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EXECUTIVE SUMMARY 

Ground transportation is essential for national and international freight movement. In terms of 
tons and value of the transported goods, trucking is the dominant method used in the USA. Thus, 
efficient management of freight transportation is essential. Monitoring freight movement and the 
performance of the system as a whole is important for making informed decisions. One of the 
key aspects of monitoring freight over the highways has to do with determining the flow patterns 
of trucks, which can be achieved by uniquely identifying trucks at specific points along the roads 
or by tracking individual trucks using technology such as GPS. Both methods require investment 
in technology. Maintenance cost of equipment is another significant factor to be considered in 
the case of infrastructure-based sensing. For the case of GPS tracking, since most of the trucks 
are owned by private parties, they may not be willing to share these data due to privacy concerns.  

In this research a method is proposed that is capable of tracking trucks by using anonymously 
collected data from sensors already in place. The data collected from existing vehicle count and 
classification stations are utilized. The attributes collected such as length of truck, number of 
axles, and axle spacings provide valuable information for matching the same truck passing 
through two stations. The variance in these attributes between different trucks provides a means 
for re-identifying the same truck. Although there will be measurement errors between two 
stations due to speed, weather, interference, calibration of devices at stations; measurements 
from matched trucks still exhibit a distinct pattern in which the difference of measurements 
between two stations will be less compared to data from non-matched trucks. The feasibility of 
matching trucks anonymously based on axle data have been demonstrated in previous studies.  

In this project, the previously developed models are enhanced to investigate the value of 
incorporating travel times provided by private companies (e.g., INRIX) into the vehicle re-
identification algorithms. Therefore, the source data for this project consists of both INRIX data 
and attribute data from vehicle classification sites. For this project, the needed data are collected 
from two vehicle classification sites along the I-64 corridor in Hampton Roads, VA. Per vehicle 
data from the classification sites include a timestamp, vehicle class, speed, number of axles, axle 
to axle spacing, and overall length for each vehicle. Trucks crossing upstream and downstream 
sites are manually identified from the recorded video files so that the results from the vehicle re-
identification algorithms can be validated. The re-identification algorithms are applied with 
different options for incorporating INRIX travel times. Since the selected I-64 corridor 
experience recurrent congestion, the collected datasets include varying levels of traffic 
conditions. Change in travel time between congested and free-flow conditions significantly 
impacts the performance of the re-identification model. It is found that using a dynamic travel 
time window informed by the INRIX data significantly improves the accuracy of the vehicle re-
identification results. For some tested cases, the improvement in accuracy is up to 19% when 
compared to the results from static search windows. Results also show that dynamic search 
windows provide more robust results against small perturbations in travel times.  
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1.0 INTRODUCTION 

While other modes are clearly important for freight transportation, trucking is the dominant 
mode in terms of tons and value. Monitoring freight movement and freight transportation 
performance is essential in making effective policies and informed decisions to enhance and to 
efficiently manage the freight transportation system. One of the key aspects of monitoring freight 
over the highways has to do with determining the flow patterns of trucks, which can be achieved 
by uniquely identifying trucks at specific points along the roads or by tracking individual trucks 
using technology such as GPS. However, not all trucks are equipped with tracking devices. 
While point sensors along the highways allow determining the truck volumes, they do not 
provide much information about the paths and origin-destinations for trucks. However, by 
exploiting vehicle-specific attributes (e.g., axle spacings, length) collected by such sensors 
vehicles can be re-identified (matched) to enable prediction of paths taken by trucks. Data from 
other infrastructure-based sensors (e.g., Bluetooth readers, AVI sensors) can also be utilized for 
the same purpose. Furthermore, such data elements can be combined with freight generators in a 
network (e.g., ports, distribution centers) to better determine origins and destinations. 
Developing such a system where data from all these sources are assimilated and synthesized to 
predict freight patterns will be useful for planning and performance monitoring of the national 
freight network.  
 
In this project, re-identification models for matching vehicles between two Continuous Count 
Stations (CCSs) are developed. At a typical CCS, total vehicle length, and axle spacings are 
measured per vehicle basis. Such data are then archived for future use. In addition to data from 
CCS sensors, it is assumed that travel time information (or variation) between the two sites is 
available. Such information can be obtained from various sources, including private companies 
(e.g., INRIX) or estimated from point sensors (e.g., loops, radar) installed along the corridor. The 
travel time information along with CCS data is incorporated into algorithms to re-identify trucks. 
In previous models, travel time between the sites is usually assumed to be constant and the 
variation in travel time is ignored (Cetin et al., 2011a, Cetin and Nichols, 2009, Cetin et al., 
2011b), which is not realistic especially along corridors through congested urban areas.  By 
incorporating the travel time variation, the re-identification algorithms have proven to produce 
more accurate matching, which is explored in this project. Therefore, the main objectives of this 
project include: 

• Developing vehicle re-identification algorithms that can integrate travel time information 
with CCS data for matching trucks between two sites 

• Assessing the accuracy of the re-identification algorithms as a function of the reliability 
of the travel time information  

 
In order to conduct the proposed research, both travel time and truck attribute data are needed. In 
a previous project, the Principal Investigator worked with the weigh-in-motion (WIM) data for 
twenty stations across Oregon (Cetin et al., 2011b). The WIM sites in Oregon are equipped with 
sensors that can measure axle weights, axle spacing, and gross vehicle weight estimates that are 
uniquely matched to each truck (Elkins and Higgins, 2008). Since some of the trucks (20- to 
35%) are carrying radio-frequency identification (RFID) transponders, these measured attributes 
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are also uniquely matched to transponder-equipped trucks. These particular trucks provided the 
needed truck attribute data for model development and testing. This project is built on the 
previous re-identification methodologies (Cetin et al., 2011a, Cetin et al., 2011b) but employs 
new datasets collected in Hampton Roads, VA. These datasets include vehicle length and axle 
spacing data from CCSs and travel time information from INRIX. In addition, the previous 
methodologies are enhanced by incorporating travel time information into the re-identification 
algorithms.  
 
The following section describes the study site and the data sources. Section 3 provides a brief 
literature review and discusses the re-identification algorithms. Empirical results are given in 
Section 4 which is followed by conclusions in Section 5.  
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2.0 DATA SOURCES AND CREATION OF TRAINING DATA 
FOR MODEL DEVELOPMENT AND TESTING 

This project makes use of 3 different sources of datasets: Vehicle attribute data from Continuous 
Count Stations (CCSs), video data, and speed data. The datasets are provided by the Virginia 
Department of Transportation (VDOT). First dataset contains truck attribute data for 
approximately 5 months from June 2014 to October 2014. The second dataset contains video 
recordings of the highway for a week of 7 days starting on Wednesday 17th of September, ending 
Tuesday September 23rd 2014. This dataset is used for ground truth validation and model 
training. The third source is the INRIX speed data which will serve as dynamic travel time input 
to the re-identification algorithm. These are described below.  

2.1 CONTINUOUS COUNT STATIONS AND CAMERA RECORDINGS 

The continuous count stations have sensors to capture vehicle attributes for each lane. The per 
vehicle records (PVR) from CCSs include a timestamp, vehicle class, speed, number of axles, 
axle to axle spacing, and overall length for each vehicle. The two continuous count stations that 
are used in this project will be referred to as upstream and downstream stations throughout the 
report. The locations of these stations are shown on the map in Figure 1 with a red star icon. 
Both sites are on I-64 EB along the Hampton Roads Bridge Tunnel (HRBT) corridor, one of the 
most congested major freeways in the Hampton Roads. The downstream site is at the exit of the 
HRBT tunnel.  

The data recorded at these stations do not have unique identifier for the trucks. Thus, in order to 
develop, validate, and test the proposed re-identification technique, a labelled dataset is needed. 
In order to find the unique matches of upstream trucks to downstream ones, videos recorded 
from VDOT’s traffic surveillance cameras are used. The locations of traffic cameras can be seen 
on the map in Figure 1 as a red camera icon. Table 1 provides information on the time frames of 
the recorded videos for the days that were present in this dataset.  

Table 1: Recorded video dates and times 

Camera 9/17/2014 9/18/2014 9/19/2014 9/20/2014 9/21/2014 9/22/2014 9/23/2014 

CAM 
802 

7AM-9AM 
- - ALL DAY ALL DAY ALL DAY - 

4PM-6PM 

CAM 
822 

7AM-9AM 
- 4PM-MN 

7AM-9AM 7AM-9AM 7AM-9AM 
7AM-9AM 

4PM-6PM 4PM-6PM 4PM-6PM 4PM-6PM 
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Figure 1: CCS, Camera, and INRIX TMC locations 

Through a manual process, the video footage captured by cameras 802 and 822 was used to 
identify and extract trucks that cross both stations. Camera 802 is directly facing the upstream 
station and had a good angle to visually recognize trucks. The video captured by a different 
camera at the downstream station was not clear therefore camera 822 was used instead to 
identify vehicles. This camera is located at the entrance of the HRBT and there is no exit or 
entrance once the trucks enter the bridge. Thus, the video captured from this camera provides the 
same information as the camera on the bridge. Since these cameras capture the common vehicles 
traveling from the upstream to downstream, they provide a means for matching the trucks. If the 
two trucks match based on visual inspection, they are uniquely labeled and then associated with 
the corresponding trucks in the PVR data from CCSs by utilizing the timestamps from video and 
CCSs. The labeled PVR data now include unique identifiers and provide the ground truth data 
for model development and testing. The labeling is done for only those vehicles that belong to 
FHWA vehicle classes of 4, 6, 7, 8, 9, 10, and 11.  

Among the one week video data, the recordings from September 17 and 22 are selected to create 
the ground truth labeled data. The area of study exhibits congested and free flow travel 
conditions based on the time of day. Since free flow travel time can be known based on the 
distance between stations and since the variation between travel times of vehicles is very low 
during free flow, congested traffic condition is of primary interest which exhibits a large 
variation. Hence, morning and afternoon rush hours were taken to create the labeled subset data. 
Table 2 shows the number of upstream and downstream vehicles (FHWA Classes 4, 6, 7, 8, 9, 
10, 11) observed at the two stations for September 17, 7:00-9:00 AM and 4:00-6:00 PM and 
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September 22, 7:00-9:00 AM and 4:00-6:00 PM. Based on the visually observed trucks from the 
videos, there are 265 matched trucks. However, some outliers were found to be present, perhaps, 
due to sensor measurement errors. Once these outliers were removed, the remaining subset of 
matched trucks has 219 vehicles. 

Table 2: Number of total upstream and downstream vehicles (FHWA Classes 4, 6, 7, 8, 9, 
10, 11) 

Station 9/17/2014 
7:00 – 9:00 AM 

9/17/2014 
4:00 – 6:00 PM 

9/22/2014 
7:00 – 9:00 AM 

9/22/2014 
4:00 – 6:00 PM 

Upstream 498 302 458 233 
DownStream 248 131 214 105 

#of Matched vehicles 
(with outliers) 96 53 69 47 

#of Matched vehicles  
(w/o outliers) 79 32 65 43 

 

The variability of travel time between two stations plays a critical role in vehicle re-identification 
since the potential matches are searched within expected travel time windows. The objective of 
this research is the assimilation of a third party data source to get travel time dynamically for re-
identification of vehicles between two stations. As mentioned earlier this information is obtained 
from INRIX which is explained in detail in the next section.  

2.2 INRIX DATA 

VDOT provided the research team access to INRIX speed data for the analyses. INRIX data are 
being used by VDOT to provide travel times on dynamic message signs and has been used in 
previous VDOT studies. The Virginia Center for Transportation Innovation and Research 
(VCTIR) evaluated the quality of the INRIX data by comparing it to travel times generated by 
Bluetooth readers1.  Based on this VCTIR study, INRIX travel time data were found to meet the 
accuracy and availability VDOT’s benchmarks. 

INRIX data were aggregated into five-minute intervals and associated with road segments (i.e., 
TMCs) along the study corridor. There were 22 links (i.e., TMCs) with lengths ranging from 0.1 
to 2.4 mile in length between the upstream and downstream. Figure 1 illustrates the INRIX links 
(or TMC segments) with the blue lines and a link’s starting point with the yellow pin icon. As 
explained in the next section the experienced travel time has been calculated to estimate the time 
traveled between the two stations based on the INRIX data. 

2.2.1 Instantaneous and Experienced Travel Time 

Given a spatio-temporal speed profile of traffic, two types of travel times can be computed: 1) 
instantaneous travel time and 2) experienced or dynamic travel time (Chen and Rakha, 2014, 
Mazaré et al., 2012, Tu, 2008). Instantaneous travel time is the time required for a vehicle to 
travel through a particular route, provided that the traffic conditions and speed of the vehicles 
                                                
1 Fontaine, M.D., Evaluation of INRIX Travel Time Data in Virginia, VCTIR Report, October 2013.  
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remain unchanged over a specified amount of time. Dynamic travel time is the time a vehicle 
would actually require traveling along a given route considering the changes in speed of traffic 
as it travels through the road segments. If there is no change in speed, both instantaneous and 
experienced travel times provide similar results; however, when there is a sudden change in 
speed, the travel time provided by these two methods is not the same. Figure 2 is a graphical 
representation of instantaneous and experienced travel times overlaid on a speed heat-map 
created from INRIX traffic data. 
 

 
Figure 2: Graphical representations of instantaneous and experienced travel time 

 
INRIX provides the travel time to cover a segment over a course of time.  In this study, 
experienced travel time is computed as follows:  

Let i represent link number  
ti is the time when a vehicle exits at link i 
TTi

t  is the travel time to traverse link i 
 
Assuming a vehicle exits link i at time ti, the time the vehicle exits the previous link i-1 is given 
by the current time ti minus the travel time of the link TTi

ti, as shown in equation (1). 

 ti-1 = ti - TTi
ti (1) 

INRIX travel time data aggregated every 5 minute is used in this study. Therefore, linear 
interpolation between the two successive time intervals is used to determine the travel time TTi

ti 
at any time t. Assuming tn and tn-1 are the INRIX time intervals which are the immediate before 
and after time ti  (i.e., tn-1 < ti < tn), TTi

ti is given by equation (2): 
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 𝑇𝑇!
!! =   

(𝑇𝑇!
!! − 𝑇𝑇!

!!!!) ∗ (𝑡! − 𝑡!!!)
(𝑡! − 𝑡!!!)

+   𝑇𝑇!
!! (2) 

  
This way, the time ti when a vehicle arrives at each segment i can be easily determined. 
Therefore, the experienced travel time as a vehicle travels from segment i to segment i-n is given 
by the difference in the time when the vehicle arrives at segment i and the time the vehicle 
departs segment i-n, as shown in equation (3). 

 𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑  𝑇𝑟𝑎𝑣𝑒𝑙  𝑇𝑖𝑚𝑒 =    𝑡! − 𝑡!!! (3) 
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3.0 LITERATURE SURVEY AND THE METHODOLOGY 

Vehicle re-identification methods rely on the variability within the vehicle population and the 
ability to accurately identify the pairs of measurements collected at upstream and downstream 
stations that are generated by the same vehicle. These measurements can either be the actual 
physical attributes of vehicles such as length (Coifman and Cassidy, 2002) and axle spacing 
(Cetin and Nichols, 2009) or some characteristics of the sensor waveform or inductive vehicle 
signature (Sun et al., 1999). Researchers have developed various methods, such as lexicographic 
optimization (Sun et al., 1999, Oh et al., 2007), decision trees (Tawfik et al., 2004), etc, to re-
identify vehicles. In a typical implementation of these methods, a downstream vehicle is matched 
to the most “similar” upstream vehicle (or vice versa) based on some defined metric (e.g., 
Euclidian distance). The resulting accuracy of these methods depends on several factors 
including the variation of the attribute data from vehicle to vehicle, number of attributes, the 
distance between data collection stations, variability of travel time, and type of the re-
identification algorithm used.  
 
Vehicle re-identification methods can been used to anonymously match vehicle crossing two 
different locations based on vehicle attribute data measured by sensors at each location. Let U 
and D be two nonempty sets that denote the vehicle crossing the upstream and downstream, 
respectively. Depending on various factors including the station locations, record validity, and 
types of activity between the sensors, four general cases arise: 

i. 𝑈 ⊂ 𝐷  𝑎𝑛𝑑  𝑈 ≠ 𝐷 
ii. 𝐷 ⊂ 𝑈  𝑎𝑛𝑑  𝑈 ≠ 𝐷 

iii. 𝑈 = 𝐷 
iv. 𝐷 ⊄ 𝑈, 𝑈 ⊄ 𝐷,𝑎𝑛𝑑  𝑈 ∩   𝐷 ≠ 0 

 

In the first three cases there is always a match for a vehicle in the smaller set (or either case for 
iii). However in the fourth case one needs to consider the possibility that a vehicle taken from 
one set might not have a match in the other set. The case that this project falls in would be iv, as 
there are entrances and exits between the upstream and downstream locations. However, since 
the testing is performed with the manually matched vehicles, case ii above is more pertinent to 
this project. For case iv, certain thresholds need to be used to eliminate vehicles for which a 
match does not exist (Cetin et al., 2011b).  

In the following section, the Bayesian re-identification algorithm with a fixed travel time is 
explained. This is the technique used in previous research (Cetin et al., 2011b). This method does 
not take into account the INRIX speed data or other means of travel time information; hence the 
travel time variation is not captured. The search-space identification step of this method is 
modified to incorporate travel time information.  
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3.1 BAYESIAN MODEL FOR RE-IDENTIFICATION 

Let XU and XD be two matrices with the same number of columns that denote the data collected 
at an upstream station and a downstream station, respectively; and XU

i and XD
j denote rows of 

these two matrices that correspond to the measurements (e.g., axle spacings) taken for vehicle i 
at the upstream station and for vehicle j at the downstream station. Further, assume that the time 
stamps indicating arrival times of vehicles at each station are given and denoted by tU

i for the 
upstream vehicles and tD

j for the downstream vehicles. Given XU, XD, tU
i and tD

j the vehicle 
matching problem involves determining XU

i and XD
j that are generated by the same vehicle. Let 

δij be a binary variable that equals 1 if XU
i and XD

j belong to the same vehicle and equals zero 
otherwise. The main objective of the matching algorithms is to estimate all δij’s with minimum 
error.  

3.2 DETERMINING THE SEARCH SPACE 

For re-identification, each vehicle in D needs to be matched to the most similar vehicle in U. A 
reasonable “search space” from the upstream vehicle records (U) can be identified based on 
expected travel time and some window. Before the search starts to match a downstream vehicle j 
to an upstream vehicle i, a search space for vehicle j, denoted by Sj, is determined. The 
variability in travel time can be captured by specifying minimum and maximum values for travel 
times. The minimum value (minTime) can be easily predicted based on an assumed maximum 
travel speed and the distance between the two stations. The maximum value can exhibit a large 
variation depending on the individual vehicle speeds, and traffic flow interruptions such as 
congestion or incidents between the two stations. The maximum value (maxTime) can be taken 
as some window added to the minTime. The search space for a downstream vehicle j is then 
determined as follows: 
 

 Sj = {i ϵ U | tD
j – maxTime ≤  tU

i1 ≤  tD
j – minTime } (4) 

 
Depending on the difference between maxTime and minTime or time window, the number of 
vehicles among which a match to be found varies. Larger time windows will result in a larger 
number of vehicles in the search space, which can make the matching problem more difficult. 
Too small of a window might cause the actual match to be missed. Finding an optimum window 
size is a problem in itself. The width of the time window can be adjusted depending on external 
travel time information (e.g., INRIX) as suggested in this research.  

3.3 BAYESIAN METHOD 

The Bayesian re-identification method relies on calculating the posterior probability of a match 
between two vehicles given two sets of data points collected for a vehicle pair (i,j) at the 
upstream and downstream stations. A vehicle j at the downstream station is matched to the 
upstream vehicle i that yields the largest probability of a match. The steps of the Bayesian 
method are more formally explained below.  
 
For each vehicle j in D 
    Identify a search space Sj ⊂  U 
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       For each i∈Sj 
           Calculate P(δij = 1|data) 
        m = argmax P(δij = 1|data)  
           i 
     Match vehicle j to m, i.e., δij =1 if i=m 
  
Once a search space is identified, P(δij = 1 | xij), the conditional probability that XU

i and XD
j 

belong to the same vehicle given data (i.e., xij = xU
i U xD

j), can be computed by the Bayes’ 
theorem as follows:  

 𝑃 𝛿!" = 1 𝑥!" =
𝑓 𝑥!" 𝛿!" = 1 𝑃 𝛿!" = 1

𝑓 𝑥!" 𝛿!" = 1 𝑃 𝛿!" = 1 + 𝑓 𝑥!" 𝛿!" = 0 𝑃 𝛿!" = 0
 (5) 

 
In order to calculate this posterior probability, both the two conditional probability density 
functions (i.e., f(xij|δij=1) and f(xij|δij=0)) and the prior probabilities (i.e., P(δij=0) and P(δij=1)) 
are needed. The functions f(xij|δij=1) and f(xij|δij=0) are the density functions that characterize the 
collected data at two stations when it belongs to the same vehicle and different vehicles, 
respectively. Figure 3a-b and Figure 3c-d illustrate how the data distribute for observations at 
two stations when δij=1 and δij=0, respectively, for a simple case when only a single attribute is 
considered. As it can be observed from these figures, when vehicles match (i.e., upstream and 
downstream measurements belong to the same vehicle) there is high correlation between the 
measurements, which is critical for re-identification. On the other hand, when random data for 
upstream and downstream measurements are plotted the correlation disappears as expected and a 
roughly uniform distribution of points is observed (Figure 3c-d). Since this amounts to an 
approximately uniform value for the density function, f(xij|δij=0) in equation (5) can be replaced 
by a constant (α). Furthermore, the travel time information can be used to approximate the prior 
distribution P(δij=1), as opposed to assigning a fixed value to the prior. In other words, the travel 
times of the common vehicles that cross both upstream and downstream vehicles are used to 
create a density function to replace P(δij=1). If the probability density function for the travel time 
is denoted by, h(tij) then, the posterior probability in equation (5) can be simplified to: 

 𝑃 𝛿!" = 1 𝑥!" ~
𝑓 𝑥!" 𝛿!" = 1 ℎ 𝑡!"

𝑓 𝑥!" 𝛿!" = 1 ℎ 𝑡!" + 𝛼
 (6) 

where α is  a positive arbitrary constant accounting for f(xij|δij=0) and f(δij=0). Since in matching 
vehicles only relative magnitude of this posterior probability is important, the selected value of α 
is not critical. In Principal Investigator’s previous work equation (5) was used to calculate the 
posterior probability (Cetin and Nichols, 2009).In this project the simplified version (equation 6) 
is used which gives essentially the same results as before but does not require the estimation of 
f(xij|δij=0), which is an advantage in terms of model calibration and development. 
 
The conditional density function, f(xij|δij=1), is obtained by fitting a probability distributions  to a 
training dataset in which all vehicles are correctly matched based on the unique ID’s created by 
manual video analysis. The data in this case are comprised of the attributes of matched vehicles 
(xij = xU

i U xD
j).  
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Figure 3: Length of the vehicle (a&c) and spacing between axle 1 and 2 (b&d) at two 
stations for matched and mismatched trucks 
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4.0 EXPERIMENTS AND RESULTS 

After model training is completed and the parameters of the Bayesian model are obtained the 
model testing is performed. Since there are only two days of true match data available, namely 
September 17 and 22, one day is used for model training and the other for testing and vice versa. 
Training is done on the whole day, while for testing the data for morning and afternoon rush 
hours are used separately. The numbers of vehicles pertaining to these datasets are shown 
previously in Table 2. 
 
The travel time information from INRIX is used to adjust the search space as defined previously 
(see equation 4). The search space is defined by two parameters: minimum travel time and time 
window. Adding the time window to the minimum travel time gives the maximum travel time. 
Three scenarios are constructed and tested to analyze the benefits of using INRIX data and 
dynamic windows for the search space: 
 

1. Static travel time with fixed window: In this base scenario, the minimum travel time is 
taken to be a constant throughout the analysis period. And the maximum travel time is 
always assumed to be 10 minutes longer than the minimum. To analyze the impact of 
various travel times, the minimum travel time is varied from 10 to 25 minutes. These 
travel times are based on the distance between the two stations, the speed limit, and 
observed travel times under congestion.   

2. Dynamic travel time with fixed window:  Using INRIX speed data, the minimum travel 
time is varied based on the prevailing conditions in the field. As in scenario one, a fixed 
window of 10 minutes is used. 

3. Dynamic travel time with a varying window: Similar to scenario two, a dynamic 
minimum travel time based on INRIX speed data is used. However, the time window is 
adjusted as explained below.  

4.1 SCENARIO 1 

In scenario 1, a static value is used for the minimum travel-time that is needed to specify the 
search window. However, since the matching results depend on the selected value, a reasonable 
range for the minimum travel-times is considered. The minimum travel-time is varied from 10 to 
25 minutes in increments of 1 minute to find the best possible static value for this scenario. All 
test plots for scenario 1 can be found in appendix A. Figure 4 shows one case where a fixed 
travel time is used. Here, the green dots represent the observed travel time for a vehicle crossing 
the downstream station. The blue and red dots represent the minimum and maximum travel times 
(i.e., search space) for each downstream vehicle. The difference between the red and blue dots 
makes up the search window. As can be seen, in some cases this search window fails to capture 
the observed travel times. If the search window is enlarged in order to accommodate all the 
travel times, the probability of an inaccurate match increases since the number of vehicles in the 
search window also increases. 
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The scenario has been tested on data from two different days. First, the parameters of the 
Bayesian model are obtained by training the model on the 22nd of September data, and the model 
is tested on data from 17th of September morning and afternoon rush hours. The minimum travel 
times vary from 10 to 25 minutes while time window is fixed at 10 minutes. The accuracy, which 
is calculated as the number of true matches found divided by the actual total true matches in the 
dataset, is shown in Figure 5. Morning rush hour reaches its best accuracy of approximately 58% 
with a 13 minute minimum travel time, while the afternoon period reaches its best accuracy of 
approximately 65% with an 18 minutes travel time. This illustrates that the same time window is 
not optimal for different traffic conditions.  
 

 
Figure 4: Search window with 14 minutes minimum travel time & 10 minutes time window 

in Scenario 1 

 
 
 

 
Figure 5: Percent of accurate matches with static travel times (September 17, 2014 results). 
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Second, the Bayesian model is trained on the September17th data, and is tested on 22nd of 
September morning and afternoon rush hours. This day exhibits a totally different performance, 
see Figure 6. The overall accuracy is significantly lower than before. Morning rush hour reaches 
its best accuracy of approximately 60% with a 22 minute minimum travel time, while the 
afternoon period reaches its best accuracy of approximately 78% with a 12 minutes travel time. It 
also is interesting to see that the best travel time of 12 minutes for the afternoon is the worst for 
the morning. Figure 6 shows these results in a bar plot for each travel time tested with a fixed 
window search size of 10 minutes. These results also illustrates that the same time window or 
search space is not optimal for different traffic conditions.  
 
 

 
Figure 6: Percent of accurate matches with static travel times (September 22, 2014 results). 

4.2 SCENARIO 2 

In scenario 2, the experienced travel time as defined before is calculated from the INRIX data 
and is used to determine the minimum travel time for the trucks. As in the previous scenario, 10 
minutes is added to this travel time in to obtain the search space in the upstream. When the 
observed travel times and the INRIX experienced travel times are compared it is discovered that 
the observed travel time is sometimes less than the INRIX travel time, see Figure 7. In order to 
accommodate this and to find and optimum search space, the minimum travel times are shifted 
down from the reference INRIX times ranging from 1 minute to 5 minutes. Figure 8 shows one 
case where the minimum dynamic travel times are found by lowering the INRIX travel times by 
3 minutes. Here, the green dots represent the observed travel time for a vehicle taken in 
downstream. The blue and red dots represent the minimum and maximum travel times for each 
downstream vehicle. The difference between the red and blue dots makes up the search window 
for that vehicle. As can be seen, as opposed to fixed time travel shown in Figure 4, the dynamic 
travel time is able to track the actual travel times much better. 
 
The same cases tested in scenario 1 apply for scenario 2 as well. All the test plots for scenario 2 
can be found in appendix B. Figure 9 and Figure 10 show the percent of true matches for 
morning and afternoon datasets for the two days. There is an overall increase in accuracy 
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compared to scenario 1. Also there is no big discrepancy between the two cases, as they both 
have approximately the same accuracy for the morning and afternoon periods. 

 
Figure 7: INRIX travel time vs. observed travel time 

 

 
Figure 8: Scenario 2 - Dynamic travel time with a 10-minute window 
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Figure 9: Percent of accurate matches with dynamic search space (September 17, 2014 

results) 

 

 
Figure 10: Percent of accurate matches with dynamic search space (September 22, 2014 

results)  

4.3 SCENARIO 3 

In scenario 3, as in scenario 2 dynamic travel times are found from the INRIX data. In the 
analysis of scenario 2 it is noticed that when the traffic conditions approach free flow the 
variation in observed travel times from the INRIX travel times was much lower. Due to this fact 
taking a smaller window size at these time periods would potentially increase the accuracy. This 
is simply because of the fact that fewer vehicles will be present in the search space, thus 
decreasing the chance of false matches. Thus, instead of a fixed time window of 10 minutes, two 
different time windows are used. When the INRIX travel time is less than 16 minutes, a window 
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of 5 minutes is used, and when the INRIX travel time is more than 16 minutes a window of 10 
minutes is used. As can be seen in Figure 11, the decreased window size at travel times less than 
16 minutes towards the end is still able to capture the observed travel times. 
 
The same cases tested in scenario 1, and 2 apply for scenario 3 as well. All the testing plots for 
this scenario can be found in Appendix C. Figure 12 and Figure 13 are bar plots showing the 
percentage of true matches for the morning and afternoon cases. Comparing the results with 
those of scenario 2, in some cases a significant improvement has been gained. In Figure 13 
afternoon case, the percent of match increased from 79% to 86%. 
 

 
Figure 11: Scenario 3 - Dynamic travel time & 2 conditions time window. 
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Figure 12: Percent of accurate matches with dynamic search space and varying windows 

(September 17, 2014 results). 

 

 
Figure 13: Percent of accurate matches with dynamic search space and varying windows 

(September 22, 2014 results)  
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5.0 SUMMARY AND CONCLUSIONS 

This section summarizes the results obtained after applying the Bayesian re-identification model 
in 3 different scenarios listed above. In Table 3 and Table 4 the percentage of accurately matched 
trucks are presented. In Table 3, the time column represents the minimum travel time. A fixed 
window size of 10 minutes is used. The best performing minimum travel time is highlighted in 
green. As can be seen from the table, the best performing travel times differ by a considerable 
amount for each dataset. For example, the best minimum travel time is 13 minutes for the 
morning rush hour on September 17 whereas it is 22 minutes for September 22. It is clear that a 
common best time cannot be found. Especially for 22nd of September the best travel time for one 
time period is the worst for the other. This clearly illustrates that a fixed or static search space 
window will not provide accurate results under the varying traffic conditions.  
 
In Table 4, the accurately matched trucks are presented for scenarios 2 and 3. In scenarios 2 and 
3 dynamic travel times obtained from INRIX speed data are used. As explained before, since 
trucks travel generally slower than the general traffic, the minimum travel times are adjusted by 
shifting the INRIX travel times downwards by several minutes. The time column in Table 4 
represents this amount of time which is referred to as time shift. Here the best performing time 
shift is highlighted green. In all the cases of both scenarios and both morning and afternoon 
periods it can be seen that a common time shift of 2 or 3 minutes is performing the best. Using 
either time shift results in very good match percentages with as low as 2% loss of accuracy from 
the optimum amount. This shows that dynamic time windows are robust to small perturbations in 
search space.  
 
In conclusion, in scenario 1 the best performing minimum travel time is varying for each dataset. 
There is no common minimum travel time (or search space) that can be used for all datasets. 
However, in scenario 2 and 3, a dynamic travel time produces reasonably high matching 
accuracy. Since, a common minimum travel time cannot be found for scenario 1 and the 
optimum minimum travel time is somewhat arbitrary; sensitivity analysis was performed by 
changing the best performing travel time by 2 minutes. Here the accuracy for each time of the 
day for the fixed travel time with optimum, 2 minutes less than optimum, and 2 minutes more 
than optimum alongside the dynamic travel time with 3 minute window shift is analyzed. As it is 
depicted in Figure 14 there are large differences between the optimum case and the travel times 
that are close to optimum for the fixed scenarios. This shows that the model which assumes fixed 
travel time is not robust. 
 
Most importantly it can be seen from the results that dynamic travel time does have its benefits 
and helps the re-identification algorithm in performing better. The largest accuracies obtained 
from each scenario tested on each day and time period are presented in Figure 15. There is a gain 
of up to 19% in accuracy is some periods using dynamic travel time compared to fixed times. 
These results prove the value of using dynamic travel time for re-identification algorithms. The 
model also proves to be robust as the time shift from dynamic travel time can be held constant at 
2 or 3 minutes with a very small amount of loss in accuracy. Using a dynamic search window 
together with dynamic travel time has also made some improvements in the model. Compared to 
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scenario 2, scenario 3 with a dynamic window size performs either the same or better in some 
cases. For future research, these scenarios can be tested on larger datasets to further demonstrate 
the value of using dynamic travel times for the search space.  
 
 
 
Table 3: Testing results for scenario 1  

	  	   9/17/2014	   9/22/2014	  
	  	   7AM-‐9AM	   4PM-‐6PM	   7AM-‐9AM	   4PM-‐6PM	  
Travel	  Time	  (m)	   Scenario	  1	   Scenario	  1	   Scenario	  1	   Scenario	  1	  

10	   35%	   25%	   20%	   74%	  
11	   43%	   31%	   20%	   77%	  
12	   49%	   41%	   22%	   77%	  
13	   58%	   47%	   25%	   67%	  
14	   52%	   56%	   25%	   30%	  
15	   49%	   63%	   28%	   28%	  
16	   52%	   63%	   32%	   26%	  
17	   51%	   63%	   38%	   26%	  
18	   48%	   66%	   45%	   19%	  
19	   48%	   66%	   54%	   7%	  
20	   40%	   59%	   52%	   0%	  
21	   30%	   53%	   58%	   0%	  
22	   22%	   47%	   60%	   0%	  
23	   15%	   44%	   57%	   0%	  
24	   14%	   28%	   52%	   0%	  
25	   10%	   28%	   45%	   0%	  

 
Table 4: Testing results for scenario 2 and scenario 3  

	  	   9/17/2014	   9/22/2014	  
	  	   7AM-‐9AM	   4PM-‐6PM	   7AM-‐9AM	   4PM-‐6PM	  
Time	  Shift	  (m)	   S2	   S3	   S2	   S3	   S2	   S3	   S2	   S3	  

1	   54%	   56%	   66%	   66%	   57%	   57%	   72%	   79%	  
2	   68%	   69%	   78%	   78%	   60%	   58%	   77%	   86%	  
3	   73%	   73%	   81%	   81%	   57%	   55%	   79%	   84%	  
4	   72%	   70%	   81%	   81%	   49%	   49%	   77%	   72%	  
5	   65%	   62%	   69%	   69%	   49%	   49%	   77%	   33%	  

Note.  S2 = Scenario 2; S3 = Scenario 3. 
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Figure 14: Sensitivity analysis of fixed TT when the best TT is changed by 2 minutes 

 

 
Figure 15: Maximum % accurate match for each scenario of all data set 
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