lb-h respectively. The notation 
“t” expresses the total transportation time, including dwell time, loading/unloading, cargo 
processing, and mean travel time from origin to destination. The average and the standard 
deviation of travel time are listed near each link. All other settings are as in Case 1. 
 
Coordination at one transfer terminal affects the other transfer hubs in the loop. Considering only 
the coordination of a pair of transfer terminals may lead to coordination conflicts for other pairs 
of terminals. The conflicts may increase the difficulties of solving this problem and may even 
preclude feasible solutions. More transfer terminals within the loop and more loops within the 
entire networks would increase the complexity of the studied problem. The interaction among the 
hubs within the loop is quite important in this case. 

 
Figure 5 Network Configuration for Multi-Modes and Multi-Hubs Operation 



 

 

 
Table 4 indicates the optimized results based on the given OD information and loop network 
configuration. Basically, under uncoordinated operations, 3 light truck routes tend to be served 
with smaller headways than those of 3 container truck routes. The value of the optimized 
common headway lies between the minimal and maximal headways in uncoordinated operations. 
For integer-ratio coordination, both GA and the hybrid GA-SQP obtain the same integer 
multipliers but with different base cycle values. In addition, common headway coordination is 
undesirable in this case due to high non-transfer costs. The optimized result of integer-ratio 
coordination solved with the hybrid approach is the dominant solution in Case 2. 
 

 
Table 4 Overall Results for Different Policies in Case 2 

Optimized Headways (hour/vehicle) 

 Uncoordinated 
(GA-SQP) 

Common 
Headway 

Coordination 
(GA-SQP) 

Integer-ratio 
Coordination 

(GA) 

Integer-ratio 
Coordination (GA-

SQP) 

Base Cycle (y) -- 0.90 0.35 0.42 
Route 1 1.43 y 4y 4y 
Route 2 1.40 y 5y 5y 
Route 3 1.06 y 3y 3y 
Route 4 0.72 y 2y 2y 
Route 5 0.57 y 2y 2y 
Route 6 0.78 y 2y 2y 

Slack Time  
S1

7a ,S1
7b -- 0.08, 0.05 0.08, 0.01 0.12, 0.01 

S1
9 -- 0.05 0.18 0.18 

S2
7a ,S2

7b -- 0.04, 0.05 0.06, 0.01 0.11, 0.01 
S2

8 -- 0.15, 0.06 0.19 0.18 
S3

8a, S3
8b -- 0.11, 0.05 0.07, 0.14 0.07, 0.18 

S3
9a ,S3

9b -- 0.03, 0.03 0.06, 0.07 0.06, 0.14 
S4

7 -- 0.06 0.09 0.08 
S5

8 -- 0.05 0.07 0.08 
S6

9 -- 0.06 0.07 0.06 
Costs ($/hour)  

Co 17078 21679 16431 13955 
Cw 6700 5702 7083 8400 
Cl 28 23 30 35 
Cp 16 12 17 20 

Non-transfer 23822 27416 23561 22410 
Ci -- -- 48 428 
Cs -- 1132 2681 2952 
Cm -- 2459 1299 1208 
Cd -- 2514 1186 1085 

Transfer 6880 6105 5214 5673 
Total System 30702 33521 28775 28083 

4.4 CASE 3: A LARGE SCALE NETWORK APPLICATION WITH 
MULTIPLE HUBS WITH LOOP IN NETWORK 

Based on the above cases, we attempt to synchronize service routes within the studied network. 
In the real world, one intermodal train may connect 240 - 300 trucks of the road. The tested 



 

 

examples may be relatively simple; however, the computation codes can be easily adapted to 
other network configurations with required information. A larger network with 30 light truck 
routes (Routes 1-30), two container truck routes (Routes 31-32), and one rail route (Route 33) is 
analyzed in Case 3. Similarly to Case 2, the three transfer terminals are arrayed in a loop. The 
vehicle capacities of light truck, container truck, and rail train including 6 container stack railcars 
are 22,000, 44,000, and 1,017,000 pounds, respectively. In this case, a = 200 (heavy), 250 
(container), and 300 (rail); b = 0.03. Two types of shipments with different unit time values are 
$0.25*exp(-t) /lb-hr and $0.1/lb-hr. All other settings are as in Case 1.  
 
Table 5 shows the optimized results based on the given OD information and the loop network 
configuration. Basically, the optimized result of integer-ratio coordination solved with the hybrid 
approach is the dominant solution in Case 3. The value of the optimized common headway is 
still between the minimal and maximal headways in uncoordinated operations. For integer-ratio 
coordination operations, all light truck routes are served with the base cycle y (y = 2.03 hours). 
Two container truck routes and the rail train route are scheduled with 2y and 5y headways, 
respectively. Overall results (both schedules and total system costs) of uncoordinated operations 
and those of integer-ratio coordination operations are quite similar. As in Case 2, common 
headway coordination is still less desirable in this case due to extremely high non-transfer costs. 
 

 
Table 5 Overall Results ($/hour) for Different Policies in Case 3 

 Uncoordinated 
Common 
Headway 

Coordination 

Integer-ratio 
Coordination 

Non-transfer Costs 87,107 207,850 91,146 
Transfer Costs 18,440 9,840 15,604 

Total System Costs 105,547 217,690 100,750 
 

5.0 CONCLUSIONS 

In this paper, our case studies are developed for multi-mode transfer operations. General models 
are developed for most combinations of modes (e.g. trucks to rail trains, trucks to airplanes, rail 
trains to ships, etc.), which can be described in terms of their vehicle capacities, unit operating 
costs, average speeds and travel time variances. The pre-planning model is developed for 
optimizing in advance system characteristics such as terminal capacities, vehicle sizes, routes, 
schedules and probabilistic reserve factors built into operating schedules. The usefulness of the 
numerical results can be increased by further developing a real-time control model for dealing 
with service disruptions. Since system coordination can provide many advantages such as better 
scale economies in transportation, lower storage requirements, and lower external costs, 
transportation firms, terminal operators, infrastructure providers, shippers and forwarders, may 
greatly benefit from adopting such an intermodal timed transfer approach. 
 
In Case 1, we mainly seek to analyze the coordinated service frequencies that minimize the total 
system cost and start by assuming the constant value of time of cargos shipped through a single 



 

 

hub. When comparing the values for coordinated and uncoordinated objective functions, we 
observe that the coordinated systems are better than the uncoordinated one, especially for 
transfer costs. In Cases 2 and 3, networks with multiple commodities and multiple hubs forming 
a loop are investigated. Both cases are more complex and difficult because coordination between 
any pair of transfer terminals may conflict with the coordination of those two hubs with other 
hubs in the network. Interrelation among all transfer terminals should be taken into account when 
considering the coordinated schedule plan. The integer-ratio schedule coordination approach 
outperforms the uncoordinated and common headway coordination methods. 
 
The hybrid heuristic algorithm is developed for resolving the variability in optimal results in 
SQP and reducing the running time of the GA. It is found that SQP is very sensitive to different 
initial feasible solutions. Similarly, GA results may also be affected by different random seeds, 
resulting in different initial populations and local optimal solutions. Moreover, the convergence 
in final steps may be very slow in GA and additional stopping criteria or thresholds may be 
needed. Therefore, the hybrid GA-SQP algorithm is proposed which uses a GA to find a 
reasonable initial estimate for SQP, and then uses SQP to solve the problem until no further 
improvement can be found. In this approach, a random feasible initial starting point applied in 
SQP can be an appropriate threshold (i.e. one stopping criterion) for the GA. 
 
In addition, for freight transportation operations, users (e.g. shippers) and operators (e.g. carriers) 
may have some conflicting interests regarding service quality. Shippers may prefer to send 
cargos at the lowest prices while minimizing total shipping time; however, carriers may choose a 
route with multiple transfers to create economies. Moreover, competition may exist among 
service providers because each of them eventually pursues the maximization of its own total 
profit. Competitive behaviors may become unavoidable and require other models to capture their 
details. Our models are mainly usable by consortiums or “alliances” of private freight 
transportation companies. Leader – follower decision making models of consortiums or alliances 
require different formulations. Different decision makers from various agencies may have 
different control abilities, market share rates, information flow knowledge, etc. Collaboration 
within alliances may sometimes switch to competition or partial competition. For large private 
logistics companies (e.g. Walmart, Sears), the models developed here should be quite applicable 
because routing and dispatching decisions may only be determined by single source decision 
makers.
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