
1	

Project ID: NTC2014-SU-R-03

Congestion Mitigation Potential of Autonomous (Driverless)
Vehicles: A Scenario-based Approach

Final Report
 by

Xuesong Zhou

Associate Professor, School of Sustainable Engineering and the Built Environment
Arizona State University, Tempe, AZ, xzhou74@asu.edu

Monirehalsadat Mahmoudi

Graduate Student, School of Sustainable Engineering and the Built Environment
Arizona State University, Tempe, AZ, mmahmoudi@asu.edu

Ram Pendyala

Professor, School of Civil and Environmental Engineering
Georgia Institute of Technology, Atlanta, GA, ram.pendyala@ce.gatech.edu

Hossein Jalali
Graduate Student, School of Sustainable Engineering and the Built Environment

Arizona State University, Tempe, AZ, Hossein.Jalali@asu.edu

for

National Transportation Center at Maryland (NTC@Maryland)
1124 Glenn Martin Hall
University of Maryland

College Park, MD 20742

July, 2015

2	

ACKNOWLEDGEMENTS
This project was funded by the National Transportation Center @ Maryland (NTC@Maryland),
one of the five National Centers that were selected in this nationwide competition, by the Office
of the Assistant Secretary for Research and Technology (OST-R), U.S. Department of
Transportation (US DOT).

DISCLAIMER
The contents of this report reflect the views of the authors, who are solely responsible for the
facts and the accuracy of the material and information presented herein. This document is
disseminated under the sponsorship of the U.S. Department of Transportation University
Transportation Centers Program in the interest of information exchange. The U.S. Government
assumes no liability for the contents or use thereof. The contents do not necessarily reflect the
official views of the U.S. Government. This report does not constitute a standard, specification,
or regulation.

3	

TABLE OF CONTENT

1. Introduction ……………………………………….……………………………………..…….5
2. Literature Review ……………………………………………………………………………...7
3. Research Motivations ……………………………………………………………………..…...8
4. Problem Statement Based on State-space-time Network Representation …………………....10

4.1. Description of the PDPTW in State-space-time Networks ………………...………..….10
4.2. Representing the State of System and Calculating the Number of States…………13
4.3. State Transition Associated with Pickup and Delivery Links …………….……………15

5. Time-discretized Multi-commodity Network Flow Programming Model ………….………..17
6. Lagrangian Relaxation-based Solution Approach ………………….………………………...20

6.1.Time-dependent Forward Dynamic Programming and Computational Complexity …...21
6.2. Lagrangian Relaxation-based solution procedure ….……………………...……………24
6.3.Search Region Reduction ………………………………………………………………..27

7. Computational Results …………………………………………………….…………………30
7.1.Six-node Transportation Network ……………………………………………………….31
7.2.Medium-scale and Large-scale Networks ……………………………………………….34
7.3.Optimum Number of Self-driving Cars …………………………………………………36

8. Conclusions ……………………………………………………………………….………….36
9. Appendices……………………………………………..….………..………………………...36

Apprendix A: Description of the PDPTW in the Origin-Destination Network …………......37
Apprendix B: Learning Documents…………………...…………...…….…………………..38

10. References ……………………………………………………………..........…………...40

4	

Exclusive Summary
Optimization of on-demand transportation systems and ride-sharing services involves solving a
class of complex vehicle routing problems with pickup and delivery with time windows
(VRPPDTW). This research first proposes a new time-discretized multi-commodity network
flow model for the VRPPDTW based on the integration of vehicles’ carrying states within space-
time transportation networks, so as to allow a joint optimization of passenger-to-vehicle
assignment and turn-by-turn routing in congested transportation networks. Our three-dimensional
state-space-time network construct is able to comprehensively enumerate possible transportation
states at any given time along vehicle space-time paths, and further allow a forward dynamic
programming solution algorithm to solve the single vehicle VRPPDTW problem. By utilizing a
Lagrangian relaxation approach, the primal multi-vehicle routing problem is decomposed to a
sequence of single vehicle routing sub-problems, with Lagrangian multipliers for individual
passengers’ requests being updated by sub-gradient-based algorithms. We further discuss a
number of search space reduction strategies and test our algorithms, implemented through a
specialized program in C++, on medium-scale and large-scale transportation networks, namely
the Chicago sketch and Phoenix regional networks.

5	

1. Introduction
The advent of new vehicular technologies has raised considerable debate about the potential
impacts of such disruptive technologies on traveler behavior, demand for transportation services
and infrastructure, and transportation network performance. There are a number of disruptive
technologies that are being considered with various levels of automation, control, and
communication protocols. The US Department of Transportation has ongoing initiatives related
to the deployment of connected vehicle systems, and the development of analysis, modeling, and
simulation tools that would facilitate the analysis of the impacts and potential congestion benefits
that such connected vehicle infrastructure systems may provide. The challenge facing the
profession is that there is very little information, analysis, modeling, or behavioral studies that
provide a rigorous prediction of the potential impacts of these technologies on human
activity-­‐travel behavior, freight systems, public transit and taxi systems, and household and firm
location choices (land use). The overall goal of this project is to develop a rigorous framework
that is founded on sound behavioral constructs and analytical methods that would allow the
accurate estimation of the impacts of autonomous, driverless, connected, and other advanced
vehicular technologies under a variety of scenarios.

The recent emerging trend of self-driving cars (SDC), made available by private technology
vendors, is likely to create a revolutionary paradigm shift in the coming years for real-time traffic
system automation and control. The use of large-scale scheduling algorithms for autonomous
agents represents a fundamentally new approach that will include real-time transportation system
optimization, ubiquitous communication, and diverse data synthesis. When modeling different
stages of SDC deployments, we will consider two types of SDC use modes: (1) a car used solely
for essentially each person/household, and (2) one car shared among travelers through a
transportation network company (TNC) such as Lyft and Uber. In this research, we focus on the
second type of SDC use mode, shared autonomous vehicles (SAV), which can offer an
economically efficient approach to meet increasing transportation demand, considering this fact
that most personal cars are currently used by single drivers only 1-2 hours during a day. This
SAV approach could lead to a long list of benefits, to name a few, reducing driver stress and
driving costs, improving mobility for non-drivers, increasing road capacity, reducing operating
costs, increasing fuel efficiency, and reducing pollution.

Through the SAV, each user, instead of using his own car, call a car just a few minutes
before leaving from his origin, or pre-schedule a car in advance. The SAV system has been
designed intelligently in which no one wait long for a vehicle even if he resides in a high-
demand area. As illustrated in Fig. 1, the main players of operating the transportation network in
a city with fully coordinated vehicle sharing system may include centralized or decentralized
cloud computing (CC) centers, public-sector traffic management centers, private SAV providers,
as well as a network of SAVs equipped with two-way communication capabilities. Each vehicle
communicates with the traffic information providers to receive up-to-date network traffic
conditions, as well as to share the traffic data where the vehicle is traversing. The scheduling

6	

algorithm can assign multiple trip requests to a SAV, e.g. pick up three passengers from their
homes and transport them to their final destinations. Passengers using their own cars to go from
their home to their office would require three cars for three trips, while our proposed system
could use just one SDC to satisfy all demands.

Fig. 1. The infrastructure of a city with fully coordinated vehicle sharing system

In addition to the passengers’ convenience and safety factors in the second type of SDC use
mode, suppose the imposed charge of this mode of transportation be considerably less than the
transportation cost of the mode in which the passenger uses his own car. All these facts may arise
this question that does owning a personal car remain economical in the near future?

It is not far that one day all personal cars be replaced by the SAVs. Therefore, if one is
planning to establish an infrastructure for a city with fully coordinated vehicle sharing system,
answering the following key questions in advance is basically required: How many cars a city
should use to support the overall transportation activity demand/desires, at different levels of
coordination and pre-trip scheduling? How many parking lots and road infrastructure are
required? We plan to develop a holistic optimization approach for synchronizing travel activity
schedules, transportation services, and infrastructure on urban networks. For answering these
questions, it is required to examine the ride-sharing problem.

The ride-sharing problem can be mathematically modeled by one of the well-known
optimization problem which is the vehicle routing problem with pickup and delivery (VRPPD).
In this research, in order to improve the solution quality and computational efficiency of on-

7	

demand transportation systems and dynamic ride-sharing services, especially for large-scale real-
world transportation networks, we propose a new mathematical programming model for the
vehicle routing problem with pickup and delivery with time windows (VRPPDTW) that can fully
recognize time-dependent link travel time caused by traffic congestion at different times of day.
Based on the Lagrangian relaxation solution framework, we further present a holistic
optimization approach for matching passengers’ requests to transportation service providers,
synchronizing transportation vehicle routing, and determining request pricing (e.g. through
Lagrangian multipliers) for balancing transportation demand satisfaction and resource needs on
urban networks.

2. Literature Review
The vehicle routing problem with pickup and delivery with time windows (VRPPDTW) or
simply, pickup and delivery problem with time windows (PDPTW), is a generalized version of
the vehicle routing problem with time windows (VRPTW), in which each transportation request
is a combination of pickup at the origin node and drop-off at the destination node (Desaulniers et
al. 2002). The PDPTW under consideration in this paper contains all constraints in the VRPTW
plus an added constraint in which either pickup or delivery has given time windows, and each
request must be served by the same vehicle. The PDPTW may be observed as the dial-a-ride
problem in the literature as well. Since the VRPTW is an NP-hard problem, the PDPTW is also
NP-hard (Baldacci et al. 2011).

Several applications of the VRPPDTW have been reported in road, maritime, and air
transportation environments, to name a few, Fisher et al. (1982), Bell et al. (1983), Savelsbergh
and Sol (1998), Wang and Regan (2002), and Zachariadis et al. (2015) in road cargo routing and
scheduling; Psaraftis et al. (1985), Fisher and Rosenwein (1989), and Christiansen (1999) in sea
cargo routing and scheduling; and Solanki and Southworth (1991), Solomon et al. (1992),
Rappoport et al. (1992), and Rappoport et al. (1994) in air cargo routing and scheduling. Further
applications of the VRPPDTW can be found in transportation of elderly or handicapped people
(Jaw et al. 1986; Alfa, 1986; Ioachim et al. 1995; and Toth and Vigo, 1997), school bus routing
and scheduling (Swersey and Ballard, 1983; and Bramel and Simchi-Levi, 1995), and ride-
sharing (Hosni et al. 2014; and Wang et al. 2015). Recently, Furuhata et al. (2013) offers an
excellent review and provides a systematic classification of emerging ridesharing systems.

Although clustering algorithms (Cullen et al. 1981; Bodin and Sexton, 1986; Dumas et al.
1989; Desrosiers et al. 1991; and Ioachim et al. 1995), meta-heuristics (Gendreau et al. 1998;
Toth and Vigo, 1997; and Paquette et al. 2013), neural networks (Shen et al. 1995), and some
heuristics such as double-horizon based heuristics (Mitrovic-Minic et al. 2004) and regret
insertion heuristics (Diana and Dessouky, 2004) have been shown to be efficient in solving a
particular size of PDPTW, in general, finding the exact solution via optimization approaches has
still remained theoretically and computationally challenging. Focusing on the PDPTW for a
single vehicle, Psaraftis (1980) presented an exact backward dynamic programming (DP)
solution algorithm to minimize a weighted combination of the total service time and the total

8	

waiting time for all customers with 𝑂(𝑛23𝑛) complexity. Psaraftis (1983) further modified the
algorithm to a forward DP approach. Sexton and Bodin (1985a, b) decomposed the single vehicle
PDPTW to a routing problem and a scheduling sub-problem, and then they applied Benders’
decomposition for both master problem and sub-problem, independently. Based on a static
network flow formulation, Desrosiers et al. (1986) proposed a forward DP algorithm for the
single-vehicle PDPTW with the objective function of minimizing the total traveled distance to
serve all customers. After presenting our proposed model in the later section, we will conduct a
more systematical comparison between our proposed state-space-time DP framework and the
classical work by Psaraftis (1983) and Desrosiers et al. (1986).

There are a number of studies focusing on the multi-vehicle pickup and delivery problem
with time windows. Dumas et al. (1991) proposed an exact algorithm to the multiple vehicle
PDPTW with multiple depots, where the objective is to minimize the total travel cost with
capacity, time window, precedence and coupling constraints. They applied a column generation
scheme with a shortest path sub-problem to solve the PDPTW, with tight vehicle capacity
constraints, and a small size of requests per route. Ruland (1995) and Ruland and Rodin (1997)
proposed a polyhedral approach for the vehicle routing problem with pickup and delivery.
Savelsbergh and Sol (1998) proposed an algorithm for the multiple vehicle PDPTW with
multiple depots to minimize the number of vehicles needed to serve all transportation requests as
the primary objective function, and minimizing the total distance traveled as the secondary
objective function. Their algorithm moves toward the optimal solution after solving the pricing
sub-problem using heuristics. They applied their algorithm for a set of randomly generated
instances. In a two-index formulation proposed by Lu and Dessouky (2004), a branch-and-cut
algorithm was able to solve problem instances. Cordeau (2006) proposed a branch-and-cut
algorithm based on a three-index formulation. Ropke et al. (2007) presented a branch-and-cut
algorithm to minimize the total routing cost, based on a two-index formulation. Ropke and
Cordeau (2009) presented a new branch-and-cut-and-price algorithm in which the lower bounds
are computed by the column generation algorithm and improved by introducing different valid
inequalities to the problem. Based on a set-partitioning formulation improved by additional cuts,
Baldacci et al. (2011) proposed a new exact algorithm for the PDPTW with two different
objective functions: the primary is minimizing the route costs, whereas the secondary is to
minimize the total vehicle fixed costs first, and then minimize the total route costs.

3. Research Motivations
Previous research has made a number of important contributions to this challenging problem
along different formulation or solution approaches. On the other hand, there are a number of
modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and
scheduling algorithm, especially for regional networks with various road capacity and traffic
delay constraints on freeway bottlenecks and signal timing on urban streets. A majority of
previous research does not directly consider the underlying transportation network (with time of
day traffic congestion) and has defined the PDPTW on a directed graph containing customers’

9	

origin and destination locations connected by some links which are representative of the shortest
distance or least travel time routes between origin-destination pairs. That is, with each link, there
are associated routing cost and travel time between the two service nodes. Unlike the existing
offline network for the PDPTW in which each link has a fixed routing cost (travel time), our
research particularly examines the PDPTW on real-world transportation networks containing a
transportation node-link structure in which routing cost (travel time) along each link may vary
over the time.

In order to consider many relevant practical aspects, such as waiting costs at different
locations, we adopt and develop Yang and Zhou’s (2014) space-time scheme to formulate the
PDPTW on state-space-time transportation networks. The constructed networks are able to
conveniently represent the complex pickup and delivery time windows without adding the extra
constraints typically needed for the classical PDPTW formulation (e.g. Cordeau, 2006). The
introduced state-space-time networks also enable us to embed computationally efficient dynamic
programming algorithms for solving the PDPTW without relying on off-the-shelf optimization
solvers. Even though the solution space created by our formulation has multiple dimensions and
accordingly large in its sizes, the readily available large amount of computer memory in modern
workstations can easily accommodate the multi-dimensional solution vectors utilized in our
application. Our fully customized solution algorithms, implemented in an advanced
programming language such as C++, hold the promise of tackling large-sized regional
transportation network instances. To address the multi-vehicle assignment requirement, we relax
the transportation request satisfaction constraints into the objective function and utilize the
related Lagrangian relaxation (LR) solution framework to decompose the primal problem to a
sequence of time-dependent least-cost-path sub-problems.

In our proposed solution approach, we aim to incorporate several lines of pioneering efforts
in different directions. Specifically, we (1) reformulate the VRPPDTW as a time-discretized,
multi-dimensional, multi-commodity flow model with linear objective function and constraints,
(2) extend the static DP formulation to a fully time-dependent DP framework for single-vehicle
VRPPDTW problems, and (3) develop a LR solution procedure to decompose the multi-vehicle
scheduling problem to a sequence of single-vehicle problems and further nicely integrate the
demand satisfaction multipliers within the proposed state-space-time network.

Based on the Lagrangian relaxation solution framework, we further present a holistic
optimization approach for matching passengers’ requests to transportation service providers,
synchronizing transportation vehicle routing, and determining request pricing (e.g. through
Lagrangian multipliers) for balancing transportation demand satisfaction and resource needs on
urban networks.

The rest of the research is organized as follows. Section 3 contains a precise mathematical
description of the PDPTW in the state-space-time networks. In section 4, we present our new
integer programming model for the PDPTW followed by a comprehensive comparison between
Cordeau’s model and our model. Then, we will show how the main problem is decomposed to an
easy-to-solve problem by the Lagrangian relaxation algorithm in section 5. Section 6 provides

10	

computational results of the six-node transportation network, followed by the Chicago sketch
and Phoenix regional networks to demonstrate the computational efficiency and solution
optimality of our developed algorithm coded by C++. After large-scale network experiments, we
conclude the research in section 7 with discussions on possible extensions.

4. Problem Statement Based on State-space-time Network Representation
In this section, we first introduce our new mathematical model for the PDPTW. This is followed
by a comprehensive comparison between our proposed model and the three-index formulation of
Cordeau (2006) for the PDPTW, presented in Appendix A, for the demand node-oriented
network.

4.1.Description of the PDPTW in State-space-time Networks
We formulate the PDPTW on a transportation network, represented by a directed graph and
denoted as 𝐺(𝑁,	
 𝐴), where 𝑁 is the set of nodes (e.g. intersections or freeway merge points) and

𝐴 is the set of links with different link types such as freeway segments, arterial streets and

ramps. As shown in Table 1, each directed link (𝑖,𝑗) has time-dependent travel time 𝑇𝑇(𝑖,𝑗,𝑡)

from node i to j starting at time t. Every passenger 𝑝 has a preferred time window for departure

from his origin, [𝑎𝑝,𝑏𝑝], and a desired time window for arrival at his destination, [𝑎𝑝′,𝑏𝑝′], where

𝑎𝑝, 𝑏𝑝, 𝑎𝑝′, and 𝑏𝑝′ are passenger 𝑝’s earliest preferred departure time from his origin, latest
preferred departure time from his origin, earliest preferred arrival time at his destination, and
latest preferred arrival time at his destination, respectively. Each vehicle 𝑣 also has the earliest

departure time from its starting depot, 𝑒𝑣, and the latest arrival time at its ending depot, 𝑙𝑣. In the
PDPTW, passengers may share their trip with each other; in other words, every vehicle v,
considering its capacity and the total routing cost, may serve as many passengers as possible
provided that passenger p is picked up and dropped-off in his preferred time windows, 𝑎𝑝,	
 𝑏𝑝 and

𝑎𝑝′,𝑏𝑝′, respectively.
Each transportation node has the potential to be the spot for picking up or dropping off a

passenger. Likewise, a vehicle’s depot might be located at any node in the transportation
network. To distinguish regular transportation nodes from passengers’ and vehicles’ origin and
destination, we add a single dummy node 𝑜𝑣 for vehicle 𝑣’s origin depot and a single dummy

node 𝑑𝑣 for vehicle 𝑣’s destination depot. Similarly, we can also add dummy nodes 𝑜𝑝	
 and 𝑑𝑝 for

passenger 𝑝. Each added dummy node is only connected to its corresponding physical
transportation node by a link. The travel time on this link can be interpreted as the service time if
the added dummy node is related to a passenger’s origin or destination, and as preparation time if
it is related to a vehicle’s starting or ending depot. Table 1 lists the notations for the key sets,
indices and parameters in the PDPTW.

11	

Table 1. Sets, indices and parameters in the PDPTW.
Symbol Definition
𝑉 Set of physical vehicles

𝑉∗ Set of virtual vehicles

𝑃 Set of passengers

𝑁 Set of physical transportation nodes in the physical traffic network based on
geographical location

𝑊 Set of possible passenger carrying states

𝑣 Vehicle index

𝑣𝑝∗ Index of virtual vehicle exclusively dedicated for passenger 𝑝

𝑝 Passenger index

𝑤 Passenger carrying state index

(𝑖,𝑗) Index of physical link between adjacent nodes 𝑖 and 𝑗

𝑇𝑇𝑖,𝑗,𝑡 Link travel time from node i to node j starting at time t

 Maximum capacity of vehicle
𝑎𝑝 Earliest departure time from passenger 𝑝’s origin

𝑏𝑝 Latest departure time from passenger 𝑝’s origin

𝑎𝑝′ Earliest arrival time to passenger 𝑝’s destination

𝑏𝑝′ Latest arrival time to passenger 𝑝’s destination

𝑎𝑝,	
 𝑏𝑝 Departure time window for passenger 𝑝’s origin

𝑎𝑝′,𝑏𝑝′ Arrival time window for passenger 𝑝’s destination

𝑜𝑣′ Dummy node for vehicle 𝑣’s origin

𝑑𝑣′ Dummy node for vehicle 𝑣’s destination

𝑒𝑣 Vehicle 𝑣’s earliest departure time from the origin depot

𝑙𝑣 Vehicle 𝑣’s latest arrival time to the destination depot

𝑜𝑝 Dummy node for passenger 𝑝’s origin (pickup node for passenger 𝑝)

𝑑𝑝 Dummy node for passenger 𝑝’s destination (delivery node for passenger 𝑝)

We now use an illustrative example to demonstrate key modeling features of constructed

networks. Consider a physical transportation network consisting of six nodes presented in Fig. 2.
Each link in this network is associated with time-dependent travel time	
 𝑇𝑇(𝑖,𝑗,𝑡). Without loss of

12	

generality, the number written on each link denotes the time-invariant travel time 𝑇𝑇(𝑖,𝑗) in terms
of minutes. Suppose two requests with two origin-destination pairs should be served. For
simplicity, it is assumed that both passengers have the same origin (node 2) and the same drop-
off node (node 3). There is only one vehicle available for serving. Moreover, it is assumed that
the vehicle starts its route from node 4 and ends it at node 1. Passenger 1 should be picked up
from dummy node 𝑜1 in time window [4,7] and dropped off at dummy node 𝑑1 in time window

11,14, while Passenger 2 should be picked up from dummy node 𝑜2 in time window [8,10] and

dropped off at dummy node 𝑑2 in time window 13,16. Vehicle 1 also has the earliest departure

time from its starting depot, 𝑡=1, and the latest arrival time at its ending depot, 𝑡=20.

Fig. 2. (a) Six-node transportation network; (b) transportation network with the corresponding

dummy nodes.

Note that the shortest path with node sequence (𝑜1′,4,	
 2,	
 𝑜1,	
 2,𝑜2,2,	
 5,	
 6,	
 3,	
 𝑑1,3,	
 𝑑2,3,	
 1,	
 𝑑1′)

from vehicle 1’s origin to its ending depot is shown by bold arrows when it serves both
passenger 1 and 2. To construct a state-space-time network, the time horizon is discretized into a
series of time intervals with the same time length. Without loss of generality, we assume that a
unit of time has one minute length. To avoid more complexity in the vehicle’s space-time
network illustrated in Fig. 3, only those arcs constituting the shortest paths from vehicle 1’s
origin to its destination are demonstrated.

13	

Fig. 3. Shortest paths with node sequence (𝑜1′,4,	
 2,	
 𝑜1,	
 2,𝑜2,2,	
 5,	
 6,	
 3,	
 𝑑1,3,	
 𝑑2,3,	
 1,	
 𝑑1′) in vehicle
1’s space-time network.

Our formulation has a set of precise rules to allow or restrict the vehicle waiting behavior in

the constructed space-time network, depending on the type of nodes and the associated time
window. First, vehicle 𝑣 may wait at its own origin or destination depot or at any other physical

transportation nodes. If a vehicle arrives at passenger 𝑝’s origin node before time 𝑎𝑝, it must wait
at the related physical node until the service is allowed to begin. Moreover, we assume that a
vehicle is not allowed to stop at passenger 𝑝’s dummy origin node after time 𝑏𝑝. Similarly, if a

vehicle arrives at passenger 𝑝’s destination node before time 𝑎𝑝′, it must wait until it is allowed

to drop-off passenger 𝑝, and vehicle 𝑣 is not allowed to stop at passenger 𝑝’s dummy destination

node after time 𝑏𝑝′.
In the problem under consideration, we assume all passengers’ desired departure and arrival

time windows are feasible. However, it is quite possible that some passenger transporting
requests could not be satisfied at all since the total number of physically available vehicles in the
ride-sharing company or organization is not enough to satisfy all the demands. To avoid
infeasibility for the constructed optimization problem, we define a virtual vehicle for each
passenger exclusively. We assume that both starting and ending depots of virtual vehicle 𝑣𝑝∗ are

located exactly where passenger 𝑝 is going to be picked up. By doing so, there is no cost incurred
if the virtual vehicle is not needed to carry the related passenger, and in this case the virtual
vehicle simply waits at its own depot. On the other hand, if the virtual vehicle is needed to
perform the service and ensure there is a feasible solution, then virtual vehicle 𝑣𝑝∗ starts its route

from its starting depot, picks up passenger 𝑝, delivers him to his destination, and then comes

14	

back to its ending depot. Fig. 4 shows the shortest paths with node sequence (𝑜1∗′,2,	
 𝑜1,	
 2,	
 5,	
 6,	

3,	
 𝑑1,3,	
 1,	
 2,	
 𝑑1∗′) in vehicle 𝑣1∗’s space-time network.

Fig. 4. Shortest paths with node sequence (𝑜1∗′,2,	
 𝑜1,	
 2,	
 5,	
 6,	
 3,	
 𝑑1,3,	
 1,	
 2,	
 𝑑1∗′) in vehicle 𝑣1∗’s
space-time network.

4.2. Representing the State of System and Calculating the Number of States
In the context of dynamic programming, we need to decompose the complex VRP structure into
a sequence of overlapping stage-by-stage sub-problems in a recursive manner. For each stage of
the optimization problem, we need to define the state of the process so that the state of the
system with stages to go can fully summarize all relevant information of the system for future
decision-making purposes no matter how the process has reached the current stage . In our
pickup and delivery problem, in each vehicle’s network, the given time index acts as the stage,
and the state of the system is jointly defined by two indexes: node index and the passenger
carrying state index . The latter passenger carrying state can be also represented as a vector with
number of elements , where equals 1 or 0 and denotes the status of passenger whether he is
riding the vehicle or not. To facilitate the descriptions of the state transition, we introduce the
following equivalent notation system for passenger carrying states: if a vehicle carries passenger
, the th element of the state is filled with passenger ’s id; otherwise, it is filled with a dash sign,
as illustrated in Table 2.

Table 2. Binary representation and equivalent character-based representation for passenger
carrying states.

Binary
representation

Equivalent character-based
representation

 [_	
 _	
 _]

15	

Without loss of generality, for a typical off-line vehicle routing problem, the initial and
ending states of the vehicles are assumed to be empty, corresponding to the state [_	
 _	
 _]. For an
on-line dynamic vehicle dispatching application, one can define the starting passenger carrying
state to indicate the existing passengers riding the vehicle, for example, if passenger 1 is being
served currently. We use an illustrative example to demonstrate the concept of a passenger’s
carrying state clearly. Suppose three requests with three different origin-destination pairs should
be served. There is only one vehicle available for serving and let’s assume that the vehicle can
carry up to two passengers at the same time. We can enumerate all different carrying states for
the vehicle. The first state is the state in which the vehicle does not carry any passenger[_	
 _	
 _].
There are number of possible carrying states in which the vehicle only carries one passenger at
time :, , and . Similarly, there are number of possible carrying states in which the vehicle carries
two passengers at time which are , , and . Since the vehicle can carry up to two passengers at the
same time, the state of is infeasible. Fig. 5(a) and Fig. 5(b) show shared ride state and single-
passenger-serving state .

Fig. 5. State transition path (a) Passenger carrying state ; (b) Passenger carrying state .

We are further interested in the number of feasible states, which critically determines the

computational efforts of the DP-based solution algorithm. First, there is a unique state in which
vehicle does not carry any passenger, which is a combinatory of for selecting passengers from
the collection of passengers. Similarly, there are number of possible carrying states in which
vehicle only carries one passenger at a time. Likewise, there are number of possible carrying
states in which vehicle carries passengers at a time. Note that . Therefore, the total number of
possible passenger carrying states is equal to . It should be remarked that, according to the
earliest departure time from the origin and the latest arrival time to the destination of different
passengers, some of the possible carrying states, say , might be infeasible as there is insufficient
transportation time to pick up those two passengers together while satisfying their time window
constraints.

Consider the following example, where passenger 1 should be picked up in time window
[4,7] and delivered in time window [9,12], whereas passenger 3’s preferred time windows for
being picked up and delivered are [20,24] and [25,29], respectively. So, it is obvious that
passenger 1 and 3 cannot share their ride with each other and be transported at the same time by
the same vehicle. Therefore, carrying state is definitely infeasible in this example. We will

16	

further explain how to reduce the search region by defining some rational rules and simple
heuristics in section 5.3.

4.3. State Transition Associated with Pickup and Delivery Links
Each vehicle starts its trip from the empty state in which the vehicle does not carry any
passengers. We call this state as the initial state (). Each vertex in the constructed state-space-
time network is recognized by a triplet of three different indexes: node index 𝑖, time interval

index 𝑡, and passenger carrying state index 𝑤. In the space-time transportation network construct,
we can identify a traveling arc starting from node i at time t arriving at node j at time s.
Accordingly, in the state-space-time network, each vertex is connected to vertex through arc .
To find all feasible combination of passenger carrying state transition on an arc, it is sufficient to
follow these rules:

Rule 1. On a pick-up link (with the passenger origin dummy node as the downstream node),
vehicle picks up passenger , so is changed from 0 to 1, or equivalently, theth element
of the corresponding states should be changed from a dash sign to passenger id.

Rule 2. On a drop-off link (with the passenger destination dummy node as the upstream
node), vehicle drops off passenger , so is changed from 1 to 0, and the th element of
the corresponding states should be changed from passenger id to a dash sign.

Rule 3. On a transportation link or links connected to vehicle dummy nodes, vehicle neither
picks up nor drops off any passenger, and all elements of and should be the same.

To find all feasible passengers state transition , we need to examine all possible combinations of
and . Consider a three-passenger case, in which Table 3 identifies all possible combinations of
these state transitions. Note that the vehicle can carry up to two passengers at the same time. The
empty cells indicate impossible state transitions in the constructed space-time network with
dedicated dummy nodes. The corresponding possible passenger carrying state transitions (pickup
or drop-off) are illustrated in one graph in Fig. 6. Fig. 7 represents the projection on state-space
network for the example presented in section 3.1.

Table 3. All possible combinations of passenger carrying states.

 [_	
 _	
 _]
[_	
 _	
 _] no change pickup pickup pickup
 drop-off no change pickup pickup
 drop-off no change pickup pickup
 drop-off no change pickup pickup
 drop-off drop-off no change
 drop-off drop-off no change
 drop-off drop-off no change

17	

Fig. 6. Finite states graph showing all possible passenger carrying state transition (pickup or

drop-off).

Fig. 7. Projection on state-space network representation for ride-sharing path (pick up passenger
𝑝1 and then 𝑝2).

5.Time-discretized Multi-commodity Network Flow Programming Model
Based on the constructed state-space-time networks that can capture essential pickup and
delivery time window constraints, we now start constructing a multi-commodity network flow
programing model for the VRPPDTW. In this multi-dimensional network, the challenge is to
systematically describe the related flow balance constraints for vehicles and request satisfaction
constraints for passengers. As shown in Table 4, we use 𝑖,𝑡,𝑤	
 to represent the indices of state-

space-time vertices, and the corresponding arc index which is 𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′. Let 𝐵𝑣 denote the set

18	

of state-space-time arcs in vehicle 𝑣’s network, which has three different types of arcs, namely,
service arcs, transportation arcs and waiting arcs.

i. All passenger carrying state transitions (i.e., pickup or drop-off) occurs only on service
arcs. In other words, all incoming arcs to passengers’ origin nodes (pickup arcs shown by
green lines in Figures 6 and 7) and all outgoing arcs to their destination nodes (drop-off
arcs shown by blue lines in Figures 6 and 7) are considered service arcs.

ii. A link with both ends as physical nodes or vehicle dummy nodes are considered
transportation arcs.

iii. Vehicles (both physical and virtual) may wait at any node 𝑖 of the state-space-time

network through waiting arcs (𝑖,𝑖,𝑡,𝑡+1,𝑤,𝑤) from time t to time 𝑡+1 with the same

passenger carrying state 𝑤.

Table 4. Indexes and variables used in the time-discretized network flow model.
Symbol Definition
(𝒊,𝒕,𝒘), (𝒋,𝒔,𝒘′) Indexes of state-space-time vertexes

(𝒊,𝒋,𝒕,𝒔,𝒘,𝒘′)

Index of a space-time-state arc indicating that one can travel from node 𝑖 at

time 𝑡	
 with passenger carrying state 𝑤 to the node 𝑗	
 at time 𝑠 with

passenger carrying state 𝑤’

 Set of state-space-time arcs in vehicle 𝑣’s network

 Routing cost of arc 𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ traveled by vehicle 𝑣

 Travel time of arc 𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ traveled by vehicle 𝑣

 Set of pickup service arcs of passenger 𝑝 in vehicle 𝑣’s networks

 Set of drop-off service arcs of passenger 𝑝 in vehicle 𝑣’s networks

 =1 if arc 𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ is used by vehicle 𝑣; =0	
 otherwise

In general, the travel time 𝑇𝑇𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ is the travel time of traversing from node 𝑖 at time

𝑡 with passenger carrying state 𝑤 to node 𝑗 at time 𝑠 with passenger carrying state 𝑤′ by vehicle

𝑣. As we mentioned before, travel time for service arcs can be interpreted as the service time
needed to pick up or drop-off a passenger, and as the preparation time if the arc is related to a
vehicle’s starting or ending depot. In addition, the travel time of the waiting arcs is assumed to
be a unit of time.

The routing cost 𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ for an arc can be defined as follows. The routing cost of a
transportation arc is defined as a ratio of its travel time. For the physical vehicle, this ratio is
basically the total transportation cost per hour when the vehicle is traveling, which may include
the fuel, maintenance, depreciation, insurance costs, and more importantly, the cost of hiring a

19	

full-time or part-time driver. Let’s assume that, in total, the transportation by a physical vehicle
costs 𝑥 dollars per hour. Since passengers should be served by physical vehicles by default and
virtual vehicles serve passengers only if there is no available physical vehicle to satisfy their
demand, we impose a quite expensive transportation cost per hour for virtual vehicles, let’s say
2𝑥	
 dollars per hour. The routing cost of the service arcs are defined similarly to the routing cost
of the transportation arcs. The routing cost of a waiting arc is also defined as a ratio of its travel
time. However, this ratio is basically the total transportation cost of the physical vehicle 𝑣 per
hour when the driver has turned off the vehicle and is waiting at a node, which may only include
the cost of hiring a full-time or part-time driver. Let’s assume that, in total, waiting at a node by a
physical vehicle costs 𝑦 dollars per hour, with a typical relationship of waiting cost <

transportation cost per hour, i.e., 𝑦<𝑥. We assume that waiting at a destination depot for physical
vehicles has no cost in order to encourage a vehicle to reduce the total transportation time, if
possible. Moreover, for virtual vehicles, the waiting cost is always equal to zero to allow a
virtual vehicle be totally idle at its own depot.

The model uses binary variables 𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ equal to 1 if and only if state-space-time arc

𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ is used by vehicle 𝑣. Without loss of generality, we assume that a vehicle does not
carry any passenger when it departs from its origin depot or arrives to its destination depot,
which correspond to the passenger carrying state at node 𝑖=𝑜𝑣′,	
 𝑡=𝑒𝑣) and (𝑗=𝑑𝑣′,𝑠=𝑙𝑣) as an

empty state denoted by 𝑤0. Note that, since passenger carrying state transitions only occur

through service arcs, 𝑤=𝑤′=𝑤0 for 𝑦𝑣,𝑜𝑣′,𝑗,𝑒𝑣,𝑠,	
 𝑤,𝑤′ and 𝑦𝑣,𝑖,𝑑𝑣′,𝑡,𝑙𝑣,𝑤,𝑤′. After constructing
the state-space-time transportation network for each vehicle, the PDPTW can be formulated as
follows:

𝑀𝑖𝑛	
 𝑍=𝑣∈(𝑉!𝑉∗)𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈𝐵𝑣𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ (1)

s.t.

Flow balance constraints at vehicle 𝑣’s origin vertex
𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′∈𝐵𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑖=𝑜𝑣′,	
 𝑡=𝑒𝑣,	
 𝑤=𝑤′=𝑤0,	
 ∀𝑣∈(𝑉!𝑉∗) (2)

Flow balance constraint at vehicle 𝑣’s destination vertex
𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′∈𝐵𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑗=𝑑𝑣′,𝑠=𝑙𝑣,	
 𝑤=𝑤′=𝑤0,	
 ∀𝑣∈(𝑉!𝑉∗) (3)

Flow balance constraint at intermediate vertex
𝑗,𝑠,𝑤′′𝑦𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′′−	
 𝑗′,𝑠′,𝑤′𝑦𝑣,𝑗′,𝑖,𝑠′,𝑡,	
 𝑤′,𝑤=0	
 	
 	
 	
 𝑖,𝑡,𝑤𝑜𝑣′,𝑒𝑣,	
 𝑤0𝑑𝑣′,𝑙𝑣,	
 𝑤0,	
 ∀𝑣∈(𝑉!𝑉∗)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(4)

Passenger 𝑝’s pick-up request constraint
𝑣∈(𝑉!𝑉∗)𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑝∈𝑃 (5)

20	

Passenger 𝑝’s drop-off request constraint
𝑣∈(𝑉!𝑉∗)𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈𝛷𝑝,𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑝∈𝑃 (6)

Binary definitional constraint
𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈{0,	
 1}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈𝐵𝑣,	
 ∀𝑣∈(𝑉!𝑉∗) (7)

The objective function (1) minimizes the total routing cost. Constraints (2) to (4) ensure flow

balance on every vertex in vehicle 𝑣’s state-space-time transportation network. Constraints (5)
and (6) express that each passenger is picked up and dropped-off exactly once by a vehicle
(either physical or virtual). Constraint (7) defines that the decision variables are binary.

The three-index formulation of Cordeau (2006) for the PDPTW in the origin-destination
network is presented in Appendix A. Table 5 shows that our proposed model encompasses all
constraints used in Cordeau’s model.

Table 5. An analogy between Cordeau’s model and our model for the PDPTW.

Cordeau (2006) Our Model

three-index variables 𝒙𝒊𝒋𝒗 for vehicle v on
link (i,j)

Seven-index variable 𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ for

vehicle v on arc 𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′.

(A.1) minimizes the total routing cost. (1) minimizes the total routing cost.
(A.2) guarantees that each passenger is picked
up.

(5) guarantees that each passenger is picked
up.

(A.2) and (A.3) ensure that each passenger’s
origin and destination are visited exactly once
by the same vehicle.

(2) to (6) ensure that the same vehicle 𝑣

transports passenger 𝑝 from his origin to his
destination.

(A.4) expresses that each vehicle 𝒗 starts its
route from the origin depot.

(2) expresses that each vehicle 𝑣 starts its
route from the origin depot.

(A.5) ensures the flow balance on each node.
(2) to (4) ensure flow balance on every vertex
in vehicle 𝑣’s network.

(A.6) expresses that each vehicle 𝒗 ends its
route to the destination depot.

(3) expresses that each vehicle 𝑣 ends its route
to the destination depot.

(A.7) ensures the validity of the time
variables.

The essence of state-space-time networks
ensures the time variables are calculated
correctly through arc 𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′, where

arrival time 𝑠	
 =	
 𝑡+𝑇𝑇(𝑖,𝑗,𝑡).

(A.8) ensures the validity of the load
variables.

The structure of state-space-time networks
ensures that each vehicle transports a number

21	

of passengers up to its capacity at a time, in
terms of feasible states (𝑤,𝑤′).

(A.9) defines each passenger’s ride time.
Employing state-space-time networks defines
each passenger’s ride time.

(A.10) imposes the maximal duration of each
route.

Vehicle 𝑣’s network is constructed subject to

time window [𝑒𝑣,	
 𝑙𝑣].

(A.11) imposes time windows constraints.
Passenger 𝑝’s network is constructed subject

to time window [𝑎𝑝,	
 𝑏𝑝′].

(A.12) imposes ride time of each passenger
constraints.

Passenger 𝑝’s network is constructed subject

to time window [𝑎𝑝,	
 𝑏𝑝′].

(A.13) imposes capacity constraints.
The structure of state-space-time networks
ensures that each vehicle transports a number
of passengers up to its capacity at a time.

(A.14) defines that the decision variables are
binary.

(7) defines binary decision variables.

6. Lagrangian Relaxation-based Solution Approach
Constraints (5) and (6) express that each passenger is picked up and dropped off exactly once by
a vehicle (either physical or virtual). On the other hand, the constraints (3) force the vehicle to
end its route at the destination depot with the empty passenger carrying state. Therefore, if
vehicle 𝑣 picks up passenger 𝑝 from his origin, to maintain the flow balance constraints (3), the
vehicle must drop-off the passenger at his destination node so that the vehicle comes back to its
ending depot with the empty passenger carrying state. As a result, constraint (6) is redundant and
it does not need to enter into the following discussion for Lagrangian relaxation-based
algorithms.

Defining multi-dimensional decision variables 𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ leads to computational
challenges for the large-scale real-world data sets, which should be addressed properly by
specialized programs and an innovative solution framework. We reformulate the problem by
relaxing the complicating constraints (5) into the objective function and introducing Lagrangian
multipliers, 𝜆𝑝, to construct the dualized Lagrangian function (8).

𝐿=	
 𝑣∈(𝑉!𝑉∗)𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈𝐵𝑣𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	

𝑤,𝑤′𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′+𝑝∈𝑃𝜆𝑝𝑣∈(𝑉!𝑉∗)𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′−1

(8)

Therefore, the new relaxed problem can be written as follows:

22	

𝑀𝑖𝑛	
 𝐿
(9)
 s.t.
𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′∈𝐵𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑖=𝑜𝑣′,	
 𝑡=𝑒𝑣,	
 𝑤=𝑤′=𝑤0,	
 ∀𝑣∈(𝑉!𝑉∗) (10)

𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′∈𝐵𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝑗=𝑑𝑣′,𝑠=𝑙𝑣,	
 𝑤=𝑤′=𝑤0,	
 ∀𝑣∈(𝑉!𝑉∗) (11)

𝑗,𝑠,𝑤′′𝑦𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′′−	
 𝑗′,𝑠′,𝑤′𝑦𝑣,𝑗′,𝑖,𝑠′,𝑡,	
 𝑤′,𝑤=0	
 	
 𝑖,𝑡,𝑤𝑜𝑣′,𝑒𝑣,	
 𝑤0𝑑𝑣′,𝑙𝑣,	
 𝑤0,	
 ∀𝑣∈(𝑉!𝑉∗)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(12)
𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈{0,	
 1}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈𝐵𝑣,	
 ∀𝑣∈(𝑉!𝑉∗) (13)

If we further simplify function 𝐿, the problem will become a time-dependent least-cost path

problem in the constructed state-space-time network. The simplified Lagrangian function L can
be written in the following form:

𝐿=	
 𝑣∈(𝑉!𝑉∗)𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈𝐵𝑣𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′−𝑝∈𝑃𝜆𝑝 (14)

Where the generalized arc cost 𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ equals 𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′+𝜆𝑝 for each arc

𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣, and equals 𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′, otherwise.

6.1.Time-dependent Forward Dynamic Programming and Computational Complexity
In this section, we use a time-dependent dynamic programming (DP) algorithm to solve the
least-cost path problem obtained in section 4. The structure of the state-space-time network
ensures that time always advances on the arcs of the networks. In this research, let us consider
the unit of time as one minute. Let 𝒩 denote the set of nodes including both physical

transportation and dummy nodes, 𝒜 denote the set of links, 𝒯 denote the set of time stamps

covering all vehicles’ time horizons, 𝒲 denote the set of all feasible passenger carrying states,

and 𝐿𝑖,𝑡,𝑤 denote the label of vertex 𝑖,𝑡,𝑤 and term “pred” stands for the predecessor. The
algorithm described below uses forward dynamic programming:

// time-dependent forward dynamic programming algorithm

for each vehicle 𝑣∈(𝑉!𝑉∗) do
begin

// initialization
𝐿.,.,.	
 :=	
 +∞;
node pred of vertex .,.,.	
 :=	
 −1;
time pred of vertex .,.,.	
 :=	
 −1;
state pred of vertex .,.,.	
 :=	
 −1;
// vehicle 𝑣 starts its route from the empty state at its origin at the earliest departure time

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 𝐿𝑜𝑣′,	
 𝑒𝑣,𝑤0	
 :=0;

23	

for each time 𝑡∈𝑒𝑣,𝑙𝑣 do
begin

for each link (𝑖,𝑗) do
begin

for each state 𝑤 do
begin
derive downstream state 𝑤’ based on the possible state transition on link (𝑖,𝑗);

derive arrival time 𝑠=𝑡+𝑇𝑇(𝑖,𝑗,𝑡);

if (𝐿(𝑖,𝑡,𝑤)	
 +𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′	
 <𝐿(𝑗,𝑠,𝑤′)) then
begin
𝐿(𝑗,𝑠,	
 𝑤′)	
 :=	
 𝐿(𝑖,𝑡,𝑤)	
 +	
 𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ ; //label update

node pred of vertex 𝑗,𝑠,𝑤′	
 :=𝑖;

time pred of vertex 𝑗,𝑠,𝑤′	
 :=𝑡;

state pred of vertex 𝑗,𝑠,𝑤′	
 :=𝑤;
end;

end;
end;

end;
end;

Let’s define |𝒯|, 𝒜, 𝒲 as the number of time stamps, links, and passenger carrying states,

respectively. Therefore, the worst-case complexity of the DP algorithm is 𝒱|𝒯|𝒜𝒲, which can
be interpreted as the maximum number of steps to be performed in this algorithm in this four-
loop structure, corresponding to the sequential loops over vehicle, time, link, and starting
carrying state dimensions. It should be remarked that the ending state 𝑤′ is uniquely determined

by the starting state w and the related link (𝑖,𝑗) depending on its service type: pickup, delivery, or
pure transportation. In a transportation network, the size of links is much smaller than the
counterpart in a complete graph, that is, 𝒜≪𝒩𝒩; in fact, the typical out-degree of a node in
transportation networks is about 2-4.

Table 6 shows detailed comparisons between the existing DP-based approach (Psaraftis,
1983 and Desrosiers et al. 1986) and our proposed method. We guarantee the completeness of
state representation. The state representation of Psaraftis (1983), (𝐿,𝑘1,	
 𝑘2,	
 …,	
 𝑘𝑛), consists of 𝐿,

the location currently being visited, and 𝑘𝑖, the status of passenger 𝑖. In this representation, 𝐿=0,

𝐿=𝑖, and 𝐿=𝑖+𝑛 denote starting location, passenger 𝑖’s origin, and passenger 𝑖’s destination,

respectively. In addition, the status of passenger 𝑖 is chosen from the set {1,2,3}, where 3 means

24	

passenger 𝑖 is still waiting to be picked up, 2 means passenger 𝑖 has been picked up but the

service has not been completed, and 1 means passenger 𝑖 has been successfully delivered.

Desrosiers et al. (1986) use state representation (𝑆,𝑖), where 𝑆 is the set of passengers’ origin, {1,	

…,	
 𝑛}, and destination, {𝑛+1,	
 …2𝑛}. State (𝑆,𝑖) is defined if and only if there exists a feasible path

that passes through all nodes in 𝑆 and ends at node 𝑖. In fact, our time-dependent state (𝑤,𝑖,	
 𝑡),
which is jointly defined by three indexes: the status of customers, the current node being
visited, and (𝑖𝑖𝑖) the current time, is more focused on the time-dependent current state at exact

time stamp 𝑡, while (𝐿,𝑘1,	
 𝑘2,	
 …,	
 𝑘𝑛) and (𝑆,𝑖) representations use a time-lagged time-period-

based state representation to cover complete or mutually exclusive states from time 0 to time 𝑡.

Table 6. Comparison between existing DP based approach and the method proposed in this
research.

Existing DP based approach
Features

Psaraftis (1983) Desrosiers et al. (1986)
DP proposed in this
research

Type of problem
Single vehicle, Many-
to-many, Single depot

Single vehicle, Many-
to-many, Single depot

Multiple vehicle,
Many-to-many,
Multiple depot

Network

Consists of passengers’
origin and destination
nodes and the vehicle
depot

Consists of passengers’
origin and destination
nodes and the vehicle
depot

Consists of
transportation nodes,
passengers’ origin and
destination, and
vehicles’ depots

Time-dependent link
travel time

No No Yes

Objective function
Minimize route
duration

Minimize total distance
traveled

Minimize total
routing cost
consisting of
transportation and
waiting costs

State
state-space (𝐿,𝑘1,	
 𝑘2,	

…,	
 𝑘𝑛)
state-space (𝑆,𝑖)

state-space-time
(𝑤,𝑖,𝑡)

Stage Node index Node index Time index
States reduction due
to the vehicle
capacity and time
windows

Yes Yes Yes

25	

We come back to the illustrative example presented in section 3.1. Let’s assume the routing
cost of a transportation or service arc traversed by a physical vehicle is $22/hr, while the routing
cost of a transportation or service arc traversed by a virtual vehicle is $50/hr. Moreover, assume
that the waiting cost of a physical vehicle is $15/hr, while the waiting cost of a virtual vehicle is
assumed to be $0/hr. Table 7 shows how the label of each vertex is calculated by the DP solution
algorithm presented above. Note that 𝑤0, 𝑤1, 𝑤2, and 𝑤3 are passenger carrying states [
 _	
 _	
], [

𝑝1	
 _], [𝑝1	
 𝑝2], and [
 _	
 𝑝2], respectively. For instance, according to Fig. 2, traveling from node 4
to node 2 takes 2 minutes. Since the number written on each link denotes the time-invariant
travel time 𝑇𝑇(𝑖,𝑗), we can conclude that travel time for link starting at time stamp is also 2
minutes. To update the label corresponding to node 2, it is sufficient to calculate the routing cost
of the stated arc in terms of dollars which can be obtained by $hr) and add it to the current label
of node 4 which is 0.37. Therefore, the updated label for node 2 will be 1.1. Similarly, we can
calculate the routing cost of a waiting link (𝑜2,𝑜2) starting at time stamp 𝑡=7 by 160×15$hr.

Table 7. State-space-time trajectory for ride-sharing service trip with node sequence (𝑜1′,4,	
 2,	
 𝑜1,	
 2,𝑜2,2,	
 5,	
 6,	
 3,	

𝑑1,3,	
 𝑑2,3,	
 1,	
 𝑑1′).
Time index 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20
Node index 4 2 2 2 5 6 3 3 3 1
State index 𝑤0 𝑤0 𝑤0 𝑤1 𝑤1 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤2 𝑤3 𝑤3 𝑤0 𝑤0 𝑤0 𝑤0

Cost 0.0 .37 .73 .37 .37 .37 .25 .37 .37 .37 .37 .37 .37 .37 .37 .73 .37 0.0
Cumulative
cost

0.0 .37 1.1 1.47 1.84 2.21 2.46 2.83 3.2 3.57 3.94 4.31 4.68 5.05 5.42 6.15 6.52 6.52

6.2.Lagrangian Relaxation-based solution procedure
In this section, we describe the Lagrangian relaxation (LR) solution approach implemented to
solve the time-dependent least cost path problem presented in section 5. According to Eq. (14),
𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ is only updated for ∀𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣. Table 8 lists the notations for the sets,
indices and parameters required for the Lagrangian relaxation algorithm.

Table 8. Notations used in LR algorithm.
Symbol Definition
𝝀𝒌(𝒑) Lagrangian relaxation multiplier corresponding to the passenger 𝑝’s pick-

up request constraint at iteration
𝝃𝒗,𝒊,𝒋,𝒕,𝒔,	
 𝒘,𝒘′ Modified routing cost of arc 𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ after introducing Lagrangian

multipliers
𝒌 Iteration number

𝒀 Set of vectors 𝑦𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′

26	

𝑳𝑩𝒌 Global lower bound for the object function value at iteration

𝑼𝑩𝒌 Global upper bound for the object function value at iteration

𝒀𝑳𝑩𝒌 Set of vectors 𝑌 in the lower bound solution at LR iteration 𝑘

𝒀𝑼𝑩𝒌 Set of vectors 𝑌 in the upper bound solution at LR iteration 𝑘

𝜽𝒌 Step size at iteration

𝑳𝑩∗ Best global lower bound of the objective function value

𝑼𝑩∗ Best global upper bound of the objective function value

𝒀∗ Best solution derived from best lower bound

𝑽𝑶𝑻 The amount of money (in terms of dollars) passenger 𝑝 offers to be served

The Lagrangian relaxation algorithm can be described as follows:

// Lagrangian relaxation algorithm

// step 0. initialization
− set	
 iteration	
 	
 𝑘=0;

− initialize 𝑌𝐿𝐵0,	
 𝑌𝐿𝐵0, 𝑌∗, and 𝜆0(𝑝) to zero;	
 𝜃0𝑝	
 to	
 𝑉𝑂𝑇; 𝐿𝐵∗ to −∞; and 𝑈𝐵∗ to
+∞;

− define a termination condition such as if k becomes greater than a predetermined
maximum iteration number, or if the relative gap percentage between 𝐿𝐵∗ and 𝑈𝐵∗
becomes less than a predefined gap;

while termination condition is false, for each LR iteration 𝑘 do
begin
− reset the visit count for each arc 𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′∈Ψ𝑝,𝑣 to zero; // 𝑣∈(𝑉!𝑉∗);

− initialize 𝐿𝐵𝑘 and 𝑈𝐵𝑘 to 0;

// step 1. generating 𝐿𝐵𝑘
// step 1.1. least cost path calculation for each vehicle sub-problem
for each vehicle 𝑣∈(𝑉!𝑉∗) do
begin

// input: 𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′

− compute time dependent least cost state-space-time path for vehicle 𝑣 by
calling time-dependent DP;

− update the visit count for each arc 𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′∈Ψ𝑝,𝑣;

27	

// output: 𝑌𝐿𝐵𝑘
end;
// step 1.2. update 𝐿𝐵∗

− update 𝐿𝐵𝑘 by the new value of dualized Lagrangian function 𝐿 obtained

from 𝑌𝐿𝐵𝑘;

− update 𝐿𝐵∗	
 by	
 𝑚𝑎𝑥(𝐿𝐵𝑘,𝑐𝑢𝑟𝑟𝑒𝑛𝑡	
 𝐿𝐵∗) and 𝑌∗ by its corresponding
solution;

// step 1.3. sub-gradient calculation
− calculate the total number of visits of passenger 𝑝’s origin by expression

(15);
𝑣𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′ (15)

− compute sub-gradients by Eq. (16);
 ∇𝐿𝜆𝑘(𝑝)	
 = 𝑣∈(𝑉!𝑉∗)𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣𝑦𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′−1 (16)

− update arc multipliers by Eq. (17);
𝜆𝑘+1(𝑝) = 𝜆𝑘(𝑝)+𝜃𝑘𝑝∇𝐿𝜆𝑘(𝑝) for ∀𝑝 (17)

− update arc cost 𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ for each arc 𝑣,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣 by Eq. (18);
𝜉𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′=𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′+𝜆𝑘+1(𝑝) (18)

− update step size by Eq. (19);
𝜃𝑘+1𝑝=	
 𝜃0𝑝	
 𝑘+1	
 (19)

// Step 2. generating 𝑈𝐵𝑘

// step 2.1. adopt the solution 𝑌𝐿𝐵𝑘 from the 𝐿𝐵𝑘: 𝑌𝑈𝐵𝑘=	
 𝑌𝐿𝐵𝑘

for each passenger 𝑝∈𝑃 do
begin
// route virtual vehicle 𝑣𝑝∗ to serve unserved passenger 𝑝

if passenger 𝑝 is not served by any vehicle (physical or virtual) then
begin

for arc 𝑣𝑝∗,𝑖,𝑗,𝑡,𝑠,𝑤,𝑤′∈Ψ𝑝,𝑣𝑝∗ do
begin
− set 𝑐𝑣𝑝∗,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′	
 temporarily to	
 −𝑀; // 𝑀 is chosen a very large

positive constant number in order to route virtual vehicle 𝑣𝑝∗ to certainly

serve passenger 𝑝;

− compute time dependent least cost path for vehicle 𝑣𝑝∗ by calling time-
dependent DP;

− add the virtual vehicle in to solution 𝑌𝑈𝐵𝑘

28	

end;
end;

 end;
// step 2.2. update 𝑈𝐵𝑘

− update 𝑈𝐵𝑘 by the new value of primal objective function 𝑍 obtained

from 𝑌𝑈𝐵𝑘;

// the original value of 𝑐𝑣,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ should be considered in updating

𝑈𝐵𝑘

// step 2.3. update 𝑈𝐵∗

− 𝑈𝐵∗	
 =𝑚𝑖𝑛𝑈𝐵𝑘,𝑐𝑢𝑟𝑟𝑒𝑛𝑡	
 𝑈𝐵∗;

− find the relative gap percentage between 𝐿𝐵∗ and 𝑈𝐵∗ by

𝑈𝐵∗−𝐿𝐵∗𝑈𝐵∗×100;

− 𝑘=𝑘+1;
end;

Regarding relative gap properties, after adopting the solution 𝑌𝐿𝐵𝑘 from the 𝐿𝐵𝑘, we can find
three different following cases.

(𝑖) All passengers are assigned to the physical vehicles perfectly. This case is the ideal case
which shows all demands have been satisfied by the physical vehicles since the total number of
available vehicles has been enough to serve all requests. In this case, since each passenger has
been matched to a vehicle (Eq. (5) has been met perfectly), we expect the relative gap value to be
zero.

(𝑖𝑖) Each passenger is assigned to a vehicle; however, there are some passengers who have

been assigned to the virtual vehicles. Similar to case (𝑖), since each passenger has been matched
to a vehicle (Eq. (5) has been met perfectly), we expect the relative gap value to be zero.

(𝑖𝑖𝑖) There might be some passengers who are not assigned to any vehicle at all (neither a
physical nor a virtual vehicle), or there might be some passengers who are served by more than
one vehicle. In this case, we set 𝑐𝑣𝑝∗,𝑖,𝑗,𝑡,𝑠,	
 𝑤,𝑤′ temporarily 	
 to	
 –𝑀. 𝑀 is chosen a very large

positive constant number in order to route virtual vehicle 𝑣𝑝∗ to certainly serve passenger 𝑝. In
this case, the virtual vehicle is dispatched to serve the corresponding passenger; however, when
the virtual vehicle drops off the passenger, it should perform a deadheading trip with
significantly high cost from the passenger's destination to its depot (the passenger’s origin)
which causes the quite large gap between the corresponding lower bound and upper bound.

6.3.Search Region Reduction

29	

In this section, we describe how to reduce the search region by the aid of some simple heuristics
in which some rational rules are applied.

Let 𝐸𝐷𝑇, 𝐿𝐷𝑇, 𝐸𝐴𝑇, and 𝐿𝐴𝑇 denote the earliest departure time from origin, latest
departure time from origin, earliest arrival time to destination, and latest arrival time to
destination, respectively. In addition, let 𝑇𝑇𝑆𝑃𝑥→𝑦 denote the travel time corresponding to the

shortest path from node 𝑥 to node 𝑦.

Rule 1. No overlapping time windows: The first rational rule is that if 𝐿𝐴𝑇𝑝1<𝐸𝐷𝑇(𝑝2),

then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible, or in other words, passenger 𝑝1 and 𝑝2
cannot be in the same vehicle at the same time. Therefore, all possible passenger carrying states
in which both 𝑝1 and 𝑝2 are present in the same vehicle at the same time can be eliminated. Fig.
8 illustrates an example of two passengers whose ride-sharing is impossible due to no
overlapping time windows.

 Fig. 8. Illustration of the first rational rule for search region reduction.

Rule 2. Travel time is insufficient: The second rational rule can be stated as follows: if
𝐿𝐷𝑇𝑝2−𝐸𝐷𝑇𝑝1<	
 𝑇𝑇𝑆𝑃𝑜𝑝1→	
 𝑜𝑝2	
 &	
 𝐿𝐷𝑇𝑝1–𝐸𝐷𝑇𝑝2<𝑇𝑇𝑆𝑃𝑜𝑝2→	
 𝑜𝑝1, then passenger 𝑝1 and

𝑝2 cannot be in the same vehicle at a time. It means that if the maximum time a vehicle can have

to go from passenger 𝑝1’s origin to 𝑝2’s origin, 𝐿𝐷𝑇𝑝2−𝐸𝐷𝑇𝑝1, is less than the total travel time

corresponding to the shortest path from 𝑜𝑝1 to 𝑜𝑝2, and also if the maximum time a vehicle can

have to go from passenger 𝑝2’s origin to 𝑝1’s origin, 𝐿𝐷𝑇𝑝1–𝐸𝐷𝑇𝑝2, is less than the total travel

time corresponding to the shortest path from 𝑜𝑝2 to 𝑜𝑝1, then passenger 𝑝1 and 𝑝2’s ride-sharing

is impossible. Similarly, if 𝐿𝐴𝑇𝑝2−𝐸𝐴𝑇𝑝1<	
 𝑇𝑇𝑆𝑃𝑑𝑝1→𝑑𝑝2	
 &	

𝐿𝐴𝑇𝑝1−𝐸𝐴𝑇(𝑝2)<𝑇𝑇𝑆𝑃𝑑𝑝2→𝑑𝑝1, then passenger 𝑝1 and 𝑝2’s ride-sharing is impossible. The
total number of passenger carrying states is dramatically decreased via this rule. Fig. 9 illustrates
the second rule by an example. Suppose two requests with two origin-destination pairs should be
served by a vehicle. Fig. 8(a) illustrates transportation network with the corresponding dummy
nodes and time windows. According to the Fig. 8(a), 𝑇𝑇𝑆𝑃𝑜𝑝1→𝑜𝑝2 and 𝑇𝑇𝑆𝑃𝑜𝑝2→𝑜𝑝1are 5

30	

and 6, respectively. Since 6−4<5	
 &	
 5−4<6, then passenger 𝑝1 and 𝑝2’s ride-sharing is
impossible.

Fig. 9. Illustration of the second rational rule for search region reduction; (a) transportation
network with the corresponding dummy nodes and time windows; (b) vehicle 1’s space-time
network.

Rule 3. A node is too far away from the vehicle starting or ending depot: The third rational

rule is stated as follows: if (𝑇𝑇𝑆𝑃𝑜𝑣→𝑥	
 +𝑇𝑇𝑆𝑃𝑥→𝑑𝑣)>(𝐿𝐴𝑇(𝑣)−𝐸𝐷𝑇(𝑣)), then vehicle 𝑣 does

not have enough time to visit node 𝑥 in its time horizon; therefore, node 𝑥 is not accessible for

vehicle 𝑣 and should not be considered in vehicle 𝑣’s search region. Note that node 𝑥 can be any
physical or dummy node. Fig. 10 illustrates the third rule by an example. Suppose a passenger
with an origin-destination pair should be served by a vehicle. Fig. 10(a) illustrates transportation
network with the corresponding dummy nodes and time windows. Fig. 10(b) shows that
passenger 𝑝1’s origin, 𝑜1, is not accessible for the vehicle.

 Fig. 10. Illustration of the third rational rule for search region reduction; (a) transportation

31	

network with the corresponding dummy nodes and time windows; (b) vehicle 1’s space-time
network.

The first three rules are hard rules at which we are able to eliminate some vertices in the

state-space-time networks. The forth heuristic is the way of estimating the search region
reduction ratio. Let path 𝛼 be the longest possible path in vehicle 𝑣’s state-space-time networks

with total travel time 𝜏𝛼. Let denote the middle point of passenger ’s departure time window.
Therefore, . Let’s assume that , the middle point of a passenger’s departure time window, is a
random variable uniformly distributed in vehicle 𝑣’s time horizon with 𝐿𝐴𝑇(𝑣)−𝐸𝐷𝑇(𝑣) length.

It may be reasonable to assume that if >𝜏𝛼, then passenger 𝑝1 and 𝑝2 cannot be in the same
vehicle at a time. We use an example to show that this rule can reduce the search region
considerably. Assume vehicle 𝑣’s time window is [0, 240], and is a random variable uniformly

distributed in vehicle 𝑣’s time horizon [0,240]. Let’s assume 𝜏𝛼=60 minutes. The probability of
having two passengers who share their ride with each other can be calculated by finding the
𝑃𝑟𝑜𝑏≤60	
 𝑚𝑖𝑛𝑢𝑡𝑒𝑠, where and are randomly generated from [0, 240]. This probability equals to .

This can be shown with the following derivation. The shaded area in in Fig. 11 shows 𝑃𝑟𝑜𝑏≤60	
 .
𝑃𝑟𝑜𝑏≤60	
 =	
 𝑃𝑟𝑜𝑏≤60	

𝑃𝑟𝑜𝑏≤60	
 =1−𝑃𝑟𝑜𝑏<−60	
 +𝑃𝑟𝑜𝑏>60	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =1−180×1802240×240+180×1802240×240=

Fig. 11. The probability of having two passengers who share their ride with each other where
and are uniformly distributed in [0, 240]. Note that 𝜏𝛼=60 min.

Therefore, by considering this practical rule in this example, we can reduce the total number

of passenger carrying states in which two passengers share their ride with each other by more
than half. By considering this rational rule, calculating the probability of having more than two
passengers at the same time in vehicle 𝑣 is more complicated, but at least we know that the

32	

probability of having 𝑘 number of passengers (𝑘>2) who may share their ride with each other is
certainly less than .

7. Computational Results
The algorithms described in this research were coded in C++ platforms. The experiments were
performed on an Intel Workstation running two Xeon E5-2680 processors clocked at 2.80 GHz
with 20 cores and 192GB RAM running Windows Server 2008 x64 Edition. In addition, parallel
computing and OpenMP technique are implemented for step 2.1 in the Lagrangian relaxation
algorithm. In this section, we initially examine our proposed model on a six-node transportation
network followed by the medium-scale and large-scale transportation networks, Chicago and
Phoenix, to demonstrate the computational efficiency and solution optimality of our developed
algorithm. The scenarios and test cases are randomly generated in those transportation networks.

As we mentioned in section 5.1, it is assumed that the routing cost of a transportation or
service arc traversed by a physical vehicle is $22/hr, while the routing cost of a transportation or
service arc traversed by a virtual vehicle is $50/hr. Moreover, the waiting cost of a physical
vehicle is $15/hr, while the waiting cost of a virtual vehicle is assumed to be $0/hr. The value of
VOT is also assumed to be $10 for all passengers.

7.1.Six-node Transportation Network
Initially, we test our algorithm on the six-node transportation network illustrated in Fig. 2(a) for
six scenarios. Table 9 shows these scenarios with various number of passengers and vehicles,
origin-destination pairs, and passengers’ departure and arrival time windows. Then, we will
examine the results corresponding to each scenario individually. Terms “TW” and “TH” stands
for time window and time horizon, respectively.

Scenario I. Two passengers are served by one vehicle, where passengers have different
origin-destination pairs with overlapping time windows. In this case, the vehicle serves both
passengers in their preferred time windows through ride-sharing mode.

Scenario II. Two passengers with different origin-destination pairs are served by one vehicle;
however, unlike in scenario I, passengers could not share their ride with each other due to their
time windows. In this case, the vehicle may wait at any node to finally serve both passengers.

Scenario III. Two passengers with different origin-destination pairs and one vehicle are
present in the system; however, due to the passengers’ overlapping time windows, serving both
passengers by one vehicle is impossible. Therefore, the driver would prefer to transport a
passenger incurring the least cost. In this case, passenger 𝑝1 is selected to be served.

Scenario IV. Two passengers with different origin-destination pairs and two vehicles are
present in the system and, due to the passengers’ and vehicles’ time windows, 𝑝1 is assigned to

𝑣1 and 𝑝2 is assigned to 𝑣2.

33	

Scenario V. Three passengers are served by one vehicle, where passengers have different
origin-destination pairs with overlapping time windows. In this case, the vehicle serves all
passengers in their preferred time windows through ride-sharing mode.

Scenario VI. One passenger and two vehicles are present in the system. In this case, two
vehicles compete for serving the passenger. Ultimately, the vehicle whose routing is less costly
wins the competition and serves the passenger.

Table 9. Six scenarios with various number of passengers and vehicles, origin-destination pairs,
and passengers’ departure and arrival time windows.

Scenario I II III IV V VI
Number of passengers 2 2 2 2 3 1
Number of vehicles 1 1 1 2 1 2
o1 Node 2 Node 2 Node 2 Node 2 Node 2 Node 2
d1 Node 6 Node 6 Node 1 Node 1 Node 3 Node 6
o2 Node 5 Node 5 Node 3 Node 3 Node 5 -
d2 Node 3 Node 3 Node 6 Node 6 Node 3 -
o3 - - - - Node 6 -
d3 - - - - Node 1 -
o1′ Node 4 Node 4 Node 4 Node 2 Node 4 Node 4
d1′ Node 1 Node 1 Node 1 Node 1 Node 1 Node 1
o2′ - - - Node 3 - Node 6
d2′ - - - Node 6 - Node 1
TWo1 [5, 7] [5, 7] [4, 5] [4, 5] [4, 7] [4, 7]
TWd1 [9, 12] [9, 12] [8, 10] [8, 10] [13, 16] [9, 12]
TWo2 [8, 10] [16, 19] [3, 5] [4, 6] [7, 10] -
TWd2 [11, 14] [21, 24] [11, 14] [11, 14] [14, 18] -
TWo3 - - - - [10, 13] -
TWd3 - - - - [19, 23] -
THv1 [1, 30] [1, 30] [1, 30] [1, 30] [1, 30] [1, 30]
THv2 - - - [1, 30] - [1, 30]

Table 10 shows the results corresponding each scenario. Fig. 12 also presents the vehicle

routing corresponding each scenario.

Table 10. Results obtained from testing our algorithm on the six-node transportation

network for six scenarios.

iteration 𝑘 𝐿𝐵∗ 𝑈𝐵∗ gap%
vehicles assigned
to 𝑝1, 𝑝2, and 𝑝3

𝜆𝑘(𝑝1) 𝜆𝑘(𝑝2) 𝜆𝑘(𝑝3)

Scenario I. Two passengers are served by one vehicle through ride-sharing mode.
1 1.47 5.75 74.5% 𝑣1, 𝑣1, - 10 10 -

2 1.47 5.75 74.5% 𝑣1, 𝑣1, - 5 5 -

3 5.75 5.75 0.0% 𝑣1, 𝑣1, - 5 5 -
Scenario II. Two passengers are served by one vehicle (not through ride-sharing mode).

34	

1 1.47 7.22 79.68% 𝑣1, 𝑣1, - 10 10 -

2 5.55 7.22 23.10% 𝑣1, 𝑣1, - 5 5 -

3 7.22 7.22 0.0% 𝑣1, 𝑣1, - 5 5 -
Scenario III. Two passengers and one vehicle; one passenger remains unserved.

1 1.47 10.43 85.94% 𝑣1, 𝑣2∗, - 10 10 -

2 7.1 10.43 31.95% 𝑣1, 𝑣2∗, - 5 10 -

3 10.43 10.43 0.0% 𝑣1, 𝑣2∗, - 5 10 -
Scenario IV. Two passengers and two vehicles; each vehicle is assigned to a passenger

1 2.2 6.13 64.13% 𝑣1, 𝑣2, - 10 10 -

2 2.2 6.13 64.13% 𝑣1, 𝑣2, - 5 5 -

3 6.13 6.13 0.0% 𝑣1, 𝑣2, - 5 5 -
Scenario V. Three passengers are served by one vehicle through ride-sharing mode

1 1.47 6.97 78.95% 𝑣1, 𝑣1, 𝑣1 10 10 10

2 1.47 6.97 78.95% 𝑣1, 𝑣1, 𝑣1 5 5 5

3 6.97 6.97 0.0% 𝑣1, 𝑣1, 𝑣1 5 5 5
Scenario VI. Two vehicles compete for serving a passenger

1 2.57 5.13 50.0% 𝑣1, -, - 10 - -

2 2.63 5.13 48.70% 𝑣1, -, - 10 - -

3 5.13 5.13 0.0% 𝑣1, -, - 10 - -

35	

Fig. 12. The vehicle routing corresponding each scenario.

We increase the number of passengers and vehicles to show the computational efficiency and

solution optimality of our developed algorithm. Table 11 shows the results for the six-node
transportation network when the number of passengers and vehicles have been increased.

Table 11. Results for the six-node transportation network.

Test case
number

Number of
iterations

Number of
passengers

Number of
vehicles

𝑳𝑩∗ 𝑼𝑩∗ Gap
(%)

Number of
passengers not

served

CPU running
time (sec)

1 30 6 1 15.83 15.83 0.00% 0 5.94
2 30 12 2 33.17 33.17 0.00% 0 12.02
3 30 24 4 61.67 65.33 5.61% 0 30.97

We explain the pricing mechanism in this algorithm via test case 1 with 6 passengers and 1
vehicle. Fig. 13 shows 𝜆𝑘(𝑝𝑖), 𝑖=1,2,	
 ..,6, along 30 iterations. It is clear that each passenger’s
Lagrangian multiplier ultimately converges to a specific value. This value can be literally

36	

interpreted as the passenger 𝑝’s service price. Through the pricing mechanism of this algorithm,
the provider would be able to offer a reasonable bid to its customers to be served.

Fig. 13. Lagrangian multipliers along 30 iterations in test case 1 for the six-node

transportation network.

7.2.Medium-scale and Large-scale Networks
In our computational experiments for the medium-scale and large-scale networks, for simplicity,
we assume that each passenger has a fixed departure time (the earliest and latest departure time
are the same). In addition, we assume that no passenger has a preferred time window for arrival
to his destination. Tables 12 and 13 show the results for the Chicago transportation network,
shown as Fig. 14(a) with 933 nodes and 2,967 links, and the Phoenix transportation network, as
shown in Fig. 14(b) with 13,777 nodes and 33,879 links, respectively.

-20

-15

-10

-5

0

5

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

La
gr

an
gi

an
 m

ul
tip

lie
r v

al
ue

Iteration number

Passenger 1 Passenger 2 Passenger 3 Passenger 4 Passenger 5 Passenger 6

37	

Fig. 14. Medium and large-scale transportation networks for computational performance
testing.

Note that we generally run the algorithm for a fixed number of iterations; however, the

algorithm may converge in less number of iterations. Fig. 15 shows the gap percentage along 20
iterations corresponding each test case.

Table 12. Results for the Chicago network with 933 transportation nodes and 2,967 links.

Test case
number

Number of
iterations

Number of
passengers

Number of
vehicles

𝑳𝑩∗ 𝑼𝑩∗ Gap (%)
Number of

passengers not
served

CPU
running

time (sec)
1 20 2 2 108.43 108.43 0.00% 0 17.43
2 20 11 3 352.97 352.97 0.00% 0 91.87
3 20 20 5 616.66 626.18 1.52% 1 327.51
4 20 46 15 1586.81 1664.07 4.64% 2 4681.52
5 20 60 15 1849.98 1878.55 1.52% 3 7096.50

Fig. 15. Gap percentage along 20 iterations corresponding each test case in Chicago network.

As you can see in Fig. 15, after 10-15 iterations, the sub-gradient algorithm is typically able

to converge to a small gap (about 5%) for the Chicago Network.
Table 13. Results for the Phoenix network with 13,777 transportation nodes and 33,879 links.

Test case
number

Number of
iterations

Number of
passengers

Number of
vehicles

𝑳𝑩∗ 𝑼𝑩∗ Gap
(%)

Number of
passengers not

served

CPU running
time (sec)

1 6 4 2 70.95 70.95 0.00% 0 110.39
2 6 10 5 191.55 207.05 7.49% 1 398.37
3 6 20 6 310.37 310.37 0.00% 0 1323.18

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 2 4 6 8 10 12 14 16 18 20 22

G
ap

 (%
)

Iteration number

Case 1 (2 pasengers, 2 vehicles) Case 2 (11 passengers, 3 vehicles)

Case 3 (20 passengers, 5 vehicles) Case 4 (46 passengers, 15 vehicles)

Case 5 (60 passengers, 15 vehicles)

38	

4 6 40 12 622.23 622.23 0.00% 0 3756.505
5 6 50 15 784.07 784.07 0.00% 0 6983.189

7.3.Optimum Number of Self-driving Cars
Now it is time to discuss about the key question we initially asked: How many self-driving cars a
city needs to support the overall transportation activity demand, at different levels of
coordination and pre-trip scheduling? To answer this question, it is sufficient to assume that
there are large number of vehicles available in the depots. In other words, the number of vehicles
available in the depots should be much more than enough. Then, after finding the optimal
solution by considering this assumption, we may find a number of vehicles which are not
assigned to any transportation request. It is obvious that according to the results, these vehicles
seems to be redundant. Therefore, to find how many self-driving cars a city needs to support the
overall transportation activity demand, it is sufficient to subtract the number of vehicles which
are not assigned to any transportation request from the total number of vehicles available at the
depots. Table 14 shows the number of self-driving cars needed in the six-node transportation
network.

Table 14. Results for the six-node transportation network.

Test case
number

Number of
iterations

Number of
passengers

Number of
vehicles

𝑳𝑩∗ 𝑼𝑩∗ Gap (%)
Number of
passengers
not served

Number
of SAVs
needed

CPU
running

time (sec)
1 30 6 3 16.49 20.85 20.92% 1 1 1.07
2 30 12 4 33.01 42.63 22.58% 0 3 12.02

8. Conclusions
A new generation of transportation network companies uses mobile-phone-based platforms to
seamlessly connect drivers to passengers from different origins to different destinations with
specific, preferred departure or arrival times. Many relevant practical aspects need to be carefully
formulated for real-world planning/dispatching system deployment, such as time-dependent link
travel times on large-scale regional transportation networks, and tight vehicle capacity and
passenger service time window constraints.

By reformulating the PDPTW through space time networks to consider time window
requirements, our proposed approach can not only solve the vehicle routing and scheduling
problem directly in large-scale transportation networks with time-dependent congestion, but also
avoid the complex procedure to eliminate any sub-tour possibly existing in the optimal solution
for many existing formulations. By further introducing virtual vehicle constructs, the proposed
approach can fully incorporate the full set of interacting factors between passenger demand and
limited vehicle capacity in this model to derive feasible solutions and practically important
system-wide cost-benefit estimates for each request through a sub-gradient-based pricing
method. This joint optimization and pricing procedure can assist transportation network service
providers to quantify the operating costs of spatially and temporally distributed trip requests.

39	

Future work will concentrate on the development of the model for the following cases: (𝑖)
Passengers may desire different ride-sharing capacities (i.e. a passenger may desire to share his
ride with up to only one passenger, whereas the other passenger may have no restriction about
the number of passengers which share their ride with him). (𝑖𝑖) A passenger may desire to be or

not to be served by a particular vehicle. (𝑖𝑖𝑖) A transportation request could contain a group of
passengers who have the same origin, while they may or may not have the same destination.
Alternatively, a transportation request could contain a group of passengers who have the same
destination, while they may or may not have the same origin. In this case, we are interested in
adding dummy nodes corresponding to passengers’ origins and destinations more wisely and
efficiently.

9. Appendices
Appendix A: Description of the PDPTW in the Origin-Destination Network
Cordeau (2006) formulated the PDPTW on a network that is built based on demand request
nodes and the links are defined as direct connections between pickup and delivery nodes
(without explicitly considering transportation links or paths). For a systematic comparison, the
following notation is adapted from Cordeau (2006).

Table A.1. Sets, indices and parameters used in Cordeau (2006) for the PDPTW.
Symbol Definition
𝑛 Number of passengers

𝑃 Set of passengers’ pickup nodes. 𝑃=1,	
 …,	
 𝑛

𝐷 Set of passengers’ delivery nodes. 𝐷={𝑛+1,	
 …,	
 2𝑛}
0 Node representative of origin depot
2𝑛+1 Node representative of destination depot

𝑁 Set of passengers’ pickup and drop-off nodes and vehicles’ depots. 𝑁={𝑃,	
 𝐷,	
 0,	

2𝑛+1}

𝐴 Set of arcs

𝐺 Directed graph 𝐺=𝑁,	
 𝐴

𝑖 Passenger 𝑖’s pickup node

𝑛+𝑖 Passenger 𝑖’s delivery node

𝑞𝑖 Load at node 𝑖, (𝑖∈𝑁)

𝑑𝑖 Service duration at node 𝑖, (𝑖∈𝑁)

𝑒𝑖 Earliest time at which service is allowed to start at node 𝑖, (𝑖∈𝑁)

𝑙𝑖 Latest time at which service is allowed to start at node 𝑖, (𝑖∈𝑁)

40	

(𝑖,𝑗) Index of arc between adjacent nodes 𝑖 and 𝑗

𝑐𝑖𝑗 Routing cost of arc (𝑖,𝑗)

𝑡𝑖𝑗 Travel time of arc (𝑖,𝑗)

𝑉 Set of vehicles

𝑣 Vehicle index

𝑄𝑣 Capacity of vehicle 𝑣

𝑇𝑣 Maximal duration of vehicle 𝑣’s route

𝐿 Maximum ride time of a passenger

Note that 𝑞0=𝑞2𝑛+1=0, 𝑞𝑖≥0 for (𝑖=1,	
 …,	
 𝑛), and 𝑞𝑖=−𝑞𝑖−𝑛	
 (𝑖=𝑛+1,…,	
 2𝑛), and service duration

𝑑𝑖≥0 and 𝑑0=𝑑2𝑛+1=0. Time window 𝑒𝑖,𝑙𝑖 is also specified either for the pickup node or for the

drop-off node of a request, but not for both. The arc set is also defined as 𝐴=𝑖,𝑗:𝑖=0,𝑗∈𝑃	
 𝑜𝑟	

𝑖∈𝑃!𝐷,𝑗∈𝑃!𝐷,𝑖≠𝑗,𝑖≠𝑛+𝑗	
 𝑜𝑟	
 (𝑖∈𝐷,	
 𝑗=2𝑛+1). The model uses three-index variables 𝑥𝑖𝑗𝑣 being

equal to 1 if and only if vehicle 𝑣 travels from node 𝑖 to node 𝑗. Let 𝐵𝑖𝑣 be the time at which

vehicle 𝑣 begins servicing node 𝑖 and 𝑄𝑖𝑣 be the load of vehicle 𝑣 upon departing from node 𝑖.

Finally, for each passenger 𝑖, let 𝐿𝑖𝑣 be the ride time of passenger 𝑖 on vehicle 𝑣. The PDPTW
can be formulated as follows:

𝑀𝑖𝑛	
 𝑣∈𝑉𝑖∈𝑁𝑗∈𝑁𝑐𝑖𝑗𝑣𝑥𝑖𝑗𝑣 (A.1)

s.t.
𝑣∈𝑉𝑗∈𝑁𝑥𝑖𝑗𝑣=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑃 (A.2)

 𝑗∈𝑁𝑥𝑖𝑗𝑣−𝑗∈𝑁𝑥𝑛+𝑖,𝑗𝑣=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑃,	
 𝑣∈𝑉 (A.3)

 𝑗∈𝑁𝑥0𝑗𝑣=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑣∈𝑉 (A.4)

 𝑗∈𝑁𝑥𝑗𝑖𝑣−𝑗∈𝑁𝑥𝑖𝑗𝑣=0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑃!𝐷,	
 𝑣∈𝑉 (A.5)

 𝑖∈𝑁𝑥𝑖,	
 2𝑛+1𝑣=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑣∈𝑉 (A.6)

 𝑥𝑖𝑗𝑣𝐵𝑖𝑣+𝑑𝑖+𝑡𝑖𝑗≤𝐵𝑗𝑣	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑁,	
 𝑗∈𝑁,	
 𝑣∈𝑉 (A.7)

 𝑥𝑖𝑗𝑣𝑄𝑖𝑣+𝑞𝑗≤𝑄𝑗𝑣	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑁,	
 𝑗∈𝑁,	
 𝑣∈𝑉 (A.8)

 𝐿𝑖𝑣=𝐵𝑛+𝑖𝑣−𝐵𝑖𝑣+𝑑𝑖	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑃,	
 𝑣∈𝑉 (A.9)

 𝐵2𝑛+1𝑣−𝐵0𝑣≤𝑇𝑣	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑣∈𝑉 (A.10)

 𝑒𝑖≤𝐵𝑖𝑣≤𝑙𝑖	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑁,	
 𝑣∈𝑉 (A.11)

 𝑡𝑖,𝑛+𝑖≤𝐿𝑖𝑣≤𝐿	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑃,	
 𝑣∈𝑉 (A.12)

 𝑚𝑎𝑥0,𝑞𝑖≤𝑄𝑖𝑣≤𝑚𝑖𝑛𝑄𝑣,	
 𝑄𝑣+𝑞𝑖	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑁,	
 𝑣∈𝑉 (A.13)

 𝑥𝑖𝑗𝑣∈0,1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ∀𝑖∈𝑁,	
 𝑗∈𝑁,	
 𝑣∈𝑉 (A.14)

41	

The objective function (A.1) minimizes the total routing cost. (A.2) guarantees that each
passenger is definitely picked up. (A.2) and (A.3) ensure that each passenger’s origin and
destination are visited exactly once by the same vehicle. (A.4) expresses that each vehicle 𝑣
starts its route from the origin depot. (A.5) ensures the flow balance on each node. (A.6)
expresses that each vehicle 𝑣 ends its route at the destination depot. (A.7) and (A.8) ensure the
validity of the time and load variables. (A.9) defines each passenger’s ride time. (A.10) to (A.13)
impose maximal duration of each route, time windows, the ride time of each passenger, and
capacity constraints, respectively. Since the non-negativity of the ride time of each passenger
guarantees that node 𝑖 is visited before node 𝑛+𝑖, (A.12) also functions as precedence constraints.

Apprendix B: Learning Documents
To help students understand the impact of traffic propagation under different scenarios, we have
prepared a learning document about using simulation based traffic impact analysis as training
material and user guides for undergraduate and graduate students interested in this subject. The
document is Lesson 6.1 Understand Traffic Congestion Propagation, available at
www.learningtransportation.org. The 37 pages of learning documents can be found at
https://docs.google.com/document/d/1b0lss-
F1fSyz5T4L7LpOMOvD29PHcC8JyCpjKopK2MQ/edit#

Fig. B.1. Screenshots of open learning documents for students to understand traffic congestion
propagation.

42	

Fig. B.2. Table of content for students to understand traffic congestion propagation.

9. References
Alfa, A. S. (1986). Scheduling of vehicles for transportation of elderly. Transportation Planning
and Technology, 11, 203–212.
Baldacci, R., Bartolini, E., and Mingozzi, A. (2011). An exact algorithm for the pickup and

delivery problem with time windows. Operations Research, 59(2) 414-426.
Bell, W., Dalberto, L., Fisher, M. L., Greenfield, A., Jaikumar, R., Kedia, P., Mack, R., and

Prutzman, P. (1983). Improving the distribution of industrial gases with an on-line
computerized routing and scheduling optimizer. Interfaces, 13, 4–23.

Bodin, L.D. and Sexton, T. (1986). The multi-vehicle subscriber dial-a-ride problem. TIMS
Studies in the Management Sciences, 22, 73–86.

Bramel, J., and Simchi-Levi, D. (1995). A location based heuristic for general routing problems.
Operations Research, 43, 649–660.

Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J. (2000). Parallel
Programming in OpenMP. Morgan Kaufmann.

Christiansen, M. (1999). Decomposition of a combined inventory routing and time constrained
ship routing problem. Transportation Science, 33, 3–16.

Cordeau, J.-F. and Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals
of Operations Research, 153, 29–46.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations
Research, 54(3) 573-586.

43	

Cullen, F., Jarvis, J., and Ratliff, D. (1981). Set partitioning based heuristics for interactive
routing. Networks, 11, 125–144.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., and Soumis. F. (2002). The VRP
with pickup and delivery. In Toth, P. and Vigo, D. editors, The Vehicle Routing Problem,
SIAM Monographs on Discrete Mathematics and Applications, Chapter 9, SIAM,
Philadelphia, 225–242.

Desrosiers, J., Dumas, Y., and Soumis, F. (1986). A dynamic programming solution of the large-
scale single-vehicle dial-a-ride problem with time windows. American Journal of
Mathematical and Management Sciences, 6, 301-325.

Diana, M. and Dessouky, M. M. (2004). A new regret insertion heuristic for solving large-scale
dial-a-ride problems with time windows. Transportation Research Part B: Methodological,
38, 539–557.

Dumas, Y., Desrosiers, J., and Soumis. F. (1989). Large scale multi-vehicle dial-a-ride problems.
Technical Report Cahiers du GERAD G–89–30, École des Hautes Études Commerciales,
Montréal, Canada.

Dumas, Y., Desrosiers, J., and Soumis. F. (1991). The pickup and delivery problem with time
windows. European Journal of Operations Research, 54, 7–22.

Fisher, M. L., Greenfield, A., Jaikumar, R., and Lester, J. (1982). A computerized vehicle
routing application. Interfaces, 12, 42–52.

Fisher, M. L., and Rosenwein, M. B. (1989). An interactive optimization system for bulk-cargo
ship scheduling. Naval Research Logistic Quarterly, 35, 27–42.

Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M., Wang, X., and Koenig, S. (2013).
Ridesharing: The state-of-the-art and future directions. Transportation Research Part B:
Methodological, 57, 28–46.

Gendreau, M., Guertin, F., Potvin, J.-Y., and Séguin, R. (1998). Neighborhood search heuristics
for a dynamic vehicle dispatching problem with pick-ups and deliveries. Technical Report
CRT–98–10, Centre de recherche sur les transports, Université de Montréal, Canada.

Hosni, H., Naoum-Sawaya, J., Artail, H., (2014). The shared-taxi problem: formulation and
solution methods. Transportation Research Part B: Methodological, 70, 303–318.

Ioachim, I., Desrosiers, J., Dumas, Y., Solomon, M. M., and Villeneuve, D. (1995). A request
clustering algorithm for door-to-door handicapped transportation. Transportation Science,
29, 63–78.

Jaw, J., Odoni, A., Psaraftis, H. N, and Wilson, N. (1986). A heuristic algorithm for the multi-
vehicle advance-request dial-a-ride problem with time windows. Transportation Research
Part B: Methodological, 20, 243–257.

Lu, Q. and Dessouky, M. (2004). An exact algorithm for the multiple vehicle pickup and
delivery problem. Transportation Science, 38(4) 503–514.

Mitrovic-Minic’, S., Krishnamurti, R., and Laporte G. (2004). Double-horizon based heuristics
for the dynamic pickup and delivery problem with time windows. Transportation Research
Part B: Methodological, 38, 669–685.

44	

Paquette, J., Cordeau, J.-F., Laporte, G., and Pascoal, M. M. B. (2013). Combining multicriteria
analysis and tabu search for dial-a-ride problems. Transportation Research Part B:
Methodological, 52, 1–16.

Psaraftis, H. N. (1980). A dynamic programming approach to the single-vehicle, many-to-many
immediate request dial-a-ride problem. Transportation Science, 14(2) 130–154.

Psaraftis, H. N. (1983). An exact algorithm for the single-vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science, 17(3) 351-357.

Psaraftis, H. N., Orlin, J. B., Bienstock, D., and Thompson, P. M. (1985). Analysis and solution
algorithms of sealift routing and scheduling problems: Final report. Technical Report 1700-
85, MIT, Sloan School of Management, Cambridge, MA.

Rappoport, H. K., Levy, L. S., Golden, B. L., and Toussaint, K. (1992). A planning heuristic for
military airlift. Interfaces, 22:73–87, 1992.

Rappoport, H. K., Levy, L. S., Toussaint, K., and Golden, B. L. (1994). A transportation problem
formulation for the MAC airlift planning problem. Annals of Operations Research, 50, 505–
523.

Ropke, S., Cordeau, J.-F., and Laporte, G. (2007). Models and branch-and-cut algorithms for
pickup and delivery problems with time windows. Networks, 49(4) 258–272.

Ropke, S. and Cordeau, J.-F. (2009). Branch and cut and price for the pickup and delivery
problem with time windows. Transportation Science, 43(3) 267–286.

Ruland, K. S. (1995). Polyhedral solution to the pickup and delivery problem. PhD thesis, Sever
Institute of Technology, Washington University, St. Louis, MO.

Ruland, K. S. and Rodin, E. Y. (1997). The pickup and delivery problem: Faces and branch and-
cut algorithm. Computers and Mathematics with Applications, 33, 1–13.

Savelsbergh, M. and Sol, M. (1998). Drive: Dynamic routing of independent vehicles.
Operations Research, 46(4) 474-490.

Sexton, T. R. and Bodin, L. D. (1985a). Optimizing single vehicle many-to-many operation with
desired delivery times: I. Scheduling. Transportation Science, 19(4) 378-410.

Sexton, T. R. and Bodin, L. D. (1985b). Optimizing single vehicle many-to-many operation with
desired delivery times: II. Routing. Transportation Science, 19(4) 411-435.

Shen, Y., Potvin, J.-Y., Rousseau, J.-M., and Roy, S. (1995). A computer assistant for vehicle
dispatching with learning capabilities. Annals of Operations Research, 61, 189–211.

Solanki, R. S., and Southworth, F. (1991). An execution planning algorithm for military airlift.
Interfaces, 21, 121–131.
Solomon, M. M., Chalifour, A., Desrosiers, J., and Boisvert, J. (1992). An application of vehicle

routing methodology to large-scale larvicide control programs. Interfaces, 22, 88–99.
Swersey, A. and Ballard, W. (1983). Scheduling school buses. Management Science, 30, 844–
853.
Toth, P. and Vigo, D. (1997). Heuristic algorithms for the handicapped persons transportation

problem. Transportation Science, 31, 60–71.

45	

Wang, X., Dessouky, M., and Ordonez, F. (2015). A Pickup and Delivery Problem for
Ridesharing Considering Congestion (working paper).

Wang, X. and Regan, A. C. (2002). Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B: Methodological, 36, 97–112.

Yang, L. and Zhou X. (2014). Constraint reformulation and a Lagrangian relaxation-based
solution algorithm for a least expected time path problem. Transportation Research Part B:
Methodological, 59, 22–44.

Zachariadis, E., Tarantilis, C., and Kiranoudis, C. (2015). The load-dependent vehicle routing
problem and its pick-up and delivery extension. Transportation Research Part B:
Methodological, 71, 158–181.

